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General linear hypothesis

Multivariate linear model

Y = BX + Σ1/2
p Z

H0 : BC = 0 v.s. Ha : BC 6= 0.

Y: p-variates × N-subjects observation;

B: p ×m parameter matrix;

X : m × N design matrix of rank m;

Σp: population covariance;

Z: p × N error matrix; i.i.d., mean 0 and variance 1;

C : m × q constraints matrix of rank q; estimable.
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Classical solution

Traditional test statistics are functionals of the spectrum of ĤpΣ̂−1
p .

Σ̂p =
1

n
Y(I − XT (XXT )−1X )YT , n = N −m.

Ĥp =
1

n
YXT (XXT )−1C [CT (XXT )−1C ]−1CT (XXT )−1XYT .

Residual covariance of the full model

The hypothesis sums of squares and cross-products matrix

OLS of BC

The “hat matrix” of the reduced model

one-way MANOVA: Σ̂p =
1

n
SSwithin Ĥp =

1

n
SSbetween
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1

n
SSbetween

Debashis Paul HD linear hypothesis



General linear hypothesis
Tests with spectral shrinkage

Two sample test for equality of means
Asymptotic power

Spiked covariance model
Simulation study

Application to HCP data

Classical solution

Traditional test statistics are functionals of the spectrum of ĤpΣ̂−1
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Classical solution

Define Qn = XT (XXT )−1C [CT (XXT )−1C ]−1/2

ĤpΣ̂−1
p =

1

n
YQnQ

T
n YT Σ̂−1

p

positive⇐======⇒
eigenvalues

1

n
QT

n YT Σ̂−1
p YQn =: M0

Invariant tests:

Likelihood-ratio (LR): T LR
0 =

q∑
i=1

log{1 + λi (M0)}

Lawley-Hotelling trace (LH): T LH
0 =

q∑
i=1

λi (M0)

Bartlett-Nanda-Pillai trace (BNP): TBNP
0 =

q∑
i=1

λi (M0)

1 + λi (M0)
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When p � n

Throughout, consider q to be fixed.

Let p, n→∞ and p be comparable to n

Ĥp is a p × p matrix of rank q

Σ̂p is not a consistent estimator of Σp

Performance of invariant tests studied in Fujikoshi et al. (2004) and
Bai et al. (2017) when γn := p/n→ γ ∈ (0, 1)
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Tests with spectral shrinkage

We propose a family of statistics that are functionals of the
spectrum of

M(f ) =
1

n
QT

n YT f (Σ̂p)YQn

f (·) is any function on R, analytic on a certain interval

f (Σ̂p) := P̂diag[f (λ1(Σ̂p)), f (λ2(Σ̂p)), · · · , f (λp(Σ̂p))]P̂T

with P̂ being the matrix of eigenvectors of Σ̂p.

M(f ) is rotation-invariant.
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Tests under general Σp when p/n→ γ ∈ (0,∞)

Under fairly general Σp (empirical distribution of eigenvalues of Σp

converges to a nondegenerate limit) the regularization scheme
involving M(f ) was studied in Li, Aue and Paul (2020).

An asymptotic normal limit (under H0) for the normalized versions
of T LR(f ), T LH(f ) and TBNP(f ) was established, where for each
test statistic, we replace M0 by M(f ).

Power function of these tests under a class of local probabilistic
alternatives was also derived.

The functional form of the power function was used to determine an
appropriate regularization scheme f , depending on the class of local
alternatives.
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Two sample problem: Hotelling’s T 2 test

Let Xj1,Xj2, . . . ,Xjnj be i.i.d. p-dimensional N (µj ,Σ), for j = 1, 2.

H0 : µ1 = µ2 versus HA : µ1 6= µ2.

Hotelling’s T 2 (HT) statistic:

HT =
n1n2

n1 + n2
(X̄1 − X̄2)T Σ̂−1

p (X̄1 − X̄2)

where X j is the sample mean for the j-th sample, and Σ̂p is the
pooled sample covariance.

Equivalent to likelihood ratio statistics;
Invariant under rotation of the coordinates.
Null distribution does not depend on Σp.

Issues in high dimension:

When p ≥ n (with n = n1 + n2) HT is not defined.
Poor power even when p < n but p/n ≈ 1.
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Regularized Hotelling’s T 2 test (RHT)

The RHT statistic for testing H0 : µ1 = µ2 vs. HA : µ1 6= µ2 is given
by

RHT (λ) =
n1n2

n1 + n2
(X̄1 − X̄2)T (Σ̂p + λIp)−1(X̄1 − X̄2), (1)

with n = n1 + n2, and

Σ̂p =
1

n − 2

2∑
j=1

nj∑
i=1

(Xji − X̄j)(Xji − X̄j)
T .

This corresponds to the general linear hypothesis testing problem
with k = 2 and q = 1.
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Asymptotic null distribution
When µ = µ1 − µ2 = 0, as p, n→∞ so that γn = p/n→ γ ∈ (0,∞),
(under additional technical assumptions)

Tn,p(λ) :=

√
p( 1

pRHT(λ)− Θ̂1,n(λ, γn))(
2Θ̂2,n(λ, γn)

)1/2
=⇒ N(0, 1), (2)

where

Θ̂1,n(λ, γn) =
1 − λmn(−λ)

1 − γn(1 − λmn(−λ))

Θ̂2,n(λ, γn) =
1 − λmn(−λ)

(1 − γn + γnλmn(−λ))3
− λ

mn(−λ) − λm′n(−λ)

(1 − γn + γnλmn(−λ))4

mn(z) =
1

p
tr((Σ̂p − zIp)−1).

Notice that mn(z), z ∈ C, is the Stieltjes transform of the empirical

spectral distribution of Σ̂p.

Debashis Paul HD linear hypothesis



General linear hypothesis
Tests with spectral shrinkage

Two sample test for equality of means
Asymptotic power

Spiked covariance model
Simulation study

Application to HCP data

Asymptotic null distribution
When µ = µ1 − µ2 = 0, as p, n→∞ so that γn = p/n→ γ ∈ (0,∞),
(under additional technical assumptions)

Tn,p(λ) :=

√
p( 1

pRHT(λ)− Θ̂1,n(λ, γn))(
2Θ̂2,n(λ, γn)

)1/2
=⇒ N(0, 1), (2)

where

Θ̂1,n(λ, γn) =
1 − λmn(−λ)

1 − γn(1 − λmn(−λ))

Θ̂2,n(λ, γn) =
1 − λmn(−λ)

(1 − γn + γnλmn(−λ))3
− λ

mn(−λ) − λm′n(−λ)

(1 − γn + γnλmn(−λ))4

mn(z) =
1

p
tr((Σ̂p − zIp)−1).

Notice that mn(z), z ∈ C, is the Stieltjes transform of the empirical

spectral distribution of Σ̂p.
Debashis Paul HD linear hypothesis



General linear hypothesis
Tests with spectral shrinkage

Two sample test for equality of means
Asymptotic power

Spiked covariance model
Simulation study

Application to HCP data

A Bayesian framework: Probabilistic local alternatives

µ := µ1 − µ2 = n−1/4p−1/2Bν where B is a p × p matrix, and ν is
random vector with independent entries,

E[νi ] = 0,

E[|νi |2] = 1,

max
i

E[|νi |4] ≤ pcν for some cν ∈ (0, 1).
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Power under local alternatives

Let B = BBT such that ‖B‖ ≤ C <∞ and, as n, p →∞,

p−1tr{Dp(−λ)B} → q(λ, γ)

for some finite, positive constant q(λ, γ), where

Dp(−λ) =
( 1

1 + γΘ1(λ, γ)
Σp + λIp

)−1

is the deterministic equivalent of (Σ̂p + λIp)−1.

As n, p →∞ the asymptotic level α RHT test has power

βn(µ, λ)
P−→ Φ

(
− ξα + κ(1− κ)

q(λ, γ)

{2γΘ2(λ, γ)}1/2

)
.
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Bayes selection of λ

Given a sequence of local probabilistic alternatives (prior for µ), the
strategy is to choose λ by maximizing the local power function
βn(µ, λ).

Need to specify q(λ, γ) in the expression for local power.

βn(µ, λ)
L1−→ Φ

(
− ξα + κ(1− κ)

q(λ, γ)

{2γΘ2(λ, γ)}1/2

)
.
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Estimate q(λ, γ) under a “polynomial prior”

It is convenient to have q(λ, γ) in a closed form.

Feasible if B is a polynomial in Σp, i.e., B =
r∑

k=0

πkΣk
p .

Under this structural assumption,

q(λ, γ) =
r∑

k=0

πkρk(−λ, γ),

with ρk(−λ, γ) satisfying the recursive formula

ρk+1(−λ, γ) = {1 + γΘ1(λ, γ)}{
ˆ
τ kdFΣ(τ)− λρk(−λ, γ)}.
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Algorithm (for r = 2)

Specify prior weights π = (π0, π1, π2);

For each λ, compute the estimates

ρ̂0(−λ, γn) = mn(−λ),

ρ̂1(−λ, γn) = Θ̂1(λ, γn),

ρ̂2(−λ, γn) = {1 + γnΘ̂1(λ, γn)}{p−1tr(Σ̂p)− λρ̂1(−λ, γn)};

For each λ, compute

Rn(λ, γn;π) =

2∑
k=0

πk ρ̂k(−λ, γn)

{γnΘ̂2(λ, γn)}1/2

Select λπ = arg max
λ

Rn(λ, γn;π).
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Linear hypothesis testing under spiked covariance model

Assume that, there is a fixed K ≥ 1 such that

Σp =
K∑
j=1

`jpjp
T
j + σ2(Ip −

K∑
j=1

pjp
T
j ) (3)

where pj ’s are the orthonormal eigenvectors, and `1 > · · · > `K > σ2

are the distinct eigenvalues of Σp.

When p/n→ γ ∈ (0,∞) there is a phase transition in the behavior
of sample eigenvalues and eigenvectors.

Phase transition limit depends on p/n and `j/σ
2. If `j/σ

2 > 1 +
√
γ,

the eigenvalue `j can be consistently estimated from data.

Assume that K is known (can be estimated consistently), and
`K/σ

2 > 1 +
√
γ (all the spiked eigenvalues can be estimated

consistently).
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Asymptotic limits of ̂̀j and p̂j

For x > 1, define

ψ(x , γ) = x

(
1 +

γ

x − 1

)
and ζ(x , γ) =

[
1− γ/(x − 1)2

1 + γ/(x − 1)

]1/2

.

Then, ̂̀
j

a.s.−→ σ2ψ

(
`j
σ2
, γ

)
, j = 1, . . . ,K . (4)

and

|〈p̂j ,pk〉|
a.s.−→ δjkζ

(
`j
σ2
, γ

)
, 1 ≤ j , k ≤ K . (5)
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Regularized tests under spiked covariance

For Λ = (λ0, λ1, . . . , λK ), define statistic

M(Λ) =
1

n
QT

n YTΩ(Λ)YQn

where

Ω(Λ) =
K∑
j=1

λj p̂j p̂
T
j + λ0Ip

Ω(Λ) can be viewed as a “regularized estimator” of Σ−1
p .

Define regularized test statistics T LR
0 (Λ), T LH

0 (Λ) and TBNP
0 (Λ) by

replacing M0 with M(Λ).
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Other regularization schemes under spiked model

Bai & Saranadasa (1996): (For two-sample tests) Replace Σ̂−1
p by Ip,

which corresponds to taking λ0 = 1 and λj = 0 for j = 1, . . . ,K .
Nontrivial modifications due to Chen & Qin (2010).

Aoshima & Yata (2018): If `j ≥ C
√
p for 1 ≤ j ≤ K , for some C > 0,

replace Σ̂−1
p by an estimate of Ip −

K∑
j=1

pjp
T
j , of the form Ip −

K∑
j=1

α2
j p̂j p̂

T
j

where (αj p̂
T
j pj)

2 → 1.

Wang & Xu (2018): If `j ≥ C
√
p for 1 ≤ j ≤ K , for some C > 0,

replace Σ̂−1
p by Ip −

K∑
j=1

p̂j p̂
T
j .

Ma, Lan and Wang (2015): Derived χ2 limit of a slightly modified
version of Bai & Saranadasa’s test under strong spikes (`j � p for
1 ≤ j ≤ K .)
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Asymptotic null distribution of M(Λ)

Under H0 : BC = 0, if λ0 > 0, and assuming Gaussianity of noise,

√
p(M(Λ)−Θ1p(Λ, γ)Iq)√

2Θ2p(Λ, γ)
=⇒W, (6)

where W is q × q following standard GOE (Gaussian Orthogonal
Ensemble).

With ζj = ζ(`j/σ
2
, γ),

Θ1p(Λ, γ) =
1

p

K∑
j=1

λj (ζ
2
j `j + (1− ζ2

j )σ2) + λ0

(
1

p
tr(Σ)

)

Θ2p(Λ, γ) =
1

p

K∑
j=1

[
λ

2
j (ζ2

j `j + (1− ζ2
j )σ2)2 + 2λ0λj (ζ

2
j `

2
j + (1− ζ2

j )σ4)
]

+ λ
2
0

(
1

p
tr(Σ2)

)
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Asymptotic null distribution of test statistics
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Probabilistic local alternatives

Consider alternatives of the form

BC = n−1/4PKPT
KS + n−1/4p−1/2P⊥PT

⊥Z

(i) S is any p × q deterministic matrix;
(ii) Z is a p × q matrix ∼MN (0,U,V), where U is the p × p row-wise

covariance matrix and V is the q × q column-wise covariance matrix.

Define R = CT (n−1XXT )−1C , and π = (π0, π1, . . . , πK ) with

π0 = p−1tr[PT
⊥UP⊥]tr[R−1V]

and
πj = pT

j SR−1STpj , for j = 1, . . . ,K .

π captures the projection of the alternative in the idiosyncratic noise
and spiked subspaces.

Set
K∑
j=0

πj = 1 so that π = (π0, π1, . . . , πK ) is a prob. distribution.
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Power under local alternatives

At asymptotic level α, the regularized test that rejects for large
values of M(Λ) has asymptotic power (under the local alternative)
βn(B,Λ) := PB(M(Λ) > ξα), with

βn(B,Λ)− Φ (−ξα + Q(Λ, γ;π))
P−→ 0, (7)

where

Q(Λ, γ;π) =
H(Λ, γ;π)√
2γqΘ2(Λ, γ)

with H(Λ, γ;π) =
K∑
j=1

λjζ
2
j πj + λ0 =

K∑
j=1

(λjζ
2
j + λ0)πj + λ0π0.

Power remains invariant under scalar multiplication of Λ and so, set
‖Λ‖ = 1.
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Bayes test

The Bayes test (within the class of tests determined by M(Λ)) w.r.t.
prior π is obtained by maximizing (estimated) Q(Λ, γ;π) with
respect to Λ.

When Λ is unrestricted, this is an eigenvalue problem, with solution

Λ(π) =
E−1b(π)

‖E−1b(π)‖

where b(π) = (1, ζ2
1π1, . . . , ζ

2
KπK ) and

E =

[
c aT

a D

]
,

Elements of E have known functional forms, and can be consistently
estimated from data.
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Minimax test

Let Π be a class of priors (a subset of the unit simplex in RK+1).
The minimax test (within the class determined by M(Λ), and with
respect to priors Π) can be found by minimizing Q(Λ(π), γ;π) over
π ∈ Π.

If Π is determined by hyperplane constraints, finding the minimax
test is a quadratic programming problem.

Specifically, for % ∈ [0, 1], we focus on the class of priors

P(%) = {π : π0 ∈ [0, %],
K∑
j=0

πj = 1, πj ≥ 0 for j = 1, . . . ,K}

If we restrict Λ such that all the λj ≥ 0 for j = 0, . . . ,K , and Π is
the unit simplex in RK+1 (i.e.,% = 1), then the minimax test
corresponds to λ0 = 1 and λ1 = · · · = λK = 0. This is the Bai and
Saranadasa’s (1996) test!
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Simulation to illustrate power characteristics

Focus on the two sample test for equality of means:

B = [µ1 : µ2], C = (1,−1)T so that H0 : µ1 − µ2 = 0. Here m = 2
and q = 1.

N1 = 40, N2 = 60 (sample sizes for groups); so N = N1 + N2 = 100,
and n = N −m = 98.
p = 50, 200, 1000;
K = 3 spikes evenly spaced from 100σ2(1 +

√
γ) to 10σ2(1 +

√
γ).

True distribution of signal µ = µ1 − µ2 is given by

π = h × (
1− π0

K
, . . . ,

1− π0

K
, π0) with π0 = 0, 0.5, 0.8, 1, and h > 0.

Consider the proposed minimax test with % = 0.2, 0.5, 0.8.

Compare with LRT under factor model (Anderson & Rubin, 1956):

Test statistic: log det(Σ̂red Σ̂−1
full) [Bartlett approximation for null

distribution if p < n].

Number of spikes K is estimated using the eigenvalue thresholding
scheme of Kritchman & Nadler (2008).
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Empirical size of the tests

p
% = 0.2 % = 0.5 % = 0.8

LRT∗
BNP LH LR BNP LH LR BNP LH LR

50 3.55 6.41 4.90 2.93 5.70 4.30 2.93 5.70 4.30 0.05
200 5.82 6.79 6.28 4.54 6.22 5.38 4.23 6.02 5.08 NA

1000 5.78 5.97 5.88 5.09 5.47 5.32 4.60 5.23 4.96 NA

Table: Empirical sizes (as percentage) at 5% nominal significance level with
normal critical values.

p
% = 0.2 % = 0.5 % = 0.8

LRT∗
BNP LH LR BNP LH LR BNP LH LR

50 4.80 4.80 4.80 4.42 4.42 4.42 4.40 4.40 4.40 0.05
200 4.68 4.68 4.68 4.84 4.84 4.84 4.80 4.80 4.80 NA

1000 3.70 3.70 3.70 3.68 3.68 3.68 3.84 3.84 3.84 NA

Table: Empirical sizes (as percentage) at 5% nominal significance level with
(parametric) bootstrapped critical values.
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Size-adjusted power: p = 50

Figure: Size-adjusted empirical power when p = 50 and (N1,N2) = (40, 60).
From left to right: πtrue

0 = 0, 0.5, 0.8, 1. LRT (Green), TLR with % = 0.2
(Red), % = 0.5 (Blue), % = 0.8 (Black).
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Size-adjusted power: p = 200

Figure: Size-adjusted empirical power when p = 200 and (N1,N2) = (40, 60).
From left to right: πtrue

0 = 0, 0.5, 0.8, 1. LRT (Green), TLR with % = 0.2
(Red), % = 0.5 (Blue), % = 0.8 (Black).
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Size-adjusted power: p = 1000

Figure: Size-adjusted empirical power when p = 1000 and (N1,N2) = (40, 60).
From left to right: πtrue

0 = 0, 0.5, 0.8, 1. LRT (Green), TLR with % = 0.2
(Red), % = 0.5 (Blue), % = 0.8 (Black).
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HCP data: regression model

Response: p = 127 variables (denoted by y) representing the test
scores on different behavioral traits.

Predictors: (i) Age and Gender groups (categorical, denoted by D);
(ii) Volumetric measurements (SA = surface area, AT = average
thickness, GV = gray-matter volume) of 14 cerebral lobes; (iii)
Volumes (SC) of 44 subcortical structures. Total
m = 1 + 3 + 1 + 3× 14 + 38 = 85 predictors.

Model:

yi = β0 + β1Di + β2SAi + β3ATi + β4GVi + β5SCi + εi . (8)
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Spiked covariance structure of noise
We detect 12 spikes by using Kritchman & Nadler (2008) algorithm and
estimate `j ’s and σ2 using a method by Passemier, Li & Yao (2017).
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Figure: Empirical eigenvalues (Red), estimated spiked eigenvalues (Black dot),
estimated noise variance (Black cross).
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Detection of significant (marginal) association

Individually, test for possible significance of each of the volumetric
measurements. This corresponds to tests of the form Hkj

0 : βk,j = 0
where 1 ≤ j ≤ 14 for k = 2, 3, 4 and 1 ≤ j ≤ 38 for k = 5.

We use the test T̂LR(Λ) with minimax selection of Λ for two
(extremal) choices of %, viz., % = 0.001 and % = 1.

Also, compare with the likelihood ratio test using the factor model
structure by Anderson and Rubin (1956).
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Significant marginal associations: p-values

Name Type test p-value

Left Medial Temporal Lobe Area Cortical
% = 1 1.54× 10−2

% = 0.001 2.38× 10−2

LRT 0.12

Left Occipital lobe Thickness Cortical
% = 1 4.8× 10−2

% = 0.001 4.18× 10−2

LRT 0.79

Left Amygdala Volume Subcortical
% = 1 5.4× 10−2

% = 0.001 2.82× 10−2

LRT 0.98

Left Caudate Volume Subcortical
% = 1 9× 10−4

% = 0.001 7.4× 10−4

LRT 0.57

Right Caudate Volume Subcortical
% = 1 1.3× 10−4

% = 0.001 1.4× 10−4

LRT 0.25

Right Cerebellum White-matter Volume Subcortical
% = 1 8.8× 10−3

% = 0.001 1.2× 10−2

LRT 0.16
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Significant marginal associations: p-values

Name Type test p-value

Right Hippocampus Volume Subcortical
% = 1 3.2× 10−3

% = 0.001 5.3× 10−3

LRT 0.07

Right Choroid Plexus Volume Subcortical
% = 1 0.52

% = 0.001 2.8× 10−2

LRT 0.95

Brain Stem Volume
Subcortical

% = 1 9× 10−7

% = 0.001 1.94× 10−7

LR 0.53

Corpus Callosum Anterior Volume
Subcortical

% = 1 2.38× 10−2

% = 0.001 3.84× 10−2

LR 0.11

White-matter Hypointensity Volume
Subcortical

% = 1 2.84× 10−2

% = 0.001 2.59× 10−2

LR 0.77
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Interpreting the findings in light of neuroscience

Amygdala performs primary roles in the formation and storage of
memories associated with emotional events (Maren, 1999).

Hippocampus plays an important role in the formation of new
memories about experienced events (Eichenbaum et al., 1993).

In the set of behavioral variables (i.e., the response), there are
emotion processing tasks that may lead to activation of amygdala
and hippocampus (Barch et al., 2013).

Medial temporal lobe contains parahippocampal cortex and
entorhinal cortex that are among the primary regions deemed
responsible for the formation of memories and spatial cognition.
These cortices are anatomically adjacent to and functionally
communicate with amygdala and hippocampus (Koob et al., 2010).
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Summary

Regularized tests for linear hypotheses based on shrinkage of the
eigenvalues of the sample residual covariance matrix.

Asymptotic theory for the proposed tests under the p � n regime.

A Bayesian paradigm for selecting the regularization parameter using
the notion of locally most powerful tests.

Derivation of a minimax test within the proposed family of
regularized tests.

Surprising near-optimality of Bai & Sarandasa (1996)’s test.

R software package ARHT available on CRAN
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