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Markowitz’s optimization enigma



Since Markowitz (1952), quantitative investors have constructed
portfolios with mean-variance optimization.

– A simple quadratic program given a covariance matrix†.
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The Markowitz enigma entails the observation that risk variance
minimizers are, fundamentally, “estimation-error maximizers”.

The Markowitz Optimization Enigma: Is ’Optimized’ Optimal?
– (Michaud 1989).

A mathematical characterization (Goldberg, Papanicalaou &
Shkolnik 2022).
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Let† be a p � p covariance matrix.

min
w2Rp

�2

�2
D hw;†wi

hw; ei D 1:

– The vector e D .1; : : : ; 1/ 2 Rp .

– hu; vi D u>v and jvj D
p

hv; vi.
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Equity risk factors are high dimensional vectors.

† D BB>
C�

The columns of a p � q matrixB .

– Market

– Style

– Industry

– Climate, Tech innovation, etc
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Systematic riskBB> plus specific risk matrix�.

† D BB>
C�

– Specific risk may be diversified away naively,

sup
p
�.�/ D sup

p
sup

jxjD1

hx;�xi < 1 :

– The systematic risk may not! (i.e., eigenvalues ofBB> diverge).
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Approximate factor model (Chamberlain & Rothschild 1983).

Assumption M.B D Bp�q and� D �p�p satisfy (a) and (b).

(a) 0 < lim infp infjvjD1hv;�vi < lim supp supjvjD1hv;�vi < 1.

(b) limp .B
>B/=p exists as an invertible q � q matrix.
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We do not have access to† but to some estimated model,

O† D HH>
C Ö

2I :

– H is a p � q matrix estimatingB .

– The simple estimate Ö 2I of� will suffice.

Assumption H.H D Hp�q satisfy lim supp jeH j= jej < 1 and
limp.H

>H/=p exists as a q � q invertible matrix (q � 1 is fixed).
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Let Ow D Ow.H; �/ be the minimum variance portfolio w.r.t. O†. Let

Vp D
p

h Ow;† Owi

which represents the true risk of the estimated portfolio Ow.

What is the behaviour ofVp as p grows?

Which entries in O† are the most responsible?

How does this compare to the estimated risk of the portfolio Ow? i.e.,

O�2
p D h Ow; O† Owi :
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Write fp � gp for c � fg=gp � C eventually for constants c; C > 0.

Proposition (Markowitz Enigma). Suppose Assumptions M and H
hold. Then for some vector functionEp.H/ to be specified,

V2
p

O�2
p

� 1C p jEp.H/j
2 :

– The roots ofEp. �/ is not so easy to find.

– The ratio of the true risk to the actual risk diverged unless we do.
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The hierarchy of challenges



The grand prize is awarded to theH] for which pE2
p .H]/ vanishes

(say, asymptotically or even p finite).

It is here that the quality of the estimate of�matters.
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An estimateH] that bounds pE2
p .H]/ would place second.
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The third place is for estimatorsH] for which we have,

lim
p

Ep.H]/ D 0q :

This may seem insufficient but it has merit.
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Whats the merit of 3rd place?

– It may be all that can be proved but better in practice.

But also ... write down the eigendecomposition,

BB>
D Bƒ2

pB

and let fp � gp denote limp fp=gp D 1.

Lemma. Suppose Assumptions M and H hold. Then, O�p � 1=
p
p and

Vp � j.ƒp=
p
p/Ep.H/j :

i.e. 3rd place gets us a riskless portfolio in the limit.

14



Today we will deriveH] which provably places 3rd in the hierarchy but
in (Gaussian) simulation will exhibit all the properties of 2nd place.
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Bad matrix



Proposition (Markowitz Enigma). Suppose Assumptions M and H
hold. Then for some vector functionEp.H/ to be specified,

V2
p

O�2
p

� 1C p jEp.H/j
2 :

What is the cause? Lets compare† and its estimate O†.

† D BB>
C� vs O† D HH>

C Ö
2I :

– The above gives away that the estmate Ö 2 is not too important.

– The estimateH has p � q entries (which ones are bad?).
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Recall the eigendecompositionBB> D Bƒ2
pB in terms of which the

optimization bias vector turns out to satisfy the relation,

p
pEp.H/ D

B>.e � eH /

he; e � eH i

where eH denotes a projection of e onto col.H/.
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Let col.A/ denote the column span of the matrixA and let eA denote
the orthogonal projection of the vector e on col.A/, e.g.,

eH D HH �e

whereA� D .A>A/�1A>, the Moore-Penrose ofA of full column rank.

With this notationAA�B projects a matrixB onto col.A/.

Lemma. For any invertible matrixK we have eH D eHK .
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Write down the following eigendecomposition,

HH>
D HS2

pH D
X

.s2;h/

s2hh>

and note thatH D HS�1
p .

Applying the lemma withK D S�1
p and setting ´ D e=

p
p,

Ep.H/ D Ep.H/ D
B>´ � .B>H/H>´

1 � jH>´j2
:

19



The optimization bias vector functionEp. �/ is given by,

Ep.H/ D Ep.H/ D
B>´ � .B>H/H>´

1 � jH>´j2
:

It is remarkable that this (and the true risk) depends (asymptotically)
on just one of the three components that make up the model O†.

– Ep.H/ does not depend on the specific risk estimate Ö 2.

– Ep.H/ does not depend on lengths of the columns ofH .

– Ep.H/ is fully determinded by col.H/.

Badmatrix O† D HH> C Ö 2I mean “bad” directions for columns ofH .
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Game over for PCA



For Y D BX> C E, a p � nmatrix of returns to p securities,

min
H




.Y �HH �Y/=
p
n




F

attains a (nonunique) minimum atH D B provided E D 0.

PCA makes the solution unique by requiring orthonormal columns.
Corresponds to the q leading terms of the spectral decomposition of,

S D YY>=n D
X

.s2;h/

s2hh>

where the sum is over all the eigenvalue/eigenvector pairs .s2; h/.

LetH be the p � q matrix of the first q eigenvectors.
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Ordering the eigenvalues of S as s2
1;p � s2

2;p � � � � � s2
p;p we have,

H D HSp I H>H D S2
p ;

whereS2
p is a diagonal matrix with (ordered) entries s2

1;p; : : : ; s
2
q;p .

The average residual variance in the returns is nicely summarized by

›2
p D

P
j >q s

2
j;p

n � q
:

The PCA model is O† D HH> C Ö 2I where Ö 2 D n›2
p =p is an

estimate with nice properties (estimates Tr.�/=p consistently).
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1. Simulate returns Y.

2. Assemble a PCA model O†.

3. Compute the portfolio Ow.
(minimizes estimated risk O�2 D h Ow; O† Owi s.t. h Ow; ei D 1).

4. Since we simulated the returns we use access to† to compute,

Vp

O�p
D

s
h Ow;† Owi

h Ow; O† Owi

�
D

true risk
estimated risk

�
:
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We adopt a stylized Barra model for the factor risk matrixB .

– First column ofB is the market risk.

– Next three columns ofB are style factors (value, momentum, etc).

– Next four columns ofB are industry membership factors.

A q D 8 factor model from which we simulate Gaussian returns.

The number of observations is n D 60 (held fixed).
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p O�p (estimated risk) Vp (true risk) Ratio

500 5:30 13:88 2:64

1000 3:83 13:55 3:55

2000 2:65 12:81 4:85

4000 1:84 12:33 6:71

8000 1:32 12:45 9:46

16000 0:94 12:32 13:24
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Sneak peak at the mystery estimatorH].



p O�p (estimated risk) Vp (true risk) Ratio

500 13:69 13:13 0:96

1000 11:13 11:14 1:01

2000 8:36 8:66 1:04

4000 6:14 6:61 1:08

8000 4:54 4:82 1:06

16000 3:19 3:43 1:07
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After two years of work, letting‰2 D I � ›2
pS

�2
p and

� D
.‰�2 � I/H>´

j´ � ´Hj
2 Rq ; a˙ D 1˙

1p
1C j� j2

:

we arrive at the following for the corrected principal components,

H] D H
�
I � aCvv

>
�

�
p
aCa�

´ � ´H

j´ � ´Hj
v I

�
v D

�

j� j

�
which is a p � q matrix of orthonormal columns (i.e. H>

]
H] D I).
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Theorem (Gurdogan & Shkolnik 2023+).

Suppose Assumption A (next slide) holds. Then, almost surely,

lim
p

Ep.H]/ D 0q :
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Recall Y D BX> C E.

Assumption A. Assumption M on the matricesB and� holds. The
following also hold with limits interpreted in the almost sure sense.

(a) Only Y is observed (the variables X;E are latent).

(b) The true number of factors q is known and n > q is fixed.

(c) X>X is (q � q) invertible (and does not depend on p).

(d) limp p
�1.E>E/ D ¨2I for¨2 D limp Tr.�/=p 2 .0;1/.

(e) limp p
�1kE>Bk D 0 for some matrix norm k � k.

( f) lim supp jeB j= jej < 1 where eB D BB�e.
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The GPS program



Goldberg et al. (2022) solve this problem when q D 1.

B D ˇ 2 Rp and b D
ˇ

jˇ j
.

H D ˇ 2 Rp and h D
�

j�j
.

´ D
e

jej D .1; : : : ; 1/=
p
p.

Ep.h/ D
hb; ´i � hh; bihh; ´i

1 � hh; ´i2

The unknown quantities hh; bi and hb; ´i admit estimates which are
functions of the sample eigenvalues (Goldberg et al. 2022,Theorem 3.1).

W.l.o.g. it is assumed that hh; ´i; hb; ´i � 0.
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 2
D 1 �

� P
j >1 s

2
j;p

s2
1;p.n � 1/

�
Theorem (Goldberg et al. 2022, Theorem 3.1). Under mild assumptions
(relaxed further in Assumption A) almost surely as p ! 1,

hh; bi �  hh; ´i � hh; bihb; ´i :
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hh; bi �  
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hh; ´i �  hb; ´i
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ht D
hCt´

jhCt´j
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A lengthy but straightforward calculation with ht D
hCt´

jhCt´j
yields,

Ep.ht / D Ep.h/ � t
hh; bi � hb; ´ihh; ´i

1 � hh; ´i2

revealing a root of the optimization bias at t D £�,

£�
D

hb; ´i � hh; bihb; ´i

hh; bi � hb; ´ihh; ´i

with estimates for the unknowns in (Goldberg et al. 2022, Theorem 3.1).

£ D
hh; ´i.1 �  2/

 2 � hh; ´i2
� £� .p " 1/:
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Ep.H/ D
B>´ � .B>H/H>´

1 � jH>´j2
:
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Do all factors matter?



Running the GPS recipe and pretend 8 D 1 is not enough.

p O�p (estimated risk) Vp (true risk) Ratio

500 6:98 13:77 2:03

1000 5:34 13:08 2:54

2000 4:62 11:27 2:66

4000 5:14 8:04 1:60

8000 1:71 11:53 7:15

16000 1:44 10:67 8:08
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More angles more problems



Fp � Gp denotes that every limp.Fp/jk=.Gp/jk D 1 (almost surely).

Theorem (Gurdogan & Shkolnik 2023+).

There does not exist a function f W Rp�n ! Rq�q with q � 2 for which,

B>H � f .Y/

without “very strong assumptions” (e.g., X>X D I).

– This does not mean we do not have limit theorems for the anlges
between the sample and population principal component angles.

The is no way of estimating the optimization bias vector.
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It is not clear how to find roots ofEp. �/ for q � 2.

Ep.H/ D
B>.e � eH /

h´; e � eH i
D

B>´ � .B>H/H>´

1 � jH>´j2
:

The last equality only holds forH with orthonormal columns.

Even if we do find a root, it is likely to depend on the unknownB

leading us back to the first problem. Let’s take problem two first.

40



Navigating problem #2



We are going to expand col.H/ by e and define.

H́ D

�
H

´ � ´H

j´ � ´Hj

�
:

We try to see if a linear transformation can hit the root ofEp. �/.

T 7! H́ T ; .T>T 2 Rq�q invertible/:
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This leads to the following transformation of the optimization bias.

Ep.H́ T / D
B>´ � B>H́ T T �H>

´ ´

1 � j´H́ T j2

Slick observation, T>T T � D T> (i.e., T � D .T>T /�1T>).

This suggests we set T D T� D H>
´ B above.
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Provided T>
� T� is invertible and j´H́ T�

j < 1, for T� D H>
´ B,

Ep.H́ T�/ D
B>´ � T>

� H>
´ ´

1 � j´H́ T�
j2

D
B>´ � B>H́ H>

´ ´

1 � j´H́ T�
j2

D 0:

But expected, our impossibility result says T� cannot be estimated.
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Navigating problem #1



Lemma. For any invertible matrixK we have eH D eHK .

As a corollary, for any invertible matrixK , we also have

E.H́ T�/ D E.H́ H>
´ B/ D E.H́ H>

´ BK/

A good choice turns out to beK D B>H because ...
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Recall‰2 D I � ›2
pS

�2
p .

Theorem (Gurdogan & Shkolnik 2023+).

Suppose Assumption A holds. Then, almost surely,

H>BB>H � ‰2 and H>´ � .H>B/B>´:

Moreover, every diagonal entry of‰ is eventually in .0; 1/ wp1.

cf. (Goldberg et al. 2022, Theorem 3.1)

hh; bi �  and hh; ´i �  hb; ´i
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Recap.

– We found thatEp.H́ T�/ D 0 for T� D H>
´ B.

– The key lemma supplied thatEp.H/ D Ep.HK/ for invertibleK .
– ChoosingK D B>H leads to T�� D T�B

>H with

T�� D H́ BB>H

because we can estimate angles after projectingH onto col.B/.

T] � T�� :

– We truly takeK D B>HR forR that makes the columns
orthonormal (i.e. q corrected principal components)

H] D H́ T]R:
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Theorem (Gurdogan & Shkolnik 2023+).

Suppose Assumption A (next slide) holds. Then, almost surely,

lim
p

Ep.H]/ D 0q :

H] D H
�
I � aCvv

>
�

�
p
aCa�

´ � ´H

j´ � ´Hj
v I

�
v D

�

j� j

�
whereH>

]
H] D I and the �; a˙ are given by

� D
.‰�2 � I/H>´

j´ � ´Hj
2 Rq ; a˙ D 1˙

1p
1C j� j2

:
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The optimization bias of PCA



Recall‰2 D I � ›2
pS

�2
p .

Theorem (Gurdogan & Shkolnik 2023+).

Suppose Assumption A holds. Then, almost surely,

jEp.H/j �

p
h´;HˆH>´i

1 � jH>´j2

whereˆ D 2.‰�2 � 1/.1 �‰2/ and jEp.H/j is eventually in .0;1/.
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The James-Stein connection
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The James-Stein estimator for PCA with shrinkage space col.M/.

H JS
D HC CM.I � C/

M D MM>H

C D I �
�
.H �M/>.H �M/

��1
.I �‰2/
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