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Zipf’s Law

The original formulation of Zipf’s law states that given some collection of

natural language text, the frequency of any word is inversely proportional

to its rank in the frequency table.

The law is named after the American linguist George Kingsley Zipf

(1902–1950), who popularized and sought to explain it (Zipf, 1935, 1949).

Ricardo Fernholz (CMC) Universality of Zipf’s Law February 1, 2022



Introduction Preliminaries Zipfian Atlas and First-Order Models Universality Applications

Word Count from Wikipedia
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Pareto Distributions and Zipf’s Law

Pareto distribution, or power law

I Log-log plot of the data versus rank is approximately a straight line

Zipf’s Law

I Log-log plot of the data versus rank is approximately a straight line

with slope −1

I Weaker form of Zipf’s law requires that log-log plot of the data versus

rank is concave with a tangent line of slope −1 at some point
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Examples of Pareto Distributions

From Newman (2006)
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Examples of Pareto Distributions

From Newman (2006)

Ricardo Fernholz (CMC) Universality of Zipf’s Law February 1, 2022



Introduction Preliminaries Zipfian Atlas and First-Order Models Universality Applications

Zipf’s Law and Universality

According to Tao (2012), “mathematicians do not have a fully

satisfactory and convincing explanation for how the law comes about and

why it is universal.”

Zipf’s law appears in many different fields and many different

applications. As a consequence, any explanation should appeal to statistics

and mathematics rather than field-specific phenomena.
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Zipfian and Non-Zipfian Pareto Distributions

The universality of Zipf’s law

I Firm size, city size, word frequency, income and wealth of households

I Data generated by time-dependent rank-based systems follow Zipf’s

law (Fernholz & Fernholz, 2020)

I Any explanation should not depend on the specific details of a model

(Gabaix, 1999; Toda, 2017)

Non-Zipfian Pareto distributions

I Earthquake magnitude, cumulative book sales, intensity of wars

I Data generated by other means, usually of a cumulative nature, do not

necessarily follow Zipf’s law
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Applications

The distribution of U.S. stock market capitalizations

I Followed standard quasi-Zipfian distribution for most of U.S. history

I Empirical estimates confirm market cap dynamics satisfy conditions

that yield quasi-Zipfian distribution (Fernholz, 2017)

Rank- and name-based time-dependent systems (Ichiba et al., 2011)

I U.S. stock market capitalizations post-2020?

I City size distributions (Davis & Weinstein, 2002; Soo, 2005)

I Wealth distribution (Benhabib, Bisin, & Fernholz, 2022)
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Ranked Continuous Semimartingales

We use systems of positive continuous semimartingales {X1, . . . ,Xn} to

approximate systems of time-dependent empirical data. If the Xi satisfy

certain regularity conditions, then

d logX(k)(t) =
n∑

i=1

1{rt(i)=k} d logXi (t)+
1

2
dΛX

k,k+1(t)−1

2
dΛX

k−1,k(t), a.s.

Rank function is defined such that rt(i) < rt(j) if Xi (t) > Xj(t)

Rank processes X(1) ≥ · · · ≥ X(n) are defined by X(rt(i))(t) = Xi (t)

ΛX
k,k+1 is the local time at the origin for log(X(k)/X(k+1)), which

measures the effect of crossovers between ranks k and k + 1
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Atlas Models

An Atlas model is a system of positive continuous semimartingales

{X1, . . . ,Xn} defined by

d logXi (t) = −g dt + ng1{rt(i)=n}dt + σ dWi (t),

where g and σ are positive constants and (W1, . . . ,Wn) is a Brownian

motion.

Stationary model when geometric mean of processes Xi is subtracted

System follows Gibrat’s law, with equal growth rates and variances

across all ranks
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First-Order Models

A first-order model is a system of positive continuous semimartingales

{X1, . . . ,Xn} defined by

d logXi (t) = grt(i) dt + Gn1{rt(i)=n}dt + σrt(i) dWi (t),

where σ2
1, . . . , σ

2
n are positive constants, g1, . . . , gn are constants satisfying

g1 + · · ·+ gk < 0, for k ≤ n,

Gn = −(g1 + · · ·+ gn), and (W1, . . . ,Wn) is a Brownian motion.

Stationary model when geometric mean of processes Xi is subtracted

More general than Atlas models
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Zipf’s Law for Atlas Models

Asymptotic Distribution of Atlas Models

Atlas models satisfy

lim
T→∞

1

T

∫ T

0

(
logX(k)(t)− logX(k+1)(t)

)
dt =

σ2
k,k+1

2λk,k+1
, a.s.,

for k = 1, . . . , n − 1, with the asymptotic parameters

lim
T→∞

T−1ΛX
k,k+1(T ) = λk,k+1 = 2kg , a.s.,

lim
T→∞

T−1〈logX(k) − logX(k+1)〉T = σ2
k,k+1 = 2σ2, a.s.

Hence, for large enough k, Atlas models satisfy

lim
T→∞

1

T

∫ T

0

logX(k)(t)− logX(k+1)(t)

log(k)− log(k + 1)
dt ∼= −

σ2

2g
, a.s.,

which implies a Pareto distribution that follows Zipf’s law if σ2 = 2g .
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Zipf’s Law for Atlas Models

Atlas Families

An Atlas family is a class of Atlas models {X1, . . . ,Xn}, for n ∈ N, with

the common parameters g > 0 and σ2 > 0 defined as in

d logXi (t) = −g dt + ng1{rt(i)=n}dt + σ dWi (t).

Let X[n] = X(1) + · · ·+ X(n), and

Rn = En

[
X(n)(t)

X(1)(t)

]
and R[n] = En

[
X[n](t)

X(1)(t)

]
.

Fernholz & Fernholz (2020) show that an Atlas family is Zipfian if and

only if

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0 and lim

n→∞

nRn

R[n]
= 0.
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Zipf’s Law for Atlas Models

Conservation

By sampling or detrending, we can ensure that the “total mass” of a

system of time-dependent rank-based data {Z1(τ),Z2(τ), . . .} is constant.

In this case, for large enough n, the mass of the top n ranks,

Z[n](τ) = Z(1)(τ) + · · ·+ Z(n)(τ),

should also be approximately constant.

Hence, for large enough n, it is reasonable to expect:

1(
Z[n](τ)/Z(1)(τ)

) Z[n](τ + 1)− Z[n](τ)

Z(1)(τ)
=

Z[n](τ + 1)− Z[n](τ)

Z[n](τ)
∼= 0.
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Zipf’s Law for Atlas Models

Conservation

By sampling or detrending, we can ensure that the “total mass” of a

system of time-dependent rank-based data {Z1(τ),Z2(τ), . . .} is constant.

In this case, for large enough n, the mass of the top n ranks,

Z[n](τ) = Z(1)(τ) + · · ·+ Z(n)(τ),

should also be approximately constant.

Hence, we require that an Atlas family {X1, . . . ,Xn} be conservative:

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0.
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Zipf’s Law for Atlas Models

Completeness

For a system of data {Z1(τ),Z2(τ), . . .}, the replacement of processes in

the top n ranks by processes in the lower ranks over the time interval

[τ, τ + 1] is

Z[n](τ + 1)−
N∑
i=1

1{rτ (i)≤n}Zi (τ + 1).

For large enough n, it is reasonable to expect this replacement to become

arbitrarily small, i.e. that the system will be complete:

1

Z[n](τ)

((
Z[n](τ + 1)− Z[n](τ)

)
−

N∑
i=1

1{rτ (i)≤n} (Zi (τ + 1)− Zi (τ))

)
∼= 0.
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Zipf’s Law for Atlas Models

Completeness

In terms of a first-order model, completeness is

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)
− 1

T

∫ T

0

(
N∑
i=1

1{rt(i)≤n}
dXi (t)

X(1)(t)

)]
∼= 0.

It is not hard to show that this is equivalent to

1

R[n]
En

[
1

T

∫ T

0

X(n)(t)

2X(1)(t)
dΛX

n,n+1(t)

]
∼= 0,

where the last term is the local time at zero of log(X(n)/X(n+1)).

For an Atlas family {X1, . . . ,Xn}, dΛX
n,n+1(t) is on average equal to 2ng ,

and so we require that an Atlas family be complete:

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0
n
X(n)(t)

X(1)(t)
dt

]
= lim

n→∞

nRn

R[n]
= 0.
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Zipf’s Law for Atlas Models

Zipf’s Law: Proof Sketch

An Atlas family is Zipfian (so that σ2 = 2g) if and only if it is

conservative and complete:

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0 and lim

n→∞

nRn

R[n]
= 0.

For an Atlas model, Itô’s rule implies that, a.s.,

dXi (t) =
(σ2

2
− g + ng1{rt(i)=n}

)
Xi (t) dt + σXi (t) dWi (t),

which, for the total mass X[n] = X1 + · · ·+ Xn, implies that, a.s.,

dX[n](t) =
(σ2

2
− g

)
X[n](t) dt + X[n](t)dM(t) + ngX(n)(t) dt,

where M is a martingale incorporating all the σWi .
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Zipf’s Law for Atlas Models

Zipf’s Law: Proof Sketch

An Atlas family is Zipfian (so that σ2 = 2g) if and only if it is

conservative and complete:

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0 and lim

n→∞

nRn

R[n]
= 0.

For the total mass X[n] = X1 + · · ·+ Xn, we have, a.s.,

dX[n](t) =
(σ2

2
− g

)
X[n](t) dt + X[n](t)dM(t) + ngX(n)(t) dt,

which implies that, a.s.,

dX[n](t)

X(1)(t)
=
(σ2

2
− g

)X[n](t)

X(1)(t)
dt +

X[n](t)

X(1)(t)
dM(t) +

ngX(n)(t)

X(1)(t)
dt.
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Zipf’s Law for Atlas Models

Zipf’s Law: Proof Sketch

An Atlas family is Zipfian (so that σ2 = 2g) if and only if it is

conservative and complete:

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0 and lim

n→∞

nRn

R[n]
= 0.

For the total mass X[n] = X1 + · · ·+ Xn, we have, a.s.,

dX[n](t)

X(1)(t)
=
(σ2

2
− g

)X[n](t)

X(1)(t)
dt +

X[n](t)

X(1)(t)
dM(t) +

ngX(n)(t)

X(1)(t)
dt,

which implies that

En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
=
(σ2

2
− g

)
R[n] + ngRn.
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Zipf’s Law for Atlas Models

Zipf’s Law: Proof Sketch

An Atlas family is Zipfian (so that σ2 = 2g) if and only if it is

conservative and complete:

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0 and lim

n→∞

nRn

R[n]
= 0.

For the total mass X[n] = X1 + · · ·+ Xn, we have, a.s.,

dX[n](t)

X(1)(t)
=
(σ2

2
− g

)X[n](t)

X(1)(t)
dt +

X[n](t)

X(1)(t)
dM(t) +

ngX(n)(t)

X(1)(t)
dt,

which implies that

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
=
σ2

2
− g + ng

Rn

R[n]
.
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Zipf’s Law for Atlas Models

Examples of Pareto Distributions

From Newman (2006)
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Zipf’s Law for Atlas Models
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From Newman (2006)
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Zipf’s Law for Quasi-Atlas Models

Quasi-Atlas Models

A first-order model is a system of positive continuous semimartingales

{X1, . . . ,Xn} defined by

d logXi (t) = grt(i) dt + Gn1{rt(i)=n}dt + σrt(i) dWi (t),

where σ2
1, . . . , σ

2
n are positive constants, g1, . . . , gn are constants

satisfying

g1 + · · ·+ gk < 0, for k ≤ n,

and Gn = −(g1 + · · ·+ gn). A quasi-Atlas model is a first-order model

with g > 0 and σ2
2 ≥ σ2

1 > 0, such that

gk = −g , σ2
k = σ2

1 + (k − 1)(σ2
2 − σ2

1),

for k = 1, . . . , n.
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Zipf’s Law for Quasi-Atlas Models

Asymptotic Distribution of Quasi-Atlas Models

Quasi-Atlas models satisfy

lim
T→∞

1

T

∫ T

0

(
logX(k)(t)− logX(k+1)(t)

)
dt =

σ2
k,k+1

2λk,k+1
,

a.s., for k = 1, . . . , n − 1, with the asymptotic parameters

λk,k+1 = 2kg and σ2
k,k+1 = σ2

k + σ2
k+1, a.s.

Hence, for large enough k ,

lim
T→∞

1

T

∫ T

0

logX(k)(t)− logX(k+1)(t)

log(k)− log(k + 1)
dt ∼= −

σ2
k + σ2

k+1

4g
, a.s.,

so quasi-Atlas models may have non-Pareto stationary distributions.
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Zipf’s Law for Quasi-Atlas Models

Quasi-Atlas Families

A quasi-Atlas family is a class of quasi-Atlas models {X1, . . . ,Xn}, for

n ∈ N, with the common parameters σ2
k = σ2

1 + (k − 1)(σ2
2 − σ2

1) > 0 for

k ∈ N and g > 0, defined as in

d logXi (t) = −g dt + ng1{rt(i)=n}dt + σrt(i) dWi (t).

A family is quasi-Zipfian if the log-log plot is concave with a tangent of

−1 somewhere on the curve. Fernholz & Fernholz (2020) show that a

quasi-Atlas family is quasi-Zipfian if it is conservative and complete with

lim
n→∞

En

[
X[n](t)

X(1)(t)

]
≥ 2.

Ricardo Fernholz (CMC) Universality of Zipf’s Law February 1, 2022



Introduction Preliminaries Zipfian Atlas and First-Order Models Universality Applications

Zipf’s Law for Quasi-Atlas Models

U.S. Stock Market Capitalization Distribution, 2010-2019
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Zipf’s Law for Quasi-Atlas Models

Word Count from Wikipedia
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Zipfian and Non-Zipfian Pareto Distributions

Zipfian Pareto distributions

I Firm size, city size, word frequency, income and wealth of households

I Data generated by time-dependent rank-based systems will often be

Zipfian or quasi-Zipfian

I Conservation and completeness should always hold in the limit

Non-Zipfian Pareto distributions

I Earthquake magnitude, cumulative book sales, intensity of wars

I Data generated by other means, usually of a cumulative nature, do not

necessarily follow Zipf’s law
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The Universality of Zipf’s Law

Zipfian and quasi-Zipfian distributions appear in many different fields

and many different applications

I Economics, demography, linguistics, etc.

As a consequence, any explanation should appeal to statistics and

mathematics rather than field-specific phenomena

I Field-specific explanations of the Central Limit Theorem?

Any time-dependent rank-based system that follows Gibrat’s law will,

provided enough ranks are sampled, be Zipfian

I Conservation and completeness should always hold in the limit
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Distribution of U.S. Stock Market Capitalizations

First-Order Approximation

Let {Z1(τ),Z2(τ), . . .}, τ ∈ {1, 2, . . . ,T}, be a system of time-dependent

data of indefinite size.

The first-order approximation for the top n ranks of this system is the

first-order model X1, . . . ,Xn with

d logXi (t) = grt(i) dt + Gn1{rt(i)=n}dt + σrt(i) dWi (t),

where the parameters g1, . . . , gn and σ2
1, . . . , σ

2
n are estimated using the

time-series of {Z1(τ),Z2(τ), . . .}.
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Distribution of U.S. Stock Market Capitalizations

First-Order Approximation of U.S. Capital Distribution

Construct a first-order approximation of stock market capitalizations

of U.S. companies from 1990-99

I Estimate parameters gk and σk following procedure of Fernholz (2017)

I Changes in market capitalization also affect returns, so there is a link

between capital distribution and stock returns

First-order approximation is close to a quasi-Atlas model

I Parameters satisfy g1 = g2 = · · · = gn and σ2
k = σ2

1 + (k − 1)(σ2
2 − σ2

1)

I If a sufficient number of ranks are considered, then the distribution

should be quasi-Zipfian

I Concave distribution curve with a tangent of −1 somewhere
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Distribution of U.S. Stock Market Capitalizations

First-Order Approximation of U.S. Capital Distribution
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Distribution of U.S. Stock Market Capitalizations

First-Order Approximation of U.S. Capital Distribution
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Rank- and Name-Based Time-Dependent Systems

Second-Order Models

In some cases, the behavior of different entities within a time-dependent

system may depend on both rank and name, so that

d logXi (t) = grt(i) dt + γi dt + σrt(i) dWi (t),

where σ2
1, . . . , σ

2
n are positive constants, g1, . . . , gn, γ1, . . . , γn are

constants satisfying g1 + · · ·+ gn + γ1 + · · ·+ γn = 0, as well as a stability

condition (Ichiba et al., 2011), and (W1, . . . ,Wn) is a Brownian motion.

In such second-order models, the processes Xi are not exchangeable

I Different Xi will spend different amounts of time in each rank

I No guarantee of Zipfian or quasi-Zipfian stationary distribution, even if

parameters gk and σk satisfy conditions from before
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Rank- and Name-Based Time-Dependent Systems

U.S. Capital Distribution Pre-2020 vs. End-2020
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Rank- and Name-Based Time-Dependent Systems

City Size Distributions

According to Soo (2005), some city size distributions are neither

Zipfian nor quasi-Zipfian

I France, Argentina, Russia, Mexico, New York State, etc.

I These systems are not rank-based only, but also name-based (largest

cities are fundamentally, persistently different from the rest)

Davis & Weinstein (2002) show that after the destruction of WWII,

the cities that grew to be largest were the same as those from before

I Japanese city growth is not rank-based only, but also name-based

Both of these observations can be explained by a second-order model
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Rank- and Name-Based Time-Dependent Systems

Wealth Distribution and Long-Run Mobility

Surprising findings for long-run mobility that are impossible to match

using standard random growth models of wealth distribution

I Wealth-rank coefficient after 585 years is 0.1: Barone & Mocetti (2021)

I Both parent and grandparent wealth-rank have predictive power for

child wealth-rank: Boserup, Kopczuk, & Kreiner (2014)

Second-order models of intergenerational wealth dynamics can match

all of these observations

I Benhabib, Bisin, & Fernholz (2022)
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The End

Thank You
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