	Zipfian Atlas and First-Order Models	

The Universality of Zipf's Law

CDAR Risk Seminar, UC Berkeley

Ricardo T. Fernholz

Claremont McKenna College

February 1, 2022

3 x 3

Introduction		Zipfian Atlas and First-Order Models	
Zipf's L	aw		

The original formulation of Zipf's law states that given some collection of natural language text, the *frequency of any word is inversely proportional to its rank* in the frequency table.

The law is named after the American linguist George Kingsley Zipf (1902–1950), who popularized and sought to explain it (Zipf, 1935, 1949).

3

Word Count from Wikipedia

Ricardo Fernholz (CMC

э

Pareto Distributions and Zipf's Law

- Pareto distribution, or power law
 - Log-log plot of the data versus rank is approximately a straight line
- Zipf's Law
 - ► Log-log plot of the data versus rank is approximately a straight line with slope -1
 - ► Weaker form of Zipf's law requires that log-log plot of the data versus rank is concave with a tangent line of slope -1 at some point

3

(日) (周) (三) (三)

Examples of Pareto Distributions

Ricardo Fernholz (CMC)

Universality of Zipf's Law

February 1, 2022

Examples of Pareto Distributions

Zipf's Law and Universality

According to Tao (2012), "mathematicians do not have a fully satisfactory and convincing explanation for how the law comes about and why it is universal."

Zipf's law appears in many different fields and many different applications. As a consequence, any explanation should appeal to statistics and mathematics rather than field-specific phenomena.

3

(日) (周) (三) (三)

Zipfian and Non-Zipfian Pareto Distributions

- The universality of Zipf's law
 - Firm size, city size, word frequency, income and wealth of households
 - Data generated by time-dependent rank-based systems follow Zipf's law (Fernholz & Fernholz, 2020)
 - Any explanation should not depend on the specific details of a model (Gabaix, 1999; Toda, 2017)
- Non-Zipfian Pareto distributions
 - Earthquake magnitude, cumulative book sales, intensity of wars
 - Data generated by other means, usually of a cumulative nature, do not necessarily follow Zipf's law

э

(日) (周) (三) (三)

- Applications
 - The distribution of U.S. stock market capitalizations
 - Followed standard quasi-Zipfian distribution for most of U.S. history
 - Empirical estimates confirm market cap dynamics satisfy conditions that yield quasi-Zipfian distribution (Fernholz, 2017)
 - Rank- and name-based time-dependent systems (Ichiba et al., 2011)
 - U.S. stock market capitalizations post-2020?
 - City size distributions (Davis & Weinstein, 2002; Soo, 2005)
 - Wealth distribution (Benhabib, Bisin, & Fernholz, 2022)

(日) (同) (三) (三)

Ranked Continuous Semimartingales

We use systems of positive continuous semimartingales $\{X_1, \ldots, X_n\}$ to approximate systems of time-dependent empirical data. If the X_i satisfy certain regularity conditions, then

$$d\log X_{(k)}(t) = \sum_{i=1}^{n} \mathbb{1}_{\{r_t(i)=k\}} d\log X_i(t) + \frac{1}{2} d\Lambda_{k,k+1}^X(t) - \frac{1}{2} d\Lambda_{k-1,k}^X(t), \quad \text{a.s.}$$

- Rank function is defined such that $r_t(i) < r_t(j)$ if $X_i(t) > X_i(t)$
- Rank processes $X_{(1)} \ge \cdots \ge X_{(n)}$ are defined by $X_{(r_i(i))}(t) = X_i(t)$
- $\Lambda_{k,k+1}^X$ is the local time at the origin for $\log(X_{(k)}/X_{(k+1)})$, which measures the effect of crossovers between ranks k and k+1

∃ nar

イロト 不得 トイヨト イヨト

	Preliminaries	Zipfian Atlas and First-Order Models	
Atlas M	odels		

An Atlas model is a system of positive continuous semimartingales $\{X_1, \ldots, X_n\}$ defined by

$$d\log X_i(t) = -g dt + ng \mathbb{1}_{\{r_t(i)=n\}} dt + \sigma dW_i(t),$$

where g and σ are positive constants and (W_1, \ldots, W_n) is a Brownian motion.

- Stationary model when geometric mean of processes X_i is subtracted
- System follows Gibrat's law, with equal growth rates and variances across all ranks

ヨ▶ ▲ ヨ▶ ヨ の � @

First-Order Models

A first-order model is a system of positive continuous semimartingales $\{X_1, \ldots, X_n\}$ defined by

$$d\log X_i(t) = g_{r_t(i)} dt + G_n \mathbb{1}_{\{r_t(i)=n\}} dt + \sigma_{r_t(i)} dW_i(t),$$

where $\sigma_1^2, \ldots, \sigma_n^2$ are positive constants, g_1, \ldots, g_n are constants satisfying

$$g_1 + \cdots + g_k < 0$$
, for $k \leq n$,

 $G_n = -(g_1 + \cdots + g_n)$, and (W_1, \ldots, W_n) is a Brownian motion.

- Stationary model when geometric mean of processes X_i is subtracted
- More general than Atlas models

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	lodels		

Asymptotic Distribution of Atlas Models

Atlas models satisfy

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \big(\log X_{(k)}(t) - \log X_{(k+1)}(t)\big)dt = \frac{\sigma_{k,k+1}^2}{2\lambda_{k,k+1}}, \quad \text{a.s.},$$

for $k = 1, \ldots, n - 1$, with the asymptotic parameters

$$\lim_{T\to\infty} T^{-1}\Lambda^X_{k,k+1}(T) = \lambda_{k,k+1} = 2kg, \quad \text{ a.s.},$$

$$\lim_{T\to\infty} T^{-1} \langle \log X_{(k)} - \log X_{(k+1)} \rangle_T = \sigma_{k,k+1}^2 = 2\sigma^2, \quad \text{a.s.}$$

Hence, for large enough k, Atlas models satisfy

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\frac{\log X_{(k)}(t)-\log X_{(k+1)}(t)}{\log(k)-\log(k+1)}\,dt\cong-\frac{\sigma^2}{2g},\quad \text{ a.s.},$$

which implies a Pareto distribution that follows Zipf's law if $\sigma^2 = 2g$.

Atlas Families

An Atlas family is a class of Atlas models $\{X_1, \ldots, X_n\}$, for $n \in \mathbb{N}$, with the common parameters g > 0 and $\sigma^2 > 0$ defined as in

$$d \log X_i(t) = -g \, dt + ng \mathbb{1}_{\{r_t(i)=n\}} dt + \sigma \, dW_i(t).$$

Let $X_{[n]} = X_{(1)} + \dots + X_{(n)}$, and
$$= \sum_{i=1}^{n} \left[X_{(n)}(t) \right] \qquad \text{i.e.} \quad = \sum_{i=1}^{n} \left[X_{[n]}(t) \right]$$

$$R_n = \mathbb{E}_n \left[\frac{\lambda_{(n)}(t)}{X_{(1)}(t)} \right]$$
 and $R_{[n]} = \mathbb{E}_n \left[\frac{\lambda_{[n]}(t)}{X_{(1)}(t)} \right]$

Fernholz & Fernholz (2020) show that an Atlas family is Zipfian if and only if

$$\lim_{n \to \infty} \frac{1}{R_{[n]}} \mathbb{E}_n \left[\frac{1}{T} \int_0^T \frac{dX_{[n]}(t)}{X_{(1)}(t)} \right] = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{nR_n}{R_{[n]}} = 0.$$

Ricardo Fernholz (CMC

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	lodels		

Conservation

By sampling or detrending, we can ensure that the "total mass" of a system of time-dependent rank-based data $\{Z_1(\tau), Z_2(\tau), \ldots\}$ is constant.

In this case, for large enough n, the mass of the top n ranks,

$$Z_{[n]}(\tau) = Z_{(1)}(\tau) + \cdots + Z_{(n)}(\tau),$$

should also be approximately constant.

Hence, for large enough n, it is reasonable to expect:

$$\frac{1}{(Z_{[n]}(\tau)/Z_{(1)}(\tau))}\frac{Z_{[n]}(\tau+1)-Z_{[n]}(\tau)}{Z_{(1)}(\tau)}=\frac{Z_{[n]}(\tau+1)-Z_{[n]}(\tau)}{Z_{[n]}(\tau)}\cong 0.$$

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	lodels		

Conservation

By sampling or detrending, we can ensure that the "total mass" of a system of time-dependent rank-based data $\{Z_1(\tau), Z_2(\tau), \ldots\}$ is constant.

In this case, for large enough n, the mass of the top n ranks,

$$Z_{[n]}(\tau) = Z_{(1)}(\tau) + \cdots + Z_{(n)}(\tau),$$

should also be approximately constant.

Hence, we require that an Atlas family $\{X_1, \ldots, X_n\}$ be *conservative*:

$$\lim_{n\to\infty}\frac{1}{R_{[n]}}\mathbb{E}_n\left[\frac{1}{T}\int_0^T\frac{dX_{[n]}(t)}{X_{(1)}(t)}\right]=0.$$

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas M	lodels		

Completeness

For a system of data $\{Z_1(\tau), Z_2(\tau), \ldots\}$, the replacement of processes in the top *n* ranks by processes in the lower ranks over the time interval $[\tau, \tau + 1]$ is

$$Z_{[n]}(\tau+1) - \sum_{i=1}^{N} \mathbb{1}_{\{r_{\tau}(i) \leq n\}} Z_i(\tau+1).$$

For large enough n, it is reasonable to expect this replacement to become arbitrarily small, i.e. that the system will be *complete*:

$$\frac{1}{Z_{[n]}(\tau)}\left(\left(Z_{[n]}(\tau+1)-Z_{[n]}(\tau)\right)-\sum_{i=1}^{N}1_{\{r_{\tau}(i)\leq n\}}\left(Z_{i}(\tau+1)-Z_{i}(\tau)\right)\right)\cong 0.$$

э.

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	lodels		

Completeness

In terms of a first-order model, completeness is

$$\frac{1}{R_{[n]}}\mathbb{E}_{n}\left[\frac{1}{T}\int_{0}^{T}\frac{dX_{[n]}(t)}{X_{(1)}(t)}-\frac{1}{T}\int_{0}^{T}\left(\sum_{i=1}^{N}\mathbb{1}_{\{r_{t}(i)\leq n\}}\frac{dX_{i}(t)}{X_{(1)}(t)}\right)\right]\cong 0.$$

It is not hard to show that this is equivalent to

$$\frac{1}{R_{[n]}}\mathbb{E}_n\left[\frac{1}{T}\int_0^T\frac{X_{(n)}(t)}{2X_{(1)}(t)}\,d\Lambda_{n,n+1}^X(t)\right]\cong 0,$$

where the last term is the local time at zero of $\log(X_{(n)}/X_{(n+1)})$.

For an Atlas family $\{X_1, \ldots, X_n\}$, $d\Lambda_{n,n+1}^X(t)$ is on average equal to 2ng, and so we require that an Atlas family be *complete*:

$$\lim_{n\to\infty}\frac{1}{R_{[n]}}\mathbb{E}_n\left[\frac{1}{T}\int_0^T n\frac{X_{(n)}(t)}{X_{(1)}(t)}\,dt\right] = \lim_{n\to\infty}\frac{nR_n}{R_{[n]}} = 0.$$

Ricardo Fernholz (CMC)

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	lodels		

An Atlas family is Zipfian (so that $\sigma^2 = 2g$) if and only if it is conservative and complete:

$$\lim_{n\to\infty}\frac{1}{R_{[n]}}\mathbb{E}_n\left[\frac{1}{T}\int_0^T\frac{dX_{[n]}(t)}{X_{(1)}(t)}\right]=0 \quad \text{and} \quad \lim_{n\to\infty}\frac{nR_n}{R_{[n]}}=0.$$

For an Atlas model, Itô's rule implies that, a.s.,

$$dX_i(t) = \left(\frac{\sigma^2}{2} - g + ng \mathbb{1}_{\{r_t(i)=n\}}\right) X_i(t) dt + \sigma X_i(t) dW_i(t),$$

which, for the total mass $X_{[n]} = X_1 + \cdots + X_n$, implies that, a.s.,

$$dX_{[n]}(t) = \left(\frac{\sigma^2}{2} - g\right) X_{[n]}(t) dt + X_{[n]}(t) dM(t) + ngX_{(n)}(t) dt,$$

where *M* is a martingale incorporating all the σW_i .

Ricardo Fernholz (CMC

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	lodels		

An Atlas family is Zipfian (so that $\sigma^2 = 2g$) if and only if it is conservative and complete:

$$\lim_{n\to\infty}\frac{1}{R_{[n]}}\mathbb{E}_n\left[\frac{1}{T}\int_0^T\frac{dX_{[n]}(t)}{X_{(1)}(t)}\right]=0 \quad \text{and} \quad \lim_{n\to\infty}\frac{nR_n}{R_{[n]}}=0.$$

For the total mass $X_{[n]} = X_1 + \cdots + X_n$, we have, a.s.,

$$dX_{[n]}(t) = \left(\frac{\sigma^2}{2} - g\right) X_{[n]}(t) dt + X_{[n]}(t) dM(t) + ng X_{(n)}(t) dt,$$

which implies that, a.s.,

$$\frac{dX_{[n]}(t)}{X_{(1)}(t)} = \left(\frac{\sigma^2}{2} - g\right) \frac{X_{[n]}(t)}{X_{(1)}(t)} dt + \frac{X_{[n]}(t)}{X_{(1)}(t)} dM(t) + \frac{ngX_{(n)}(t)}{X_{(1)}(t)} dt.$$

3

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	1odels		

An Atlas family is Zipfian (so that $\sigma^2 = 2g$) if and only if it is conservative and complete:

$$\lim_{n\to\infty}\frac{1}{R_{[n]}}\mathbb{E}_n\bigg[\frac{1}{T}\int_0^T\frac{dX_{[n]}(t)}{X_{(1)}(t)}\bigg]=0\qquad\text{and}\qquad\lim_{n\to\infty}\frac{nR_n}{R_{[n]}}=0.$$

For the total mass $X_{[n]} = X_1 + \cdots + X_n$, we have, a.s.,

$$\frac{dX_{[n]}(t)}{X_{(1)}(t)} = \left(\frac{\sigma^2}{2} - g\right) \frac{X_{[n]}(t)}{X_{(1)}(t)} dt + \frac{X_{[n]}(t)}{X_{(1)}(t)} dM(t) + \frac{ngX_{(n)}(t)}{X_{(1)}(t)} dt,$$

which implies that

$$\mathbb{E}_n\left[\frac{1}{T}\int_0^T \frac{dX_{[n]}(t)}{X_{(1)}(t)}\right] = \left(\frac{\sigma^2}{2} - g\right)R_{[n]} + ngR_n.$$

3

		Zipfian Atlas and First-Order Models	
Zipf's Law for Atlas N	1odels		

An Atlas family is Zipfian (so that $\sigma^2 = 2g$) if and only if it is conservative and complete:

$$\lim_{n\to\infty}\frac{1}{R_{[n]}}\mathbb{E}_n\left[\frac{1}{T}\int_0^T\frac{dX_{[n]}(t)}{X_{(1)}(t)}\right]=0\qquad\text{and}\qquad\lim_{n\to\infty}\frac{nR_n}{R_{[n]}}=0.$$

For the total mass $X_{[n]} = X_1 + \cdots + X_n$, we have, a.s.,

$$\frac{dX_{[n]}(t)}{X_{(1)}(t)} = \left(\frac{\sigma^2}{2} - g\right) \frac{X_{[n]}(t)}{X_{(1)}(t)} dt + \frac{X_{[n]}(t)}{X_{(1)}(t)} dM(t) + \frac{ngX_{(n)}(t)}{X_{(1)}(t)} dt,$$

which implies that

$$\frac{1}{R_{[n]}}\mathbb{E}_{n}\left[\frac{1}{T}\int_{0}^{T}\frac{dX_{[n]}(t)}{X_{(1)}(t)}\right] = \frac{\sigma^{2}}{2} - g + ng\frac{R_{n}}{R_{[n]}}.$$

		Zipfian Atlas and First-Order Models		
Zipf's Law for Atlas Models				

Examples of Pareto Distributions

		Zipfian Atlas and First-Order Models		
Zipf's Law for Atlas Models				

Examples of Pareto Distributions

Universality of Zipf's Law

Quasi-Atlas Models

A first-order model is a system of positive continuous semimartingales $\{X_1, \ldots, X_n\}$ defined by

$$d\log X_i(t) = g_{r_t(i)} dt + G_n \mathbb{1}_{\{r_t(i)=n\}} dt + \sigma_{r_t(i)} dW_i(t),$$

where $\sigma_1^2, \ldots, \sigma_n^2$ are positive constants, g_1, \ldots, g_n are constants satisfying

$$g_1 + \cdots + g_k < 0$$
, for $k \leq n$,

and $G_n = -(g_1 + \cdots + g_n)$. A quasi-Atlas model is a first-order model with g > 0 and $\sigma_2^2 \ge \sigma_1^2 > 0$, such that

$$g_k = -g, \qquad \sigma_k^2 = \sigma_1^2 + (k-1)(\sigma_2^2 - \sigma_1^2),$$

for k = 1, ..., n.

		Zipfian Atlas and First-Order Models	
Zipf's Law for Quasi-Atlas Models			

Asymptotic Distribution of Quasi-Atlas Models

Quasi-Atlas models satisfy

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \big(\log X_{(k)}(t) - \log X_{(k+1)}(t)\big)dt = \frac{\sigma_{k,k+1}^2}{2\lambda_{k,k+1}},$$

a.s., for $k = 1, \ldots, n - 1$, with the asymptotic parameters

$$\lambda_{k,k+1} = 2kg$$
 and $\sigma_{k,k+1}^2 = \sigma_k^2 + \sigma_{k+1}^2$, a.s.

Hence, for large enough k,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \frac{\log X_{(k)}(t) - \log X_{(k+1)}(t)}{\log(k) - \log(k+1)} \, dt \cong -\frac{\sigma_k^2 + \sigma_{k+1}^2}{4g}, \quad \text{ a.s.},$$

so quasi-Atlas models may have non-Pareto stationary distributions.

Quasi-Atlas Families

A quasi-Atlas family is a class of quasi-Atlas models $\{X_1, \ldots, X_n\}$, for $n \in \mathbb{N}$, with the common parameters $\sigma_k^2 = \sigma_1^2 + (k-1)(\sigma_2^2 - \sigma_1^2) > 0$ for $k \in \mathbb{N}$ and g > 0, defined as in

$$d\log X_i(t) = -g dt + ng \mathbb{1}_{\{r_t(i)=n\}} dt + \sigma_{r_t(i)} dW_i(t).$$

A family is *quasi-Zipfian* if the log-log plot is concave with a tangent of -1 somewhere on the curve. Fernholz & Fernholz (2020) show that a quasi-Atlas family is quasi-Zipfian if it is conservative and complete with

$$\lim_{n\to\infty}\mathbb{E}_n\left[\frac{X_{[n]}(t)}{X_{(1)}(t)}\right]\geq 2.$$

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

		Zipfian Atlas and First-Order Models	
Zipf's Law for Quasi-	Atlas Models		

U.S. Stock Market Capitalization Distribution, 2010-2019

Share of Total

Ricardo Fernholz (CMC)

		Zipfian Atlas and First-Order Models	
Zipf's Law for Quasi-	Atlas Models		

Word Count from Wikipedia

Ricardo Fernholz (CMC)

3

Zipfian and Non-Zipfian Pareto Distributions

- Zipfian Pareto distributions
 - Firm size, city size, word frequency, income and wealth of households
 - Data generated by time-dependent rank-based systems will often be Zipfian or quasi-Zipfian
 - Conservation and completeness should always hold in the limit
- Non-Zipfian Pareto distributions
 - Earthquake magnitude, cumulative book sales, intensity of wars
 - Data generated by other means, usually of a cumulative nature, do not necessarily follow Zipf's law

(日) (周) (三) (三)

The Universality of Zipf's Law

- Zipfian and quasi-Zipfian distributions appear in many different fields and many different applications
 - Economics, demography, linguistics, etc.
- As a consequence, any explanation should appeal to statistics and mathematics rather than field-specific phenomena
 - Field-specific explanations of the Central Limit Theorem?
- Any time-dependent rank-based system that follows Gibrat's law will, provided enough ranks are sampled, be Zipfian
 - Conservation and completeness should always hold in the limit

(日) (周) (三) (三)

First-Order Approximation

Let $\{Z_1(\tau), Z_2(\tau), \ldots\}$, $\tau \in \{1, 2, \ldots, T\}$, be a system of time-dependent data of indefinite size.

The *first-order approximation* for the top *n* ranks of this system is the first-order model X_1, \ldots, X_n with

$$d\log X_i(t) = g_{r_t(i)} dt + G_n \mathbb{1}_{\{r_t(i)=n\}} dt + \sigma_{r_t(i)} dW_i(t),$$

where the parameters g_1, \ldots, g_n and $\sigma_1^2, \ldots, \sigma_n^2$ are estimated using the time-series of $\{Z_1(\tau), Z_2(\tau), \ldots\}$.

First-Order Approximation of U.S. Capital Distribution

- Construct a first-order approximation of stock market capitalizations of U.S. companies from 1990-99
 - Estimate parameters g_k and σ_k following procedure of Fernholz (2017)
 - Changes in market capitalization also affect returns, so there is a link between capital distribution and stock returns
- First-order approximation is close to a quasi-Atlas model
 - Parameters satisfy $g_1 = g_2 = \cdots = g_n$ and $\sigma_k^2 = \sigma_1^2 + (k-1)(\sigma_2^2 \sigma_1^2)$
 - If a sufficient number of ranks are considered, then the distribution should be quasi-Zipfian
 - \blacktriangleright Concave distribution curve with a tangent of -1 somewhere

First-Order Approximation of U.S. Capital Distribution

Universality of Zipf's Law

First-Order Approximation of U.S. Capital Distribution

Ricardo Fernholz (CMC)

Universality of Zipf's Law

Second-Order Models

In some cases, the behavior of different entities within a time-dependent system may depend on both rank and name, so that

$$d \log X_i(t) = g_{r_t(i)} dt + \gamma_i dt + \sigma_{r_t(i)} dW_i(t),$$

where $\sigma_1^2, \ldots, \sigma_n^2$ are positive constants, $g_1, \ldots, g_n, \gamma_1, \ldots, \gamma_n$ are constants satisfying $g_1 + \cdots + g_n + \gamma_1 + \cdots + \gamma_n = 0$, as well as a stability condition (Ichiba et al., 2011), and (W_1, \ldots, W_n) is a Brownian motion.

- In such second-order models, the processes X_i are not exchangeable
 - ► Different X_i will spend different amounts of time in each rank
 - No guarantee of Zipfian or quasi-Zipfian stationary distribution, even if parameters g_k and σ_k satisfy conditions from before

U.S. Capital Distribution Pre-2020 vs. End-2020

Share of Total

Ricardo Fernholz (CMC)

City Size Distributions

- According to Soo (2005), some city size distributions are neither Zipfian nor quasi-Zipfian
 - France, Argentina, Russia, Mexico, New York State, etc.
 - These systems are not rank-based only, but also name-based (largest cities are fundamentally, persistently different from the rest)
- Davis & Weinstein (2002) show that after the destruction of WWII, the cities that grew to be largest were the same as those from before
 - Japanese city growth is not rank-based only, but also name-based
- Both of these observations can be explained by a second-order model

3

(a)

Wealth Distribution and Long-Run Mobility

- Surprising findings for long-run mobility that are impossible to match using standard random growth models of wealth distribution
 - ▶ Wealth-rank coefficient after 585 years is 0.1: Barone & Mocetti (2021)
 - Both parent and grandparent wealth-rank have predictive power for child wealth-rank: Boserup, Kopczuk, & Kreiner (2014)
- Second-order models of intergenerational wealth dynamics can match all of these observations
 - Benhabib, Bisin, & Fernholz (2022)

3

		Zipfian Atlas and First-Order Models		Applications
Rank- and Name-Based Time-Dependent Systems				

The End

Thank You

• • • • • • • •

→

2