Implied Volatility of the Constant Product Market Maker in Decentralized Finance

ZACH FEINSTEIN

School of Business, Stevens Institute of Technology

Joint work with Maxim Bichuch

Consortium for Data Analytics in Risk January 30, 2024

Motivation

Motivation:

- Decentralized finance (DeFi) utilizes blockchain technology to provide financial services
- Utilized in lending, borrowing, trading, and insurance underwriting *without* traditional financial intermediaries
- Total value locked up (in dollar denominated terms) in DeFi grew 90× between January 1, 2020 and January 1, 2022

Peak market capitalization of nearly \$180B

• With the "crypto winter" it is important to explore the viability and risks associated with DeFi

Motivation:

- Automated market makers [AMMs] are a decentralized approach for creating financial markets
- Key Idea: Create a (liquidity) pool of assets to trade against instead of a (central) order book
- AMMs create markets by balancing reserves according to mathematical formulas to execute swaps
- Any individual can pool resources into an AMM and can earn fees from trading activities

Motivation:

- Automated market makers [AMMs] are a decentralized approach for creating financial markets
- Key Idea: Create a (liquidity) pool of assets to trade against instead of a (central) order book
- AMMs create markets by balancing reserves according to mathematical formulas to execute swaps
- Any individual can pool resources into an AMM and can earn fees from trading activities
- Goal of this talk: Analyze the fair price, **implied volatility**, and other properties of providing liquidity

Background

Automated Market Makers: Construction:

- AMMs employ a constant function concept Accept trades so that a utility function u(x, y) is invariant for the trade
- Consider an AMM with reserves (x, y)If Δx units of asset 1 are being sold, then Δy units of asset 2 are being received in exchange so that $u(x, y) = u(x + \Delta x, y - \Delta y)$

Automated Market Makers: Construction:

- AMMs employ a constant function concept Accept trades so that a utility function u(x, y) is invariant for the trade
- Consider an AMM with reserves (x, y)If Δx units of asset 1 are being sold, then Δy units of asset 2 are being received in exchange so that $u(x, y) = u(x + \Delta x, y - \Delta y)$
- Marginal prices provide a pricing oracle $P(x,y) = u_x(x,y)/u_y(x,y)$ with asset 2 as the numéraire
- Traders are allowed to deposit/withdraw funds from the AMM so long as the price is unaffected $P(x,y) = P(x + \Delta x, y + \Delta y)$

Automated Market Makers: Fees:

- When depositing assets into an AMM, an LP token is minted
- Owning the LP token grants the holder rights to a fraction of all fees collected from trading
- Fees collected on a fraction of incoming assets
 A constant fraction γ ∈ (0, 1) of the incoming asset of a
 swap (prior to swapping) is collected and distributed to the
 LP token holders

Automated Market Makers: Fees:

- When depositing assets into an AMM, an LP token is minted
- Owning the LP token grants the holder rights to a fraction of all fees collected from trading
- Fees collected on a fraction of incoming assets
 A constant fraction γ ∈ (0, 1) of the incoming asset of a
 swap (prior to swapping) is collected and distributed to the
 LP token holders
- Other fee structures possible (though not utilized in practice), e.g.,
 - Fraction of outgoing assets
 - Fraction of numéraire transacted
 - Fraction of the risky asset transacted

Blockchain Fundamentals:

- AMMs are constructed as smart contracts directly on the blockchain
- Transactions are only processed (and prices updated) at discrete times
- Modern blockchains have a fixed inter-block time $\Delta t > 0$ Polygon has $\Delta t = 2$ seconds
- Consider some price process P_t , then the AMM only realizes the prices $\{P_{i\Delta t} \mid i \in \mathbb{N}\}$

Constant Product Market Making

Setting:

- Consider the log utility function $u(x, y) = \log(x) + \log(y)$
- Equivalent market made by the function f(x, y) = xy
- Employed in Uniswap V2 but replicated in many other AMMs (SushiSwap, PancakeSwap, ...)

Setting:

- Consider the log utility function $u(x, y) = \log(x) + \log(y)$
- Equivalent market made by the function f(x, y) = xy
- Employed in Uniswap V2 but replicated in many other AMMs (SushiSwap, PancakeSwap, ...)
- Pricing oracle is determined by the ratio of assets P(x,y) = y/x
- Assume P_t follows the geometric Brownian motion $dP_t = P_t[rdt + \sigma dW_t]$

$$x_t = LP_t^{-1/2} = L\sqrt{\frac{1}{P_0}} \exp\left(-\frac{1}{2}[r - \frac{\sigma^2}{2}]t - \frac{1}{2}\sigma W_t\right)$$
$$y_t = LP_t^{1/2} = L\sqrt{P_0} \exp\left(\frac{1}{2}[r - \frac{\sigma^2}{2}]t + \frac{1}{2}\sigma W_t\right)$$

for
$$L := \sqrt{x_0 y_0}$$

Constant Product Market Making: Valuation

Implied Volatility of Constant Product Market Makers

Derivative Construction:

• Value of fees per LP token at block i:

$$\gamma \left[P_{i\Delta t} (x_{i\Delta t} - x_{(i-1)\Delta t})^+ + (y_{i\Delta t} - y_{(i-1)\Delta t})^+ \right] / L$$

• Recall: Fees are distributed proportionally to size of contribution to liquidity The total value of the AMM and fees are sufficient for considering individual positions

Derivative Construction:

• Value of fees per LP token at block i:

$$\gamma \left[P_{i\Delta t} (x_{i\Delta t} - x_{(i-1)\Delta t})^+ + (y_{i\Delta t} - y_{(i-1)\Delta t})^+ \right] / L$$

- Recall: Fees are distributed proportionally to size of contribution to liquidity The total value of the AMM and fees are sufficient for considering individual positions
- Depositing liquidity buys the investor a Bermudan perpetual option:
 - Can be exercised at any block
 - Fees are paid at each block until exercise
 - Continues indefinitely until exercise
- Cost of an LP token is $V_0 := [P_0 x_0 + y_0]/L = 2\sqrt{P_0}$
- Goal: Determine the value of this option V_i at any block i

Derivative Value:

• DPP formulation for value of the option V(P):

$$V(P) = \max \left\{ \begin{array}{l} 2\sqrt{P} ,\\ e^{-r\Delta t} \mathbb{E} \left[\begin{array}{l} V\left(Pe^{(r-\frac{\sigma^2}{2})\Delta t + \sigma W_{\Delta t}}\right) +\\ \gamma F\left(P, Pe^{(r-\frac{\sigma^2}{2})\Delta t + \sigma W_{\Delta t}}\right) \end{array} \right] \right\}$$
$$F(P_0, P_1) = P_1 \left(\frac{1}{\sqrt{P_1}} - \frac{1}{\sqrt{P_0}}\right)^+ + \left(\sqrt{P_1} - \sqrt{P_0}\right)^+$$

Value of Fees:

• Goal: Determine the discounted expected value of the fees in a single time step:

$$\bar{F}(P,\Delta t) := e^{-r\Delta t} \mathbb{E}\left[F\left(P, Pe^{\left(r - \frac{\sigma^2}{2}\right)\Delta t + \sigma W_{\Delta t}}\right)\right]$$

• Can be calculated directly:

$$\bar{F}(P,\Delta t) = \frac{2(1 - e^{-\frac{1}{2}(r + \frac{\sigma^2}{4})\Delta t})\sqrt{P}}{\gamma^*}$$
$$\gamma^* = 2\left[-1 + \frac{\Phi\left(\frac{(r + \frac{\sigma^2}{2})\sqrt{\Delta t}}{\sigma}\right) - e^{-r\Delta t}\Phi\left(\frac{(r - \frac{\sigma^2}{2})\sqrt{\Delta t}}{\sigma}\right)}{1 - e^{-\frac{1}{2}(r + \frac{\sigma^2}{4})\Delta t}}\right]^{-1}$$

Optimal Stopping:

• Ansatz: Either never invest in the AMM or, once invested, never exercise the option (i.e., perpetually accumulate fees)

$$\tilde{V}(P_0) = \gamma \sum_{i=0}^{\infty} e^{-ri\Delta t} \mathbb{E}[\bar{F}(P_{i\Delta t}, \Delta t)]$$
$$= \gamma \sum_{i=0}^{\infty} e^{-\frac{1}{2}(r + \frac{\sigma^2}{2})i\Delta t} \bar{F}(P_0, \Delta t)$$
$$= \frac{\gamma \bar{F}(P_0, \Delta t)}{1 - e^{-\frac{1}{2}(r + \frac{\sigma^2}{2})\Delta t}}$$
$$= \frac{2\gamma \sqrt{P_0}}{\gamma^*}$$

• Value
$$V(P) = \tilde{V}(P)\mathbb{I}_{\{\gamma \ge \gamma^*\}} + 2\sqrt{P}\mathbb{I}_{\{\gamma < \gamma^*\}}$$

Optimal Stopping:

• Verify the ansatz V(P)

Ansatz Verification

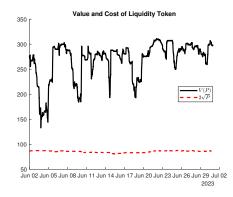
- Assume $\gamma \geq \gamma^*$
 - $\tilde{V}(P)$ coincides with its continuation value
 - $\tilde{V}(P) \ge 2\sqrt{P}$
- Assume $\gamma < \gamma^*$
 - Continuation value

$$2\sqrt{P}\left[e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})\Delta t} + (1-e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})\Delta t})\frac{\gamma}{\gamma^*}\right]$$

is strictly less than $2\sqrt{P}$

Example USDC/WETH Pool

- Constant product market maker on Polygon blockchain with data from June 1 to June 30, 2023
- $\Delta t = 2$ seconds, $\gamma = 5bps$, r = 5% (annualized)
- σ as the 1-day historical volatility computed from minute-returns



Constant Product Market Making: Implied Volatility

Implied Volatility:

- Goal: Determine the volatility $\sigma^* > 0$ so that $V(P_0) = 2\sqrt{P_0}$
- Equivalent to equilibrium fees $\gamma^*(\sigma^*)=\gamma$
- Note that the implied volatility is independent of the initial price P_0 and the level of liquidity L

Implied Volatility

- If r = 0 then there exists a unique implied volatility $\sigma^* > 0$
- If r > 0 then:
 - If $\Delta t \ge \overline{\Delta t} := \sqrt{\frac{8}{\pi}} \frac{\gamma}{(2+\gamma)r} e^{-1/2}$ then *no* implied volatility exists

• If
$$\Delta t < \overline{\Delta t}$$
 then define $\bar{\sigma} := r \sqrt{\frac{\Delta t}{-W\left(-\frac{\pi}{2}\left[\frac{(2+\gamma)r\Delta t}{2\gamma}\right]^2\right)}}$ and

- there does *not* exist an implied volatility if $\gamma < \gamma^*(\bar{\sigma})$
- there exists a unique implied volatility $\sigma^* = \bar{\sigma}$ if $\gamma = \gamma^*(\bar{\sigma})$
- there exists exactly *two distinct* implied volatilities $\sigma_1^* < \bar{\sigma} < \sigma_2^*$ if $\gamma > \gamma^*(\bar{\sigma})$

Example:

- $\Delta t = 2$ seconds and r = 5% (annualized)
- If $\gamma = 1bps$ then:
 - $\overline{\Delta t} \approx 8.48$ hours
 - $\bar{\sigma}\approx 0.3168$
 - $\gamma^*(\bar{\sigma})\approx 1.4963 bps > \gamma$
 - There does *not* exist an implied volatility
 - A risk-neutral investor should *never* deposit liquidity

Example:

- $\Delta t = 2$ seconds and r = 5% (annualized)
- If $\gamma \approx 1.4116 bps$ then:
 - $\overline{\Delta t} \approx 11.97$ hours
 - $\bar{\sigma} \approx 0.4472$

•
$$\gamma^*(\bar{\sigma}) = \gamma$$

- There exists the unique implied volatility $\sigma^* = \bar{\sigma} \approx 0.4472$
- If $\sigma \neq \sigma^*$ then a risk-neutral investor should never deposit liquidity

Example:

- $\Delta t = 2$ seconds and r = 5% (annualized)
- If $\gamma = 5bps$ then:
 - $\overline{\Delta t} \approx 42.38$ hours
 - $\bar{\sigma}\approx 1.5838$
 - $\gamma^*(\bar{\sigma})\approx 2.699 bps < \gamma$
 - There exists two implied volatilities: $\sigma_1^* \approx 0.0644 < \bar{\sigma} < \sigma_2^* \approx 3.1031$
 - If $\sigma \in (\sigma_1^*, \sigma_2^*)$ then $V(P_0) > 2\sqrt{P_0}$ and a risk-neutral investor should deposit liquidity
 - If $\sigma \in (0, \sigma_1^*) \cup (\sigma_2^*, \infty)$ then $V(P_0) < 2\sqrt{P_0}$ and a risk-neutral investor should *never* deposit liquidity

Constant Product Market Making: Greeks

Implied Volatility of Constant Product Market Makers

Greeks:

- Assume $\gamma \geq \gamma^*$
- Delta: Sensitivity of the value to the underlying price

$$\frac{\partial}{\partial P}V(P)=\frac{\gamma}{\gamma^*\sqrt{P}}=\frac{V(P)}{2P}>0$$

Greeks:

- Assume $\gamma \geq \gamma^*$
- Delta: Sensitivity of the value to the underlying price

$$\frac{\partial}{\partial P}V(P)=\frac{\gamma}{\gamma^*\sqrt{P}}=\frac{V(P)}{2P}>0$$

• Gamma: Sensitivity of the Delta to the underlying price

$$\frac{\partial^2}{\partial P^2}V(P)=-\frac{\gamma}{2\gamma^*P^{3/2}}=-\frac{V(P)}{4P^2}<0$$

Greeks:

- Assume $\gamma \geq \gamma^*$
- Delta: Sensitivity of the value to the underlying price

$$\frac{\partial}{\partial P}V(P)=\frac{\gamma}{\gamma^*\sqrt{P}}=\frac{V(P)}{2P}>0$$

• Gamma: Sensitivity of the Delta to the underlying price

$$\frac{\partial^2}{\partial P^2}V(P)=-\frac{\gamma}{2\gamma^*P^{3/2}}=-\frac{V(P)}{4P^2}<0$$

• Vega: Sensitivity of the value to the realized volatility

$$\frac{\partial}{\partial \sigma}V(P) = \frac{\gamma\sqrt{P}e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})\Delta t}}{1-e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})\Delta t}} \left[\sqrt{\frac{\Delta t}{2\pi}}e^{-\frac{r^2\Delta t}{2\sigma^2}} - \frac{\sigma\Delta t}{4}\frac{\Phi\left(\frac{(r+\frac{\sigma^2}{2})\sqrt{\Delta t}}{\sigma}\right) - e^{-r\Delta t}\Phi\left(\frac{(r-\frac{\sigma^2}{2})\sqrt{\Delta t}}{\sigma}\right)}{1-e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})\Delta t}}\right]$$

Vega:

• If
$$r = 0$$
 then $\frac{\partial}{\partial \sigma} V(P) < 0$

• Assume
$$r > 0$$
 and $\Delta t < \overline{\Delta t}$

•
$$\frac{\partial}{\partial \sigma} V(P) > 0$$
 if $\sigma < \bar{\sigma}$
• $\frac{\partial}{\partial \sigma} V(P) < 0$ if $\sigma > \bar{\sigma}$

Vega:

- If r = 0 then $\frac{\partial}{\partial \sigma} V(P) < 0$
- Assume r > 0 and $\Delta t < \overline{\Delta t}$

•
$$\frac{\partial}{\partial \sigma} V(P) > 0$$
 if $\sigma < \bar{\sigma}$

•
$$\frac{\partial}{\partial \sigma} V(P) < 0$$
 if $\sigma > \bar{\sigma}$

- **Conventional wisdom**: Providing liquidity to an AMM "behave[s] like a bet on volatility" (Millionis et al. *Automated market making and loss-versus-rebalancing*)
- This conventional view does *not* hold in reality
- Follows due to specific assumptions on the market construction (e.g., neglecting fees)

Constant Product Market Making: Divergence Loss

Divergence Loss:

- Also called impermanent loss
- The opportunity cost quantifying the difference between the buy-and-hold strategy and depositing liquidity in the AMM

https://docs.uniswap.org/contracts/v2/concepts/advanced-topics/ understanding-returns

Divergence Loss:

- Assume $\gamma \geq \gamma^*$
- Value of buy-and-hold strategy after *i* blocks without earning interest

$$(1+e^{-ri\Delta t})\sqrt{P_0}$$

or $2\sqrt{P_0}$ with interest

• Value of liquidity position

$$2\sqrt{P_0}\left[e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})i\Delta t} + \left(1 - e^{-\frac{1}{2}(r+\frac{\sigma^2}{4})i\Delta t}\right)\frac{\gamma}{\gamma^*}\right]$$

is nondecreasing in block number \boldsymbol{i}

• *Expected* divergence loss does not exist if being a liquidity provider is a good deal

3. Constant Product

Divergence Loss

- Historically: over *half* of all liquidity providers lose money to divergence loss
- Empirically: Distribution of optimal AMM returns is highly skewed under the risk-neutral measure

Half of Uniswap Liquidity Providers are Losing Money

November 19, 2021 — 08:33 am EST Written by Reuben Jackson for TipRanks →

Concentrated Liquidity Constant Product Market Making

Setting:

- Liquidity is concentrated between upper P^U and lower P^L price bounds
- Implemented within UniSwap V3
- Between these prices, utility follows constant product $u(x,y) = (\alpha + x)(\beta + y)$
- Quoted price is determined by the ratio of assets $P = \frac{\beta+y}{\alpha+x}$
- X, Y are the maximum total liquidity available
- $\alpha = \alpha(P^L, P^U, Y)$ and $\beta = \beta(P^L, P^U, Y)$

Setting:

- Fix price bounds P^L, P^U and liquidity X, Y
- Assume P_t follows the discrete geometric Brownian motion

$$x_t = L\sqrt{\frac{1}{P_0}} \exp\left(-\frac{1}{2}\left[r - \frac{\sigma^2}{2}\right]t - \frac{1}{2}\sigma W_t\right) - \alpha$$
$$y_t = L\sqrt{P_0} \exp\left(\frac{1}{2}\left[r - \frac{\sigma^2}{2}\right]t + \frac{1}{2}\sigma W_t\right) - \beta$$

for $L = (\alpha + x_0)(\beta + y_0)$

Setting:

- Fix price bounds P^L, P^U and liquidity X, Y
- Assume P_t follows the discrete geometric Brownian motion

$$x_t = L\sqrt{\frac{1}{P_0}} \exp\left(-\frac{1}{2}[r - \frac{\sigma^2}{2}]t - \frac{1}{2}\sigma W_t\right) - \alpha$$
$$y_t = L\sqrt{P_0} \exp\left(\frac{1}{2}[r - \frac{\sigma^2}{2}]t + \frac{1}{2}\sigma W_t\right) - \beta$$

for $L = (\alpha + x_0)(\beta + y_0)$

• Throughout use $\hat{x}_t = x_t + \alpha$ and $\hat{y}_t = y_t + \beta$

Derivative Construction:

- Fees are only collected when the price crosses through the region of liquidity (P^L, P^U)
- Value of fees per LP token at block *i*:

$$\gamma \left[\begin{array}{c} P_{i\Delta t} \left(\hat{x}_{i\Delta t} \vee \frac{1}{\sqrt{P^U}} \wedge \frac{1}{\sqrt{P^L}} - \hat{x}_{(i-1)\Delta t} \vee \frac{1}{\sqrt{P^U}} \wedge \frac{1}{\sqrt{P^L}} \right)^+ \\ + (\hat{y}_{i\Delta t} \wedge \sqrt{P^U} \vee \sqrt{P^L} - \hat{y}_{(i-1)\Delta t} \wedge \sqrt{P^U} \vee \sqrt{P^L})^+ \end{array} \right]$$

• Recall: Fees are distributed proportionally to size of contribution to liquidity The total value of the AMM and fees are sufficient for considering individual positions

Derivative Construction:

- Fees are only collected when the price crosses through the region of liquidity (P^L, P^U)
- Value of fees per LP token at block *i*:

$$\gamma \left[\begin{array}{c} P_{i\Delta t} \left(\hat{x}_{i\Delta t} \vee \frac{1}{\sqrt{P^U}} \wedge \frac{1}{\sqrt{P^L}} - \hat{x}_{(i-1)\Delta t} \vee \frac{1}{\sqrt{P^U}} \wedge \frac{1}{\sqrt{P^L}} \right)^+ \\ + (\hat{y}_{i\Delta t} \wedge \sqrt{P^U} \vee \sqrt{P^L} - \hat{y}_{(i-1)\Delta t} \wedge \sqrt{P^U} \vee \sqrt{P^L})^+ \end{array} \right]$$

- Recall: Fees are distributed proportionally to size of contribution to liquidity The total value of the AMM and fees are sufficient for considering individual positions
- Depositing liquidity buys the investor a Bermudan perpetual option:
- Cost of an LP token is $V_0 := (P_0[x_0^+ \wedge X] + [y_0^+ \wedge Y])/L$
- Goal: Determine the value of this option V_i at any block i

Derivative Value:

• DPP formulation for value of the option V(P):

$$V(P) = \max \begin{cases} P(\frac{1}{\sqrt{P \wedge P^U \vee P^L}} - \alpha) + (\sqrt{P \wedge P^U \vee P^L} - \beta) ,\\ e^{-r\Delta t} \mathbb{E} \begin{bmatrix} V\left(Pe^{(r-\frac{\sigma^2}{2})\Delta t + \sigma W_{\Delta t}}\right) + \\ \gamma F\left(P, Pe^{(r-\frac{\sigma^2}{2})\Delta t + \sigma W_{\Delta t}}\right) \end{bmatrix} \\ F(P_0, P_1) = \frac{P_1\left(\frac{1}{\sqrt{P_1 \wedge P^U \vee P^L}} - \frac{1}{\sqrt{P_0 \wedge P^U \vee P^L}}\right)^+ \\ + \left(\sqrt{P_1 \wedge P^U \vee P^L} - \sqrt{P_0 \wedge P^U \vee P^L}\right)^+ \end{cases}$$

Value of Fees:

• Goal: Determine the discounted expected value of the fees in a single time step:

$$\bar{F}(P,\Delta t) := e^{-r\Delta t} \mathbb{E}\left[F\left(P, Pe^{\left(r - \frac{\sigma^2}{2}\right)\Delta t + \sigma W_{\Delta t}}\right)\right]$$

• Can be calculated directly:

$$\begin{split} \bar{F}(P,\Delta t) &= \sqrt{P} \left[\begin{array}{c} \left(F_1(P,P \wedge P^U,P^L) + F_x \right) \mathbb{I}_{\{P \geq P^L\}} \\ &+ \left(F_1(P,P^U,P \vee P^L) + e^{-r\Delta t} F_y \right) \mathbb{I}_{\{P \leq P^U\}} \end{array} \right] \\ F_1(P,\bar{P}^U,\bar{P}^L) &= e^{-\frac{1}{2}(r + \frac{\sigma^2}{2})\Delta t} \left[\Phi \left(\frac{\log(\frac{\bar{P}}{P}) - r\Delta t}{\sigma\sqrt{\Delta t}} \right) - \Phi \left(\frac{\log(\frac{\bar{P}}{P}) - r\Delta t}{\sigma\sqrt{\Delta t}} \right) \right] \\ F_x &= \sqrt{\frac{P}{PL}} \Phi \left(\frac{\log(\frac{PL}{P}) - (r + \frac{\sigma^2}{2})\Delta t}{\sigma\sqrt{\Delta t}} \right) - \sqrt{\frac{P}{P \wedge P^U}} \Phi \left(\frac{\log(\frac{P \wedge P^U}{P}) - (r + \frac{\sigma^2}{2})\Delta t}{\sigma\sqrt{\Delta t}} \right) \\ F_y &= \sqrt{\frac{PU}{P}} \Phi \left(\frac{\log(\frac{P}{PU}) + (r - \frac{\sigma^2}{2})\Delta t}{\sigma\sqrt{\Delta t}} \right) - \sqrt{\frac{P \vee PL}{P}} \Phi \left(\frac{\log(\frac{P}{P \vee PL}) + (r - \frac{\sigma^2}{2})\Delta t}{\sigma\sqrt{\Delta t}} \right) \end{split}$$

Optimal Stopping:

- When price $P \leq P^L$ then holdings take value PX (when discounted) is a martingale
- When price $P \in (P^L, P^U)$ then fees are being collected
- When price $P \ge P^U$ then holdings take value Y (when discounted) is a supermartingale
- Ansatz: Stop when the price exceeds some level $P^* \ge P^U$

Optimal Stopping:

- When price $P \leq P^L$ then holdings take value PX (when discounted) is a martingale
- When price $P \in (P^L, P^U)$ then fees are being collected
- When price $P \ge P^U$ then holdings take value Y (when discounted) is a supermartingale
- Ansatz: Stop when the price exceeds some level $P^* \ge P^U$

$$V(P) = \begin{cases} Y & \text{if } P \ge P^* \\ e^{-r\Delta t} \mathbb{E}[V(Pe^{(r-\frac{\sigma^2}{2})\Delta t + \sigma W_{\Delta t}}] + \gamma \bar{F}(P, \Delta t) & \text{if } P < P^* \end{cases}$$

Implied Volatility:

- Goal: Determine the volatility $\sigma^* > 0$ so that $V(P_0) = P_0[(\frac{1}{\sqrt{P_0}} - X)^+ \wedge X] + [(\sqrt{P_0} - Y)^+ \wedge Y]$
- Note that the implied volatility is independent of the level of liquidity ${\cal L}$

Implied Volatility:

- Goal: Determine the volatility $\sigma^* > 0$ so that $V(P_0) = P_0[(\frac{1}{\sqrt{P_0}} - X)^+ \wedge X] + [(\sqrt{P_0} - Y)^+ \wedge Y]$
- Note that the implied volatility is independent of the level of liquidity L but depends on the initial price P_0

Implied Volatility:

- Goal: Determine the volatility $\sigma^* > 0$ so that $V(P_0) = P_0[(\frac{1}{\sqrt{P_0}} - X)^+ \wedge X] + [(\sqrt{P_0} - Y)^+ \wedge Y]$
- Note that the implied volatility is independent of the level of liquidity L but depends on the initial price P_0

Implied Volatility

If P₀ < P^U then there does not exist an implied volatility
If P₀ > P^U, solve for P^{*}(σ) = P₀

5. Conclusion

Conclusion

Conclusion:

- Depositing in an AMM constructs a path dependent Bermudan option
- Determining the implied volatility can assist in finding whether this is a good investment or not In practice, roughly half of all AMM investors lose money by depositing liquidity

Conclusion:

- Depositing in an AMM constructs a path dependent Bermudan option
- Determining the implied volatility can assist in finding whether this is a good investment or not In practice, roughly half of all AMM investors lose money by depositing liquidity This can happen even if the investment is a good deal in expectation
- The Greeks of this position can be calculated and hedged
- Choice of blockchain on which to operate fundamentally alter the value of an AMM

Future Work:

- Complete the analysis of the concentrated liquidity AMM
- Constant product market maker is only one AMM design. Valuation of more sophisticated AMMs
- Lack of dependence of the implied volatility on the amount of liquidity L is by AMM design that minting/burning LP tokens is invariant to the amount of liquidity that exists Update the constant product $xy = L^2$ to xy = f(L)
- Risk analysis of the liquidity provision position
- Optimal liquidity provision under GBM and other price processes

Thank You!

• BICHUCH, FEINSTEIN (2024): Valuation, Greeks, and Implied Volatility in Decentralized Finance from Constant Product Market Makers