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As of the beginning of 2020, factor investing in the public equity 
markets has fallen on hard times.1 Performance failures by a 
number of prominent quantitative portfolio management firms 

have been attributed to poor implementation of multifactor strategies 
and negative returns to popular factors such as value (i.e., low P/E) and 
small size (i.e., small-capitalization stocks). In addition, investors are 
increasingly concerned about active risk and the source of active 
returns but hesitant to “time” factors by allowing asset managers to 
adjust exposures. Concurrently, academic research by Moreira and 
Muir (2017), among others, has established that timing the market and 
some active factors based on risk does increase performance, although 
little has been published about how to combine factors into one inte-
grated multifactor portfolio.

We derive a simple closed-form formula for the mean–variance 
security weights in optimal multifactor portfolios and test the perfor-
mance of portfolios constructed from the largest 1,000 US stocks. We 
examine the optimal combination and dynamic exposure adjustments 
to five factors: (1) value, (2) momentum, (3) small size, (4) low beta, 
and (5) profitability. The backtests used calendar-month observations 
for the past 54 years, 1966–2019, and risk forecasts based on trailing 
daily return standard deviations. We also show how the risk manage-
ment process with exposure adjustments based on standard deviation 
forecasts would have improved the performance of the market factor. 
When we decompose the sources of value added from optimally 
combining the active factors, we find that dynamic risk management is 
empirically similar to one additional factor. Documentation of the long-
term risk-adjusted performance of the pure value, momentum, small-
size, low-beta, and profitability factors also allows for a comparison of 
the ebbs and flows in their performance over time.

Managing the intertemporal risk of 
optimally constructed multifactor 
portfolios adds to performance. 
The increases in Sharpe ratios are 
in addition to the utility that inves-
tors gain from controlling how 
much active risk they are exposed 
to over time. We derive a simple 
closed-form formula for security 
weights in optimal multifactor 
portfolios with an active-risk 
target. We test the risk control of 
five well-known factors—value, 
momentum, small size, low beta, 
and profitability—and the optimal 
multifactor portfolio. Our empiri-
cal research was carried out on 
the large-capitalization US equity 
market for 1966 through 2019. We 
conclude that for the equity mar-
ket, more active factors are better 
than fewer if each subportfolio is 
“pure” as to factor, anchored to 
the benchmark, and combined on 
the basis of forecastable risks. Our 
portfolio construction methodol-
ogy allows for transparent perfor-
mance attribution and replication 
of the process in other markets 
and time periods.
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An underlying theme of both the analytic formula 
and our empirical research is that, whereas changes 
in factor risks over time are persistent and thus par-
tially predictable, changes in realized returns to the 
various nonmarket factors generally are not. Active 
factor payoffs may be behaviorally induced or infor-
mational anomalies, as opposed to explicit rewards 
for taking on risk. If risk changes can be predicted in 
advance that do not alter the realization of average 
returns, then portfolio performance is enhanced by 
intertemporal risk management.

Constructing and managing multifactor portfolios is 
viewed by some investors as complex, with per-
formance and risks coming from various sources. 
Mean–variance-optimal portfolio mathematics, 
however, applied to pure benchmark-anchored fac-
tors without idiosyncratic risk, leads to an intuitive 
formula for security weights. This article thus adds 
to a body of prior research into the combination 
of factor portfolios in Clarke, de Silva, and Thorley 
(2016) and the composition of pure-factor portfolios 
in Clarke, de Silva, and Thorley (2017). We extend 
our prior work to show how the optimal combination 
of factor portfolios can be anchored to a benchmark 
and how security weights can be adjusted to target 
a specific level of active risk. Furthermore, we show 
that risk management can be done in a multifac-
tor context by varying the factor exposures over 
time in response to changes in expected factor 
risk. Finally, we simulated how various multifactor 
portfolios would have performed historically in the 
1966–2019 period.

Literature Review
The objective of risk-based timing is to increase 
exposure when the active factors are forecasted 
to be calm and decrease exposure when the active 
factors are predicted to be volatile, resulting in a 
more stable level of realized risk over time than 
experienced without timing. The academic guidance 
for performance improvements in such strategies 
comes from Moreira and Muir (2017) for the market 
factor and Barroso and Santa-Clara (2015) for the 
momentum factor. We use portfolio construction 
methodologies that are more investable, however, 
by avoiding long–short portfolios, as in Harvey, 
Hoyle, Korgaonkar, Rattray, Sargaison, and Van 
Hemert (2018) and Li and Shim (2019). Not all equity 
characteristics seem to respond to volatility manage-
ment. The approach used by Cederburg, O’Doherty, 
Wang, and Yan (forthcoming) to evaluate volatility-
managed portfolios produced mixed performance 

results for risk-managed formulations for more than 
100 different factors.

Liu, Tang, and Zhou (2019) questioned the ease 
and practical implementation of volatility-timing 
strategies and expressed concerns about look-ahead 
biases. Many studies have used variance instead 
of standard deviation to adjust exposures for risk. 
Leverage and the adjustment of Sharpe ratios in 
financial economics are based on standard devia-
tions, however, which have the same unit of measure 
as returns. In more applied, less theoretical, litera-
ture, Clarke et al. (2016) discussed how to combine 
active factors but failed to allow for reasonable levels 
of active risk, as noted by Ghayur, Heaney, and Platt 
(2018). Many research studies on combining active 
factors continue to be based on Fama–French (e.g., 
1992, 1996) portfolio construction techniques that 
have long–short portfolio structures and material 
secondary exposures. The incremental contribution 
of this article is to extend recent innovations in mul-
tifactor portfolio construction by using optimization 
mathematics (derived in Appendix A) and to sum-
marize the various issues with a simple formula for 
security weights based on user-defined parameters, 
including dynamic factor risk management.

Optimal Portfolio Formula
After some involved matrix algebra derivations, 
Appendix A shows that the security weights (sub-
scripted by i) of a mean–variance-optimal two-factor 
portfolio (subscripted by P) at any given point in 
time are
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where 

wM,i is the weight of the security in the benchmark 
portfolio (subscript M)

IRk and σk are the estimated information ratio and 
active risk, respectively, for factor k (this generic 
example has just two active factors, enumerated 
1 and 2) 

Δwk,i are sets of active security weights 
(subscripted by i) for each factor k 

σC is a user-specified active-risk parameter—for 
example, 3%—which the optimization algebra 
indicates should be divided by the square root 
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of the sum of the expected factor information 
ratios squared

A key concept in Equation 1 for active-risk manage-
ment is that the optimal exposure to each factor 
varies over time with the factor-specific term, IRk/σk. 
For example, volatility scaling in Harvey et al. (2018) 
is conceptually expressed as

Exposure Target risk
Predicted riskt

t
=

−1
,	 (2)

where exposure to the factor at each point in time, t, 
is based on the targeted level of risk divided by risk 
prediction at the beginning of the period, time t – 1, 
which uses prior data or options-based (e.g., VIX) 
risk-forecasting variables. Although volatility man-
agement is more precise if daily changes in exposure 
are used, we employ monthly rebalancing in our 
backtests to reduce concerns about transaction 
costs and the timeliness of information that would 
have been available to investors in real time. Even 
with monthly holding periods, reacting to sudden 
increases in volatility that become evident during 
any calendar month also leads to significant improve-
ments in volatility management. We maintained 
calendar-month rebalancing, however, to allow direct 
comparisons with widely published backtests of 
other active portfolio strategies.

A variety of ad hoc methodologies have evolved over 
the years for constructing factor portfolios. If only 
one nonmarket factor is involved, the active security 
weight, with the symbol ∆ indicating the difference 
between the portfolio and benchmark, is

∆w w bk i M i k i, , , ,= 	 (3)

where wM,i is the weight in the benchmark and bk,i 
is the capitalization-weighted (not equally weighted) 
standardized exposure of the security to factor k. 
The raw (before standardization) exposures are any 
numerical measure across stocks—for example, trailing 
earnings yield—with outliers winsorized at the 1st 
and 99th percentiles. Security weights derived from 
multivariate regressions versus univariate Fama and 
MacBeth (1973) regressions are similar to Equation 3, 
but the exposure to the factor of interest is neutral-
ized with respect to the other factors. For example, 
the security weight with a second nonmarket factor is

∆w
w

b bk i
M i

k i i,
,

, , ,=
−

−( )1 2 2ρ
ρ 	 (4)

where b2,i is the security exposure to the second fac-
tor and ρ is the cross-sectional correlation between 
the two sets of factor exposures. 

The weight adjustment needed to construct pure 
versus primary (i.e., univariate) factor portfolios 
is sometimes material. On the one hand, momen-
tum stocks naturally tilt away from value, so the 
ρ parameter in Equation 4 is negative and the pure 
momentum portfolio performance over time is 
much higher than the primary momentum portfolio 
defined by Equation 3. On the other hand, if ρ = 0, 
then Equation 4 collapses to Equation 3. Inserting 
the pure active-factor weights in Equation 4 into 
Equation 1 completes the full description of an 
optimal two-factor active-risk-managed portfolio at 
each point in time.

Equation 1 is a closed-form portfolio construction 
process under mean–variance optimization. With 
rare exceptions, the portfolio in Equation 1 is long 
only because the market benchmark is long only. 
In contrast, many ad hoc sorting methodologies 
with arbitrary delimiters have undisclosed levels of 
security shorting and exposure to secondary factors 
that drive the reported results. The most egregious 
secondary exposure in many studies is the small-
size factor because the studies use equal-weighted 
statistics in portfolio construction. 

Without any consistent process for multifactor port-
folio construction, researchers tend to select a set of 
sorting and delimiter rules that work best ex post. As 
derived in the Appendix A, Equation 1 is the portfolio 
that investors using the Markowitz (1952) algorithm 
would have used historically if they had ignored 
security-specific idiosyncratic risk.

Factor Definitions and Pure-Factor 
Returns
Table 1 reports the performance of five pure factors 
(without secondary exposures) from 1966 to 2019, 
the full time period for our empirical work on the US 
equity market, with data from CRSP and Compustat. 
Figure 1 illustrates the performance of each factor 
over time. Return and exposure data are derived 
from the underlying securities, not inferences 
from other arbitrarily constructed factor portfolios 
observed in practice or Fama–French style factor 
portfolios. The factor portfolios are constructed 
to be pure, with weights specified by a five-factor 
version of Equation 4 and constant one-standard-
deviation exposures over time.
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The full (648-month) sample period was chosen so 
that at least 1,000 publicly traded common stocks 
existed each month, making the Russell 1000 
Index the effective market benchmark. Later in 
the article, we provide subperiod analyses of the 
monthly returns by dividing the full 54-year sample 
into three equal 18-year subsamples. We report 
empirical research on the large-cap US public equity 
market for the factors and definitions specified in 
the following material, but the analysis can be easily 
replicated and extended to other time periods, mar-
kets, and factors by using the formula for portfolio 
construction in Equation 1. The market returns are 

in excess of the contemporaneous risk-free rate, and 
active-factor returns are simple differences from 
the contemporaneous market return. All returns 
are reported before transaction costs, which are 
discussed later.

The average market excess return of 6.29%, divided 
by the realized return standard deviation of 15.07%, 
results in a Sharpe ratio of 0.417, which is reported 
as the “Simple ratio” in Table 1 to align it with the 
average active returns and risks of the five factors. 
The information ratios reported in the final row are 
beta adjusted—meaning that the realized market beta 

Table 1. �Statistics for Pure-Factor Returns, 1966–2019

Measure

 
Market 
Factor

Active Return

Value 
Factor

Momentum 
Factor

Small-Size 
Factor

Low-Beta 
Factor

Profitability 
Factor

Average 6.29% 1.72% 2.72% 0.96% 0.51% 1.54%

Std. dev. 15.07% 3.19% 4.81% 3.62% 5.33% 3.12%

Simple ratio 0.417 0.538 0.565 0.265 0.096 0.492

Market beta 1.000 –0.040 –0.009 0.049 –0.219 –0.008

Market alpha 0.00% 1.97% 2.77% 0.65% 1.89% 1.59%

Active risk  3.13% 4.81% 3.55% 4.19% 3.12%

Information ratio  0.628 0.576 0.184 0.450 0.508

Figure 1. Cumulative 
Risk-Adjusted Pure-
Factor Active Returns, 
1966–2019
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was used to calculate the alpha and active risk of each 
factor. Except for the small-size factor, included in 
this study because of its historical popularity, the full-
sample factor information ratios are similar in magni-
tude to the market Sharpe ratio—ranging from 0.450 
for the low-beta factor to 0.628 for the value factor.

Figure 1 allows a visual comparison of the long-term 
track record of the value, momentum, small-size, low-
beta, and profitability factors. To facilitate the com-
parison of the pure-factor returns over time, each 
factor’s return has been risk adjusted in two ways. 
First, the factor portfolios are market-beta adjusted, 
meaning that minor (except for the low-beta factor) 
amounts of leverage or cash were included if the 
realized 54-year active beta was different from zero. 
Second, the exposure to each factor was adjusted 
ex post so that the portfolios have realized active 
risks of 3%, although other risk targets produce 
similar relative results. This adjustment is needed 
because the constant one-standard-deviation expo-
sure to the various factors in Table 1 does not result 
in equal, let alone time-invariant, levels of active 
risk. For example, the realized standard deviation of 
active returns to the value factor of 3.13% is about 
two-thirds of the 4.81% realized standard deviation 
of the momentum factor shown in Table 1.

Several equity factors have emerged over time as 
being major sources of added value in managed 
equity portfolios. Two classical equity factors, value 
and small size, were popularized by Fama and French 
(1992, 1996). Because of distortions over time in 
US GAAP book values, we measure value expo-
sure in this study by trailing earnings yield (i.e., the 
inverse P/E), not the original book-to-market ratio of 
Fama and French. Small-size exposure is the log of 
the inverse of market cap, although we avoid stocks 
that were outside the criterion of the largest 1,000 at 
any time to reduce concerns about transaction costs. 

Note that in Figure 1 the pure value factor per-
formed well until the mid-1980s. Then, it had some 
mediocre years before surging up at the turn of the 
century, only to show almost no additional perfor-
mance (i.e., a flat cumulative return plot) from 2009 
to 2019. The small-size factor was declared “dead” 
by some academics and quant managers at the turn 
of the century, only to show life again in the two 
decades since then. But it has had deteriorating 
performance since about 2015. The poor perfor-
mance of the small-size factor, to which many active 
managers are exposed because of equal weighting 
of stocks in their portfolios, together with the recent 
flat performance of the value factor, have probably 

reduced the average active return of US equity 
managers since 2015.

The momentum factor is captured by overweighting, 
compared with the market benchmark, individual 
stocks that have recently done well. Specifically, we 
examined Carhart (1997) momentum, earlier asso-
ciated with Jegadeesh (1990) and Jegadeesh and 
Titman (1993), which is defined by cross-sectional 
standardized scores on the most recent one-year 
historical return for each stock, excluding the most 
recent month. The momentum factor has had long-
term positive payoffs that few financial economists 
believe have anything to do with investors intention-
ally taking on active risk.

The low-beta factor is based on overweighting, 
compared with the benchmark portfolio, stocks that 
have historically exhibited lower market betas than 1. 
The academic interest in low-beta stocks goes back 
to studies of the empirical failures of the original 
Sharpe (1964) capital asset pricing model (CAPM) in 
Jensen, Black, and Scholes (1972) and the applied 
work of Haugen and Heins (1975). The volatility 
factor morphed for a while in academic literature to 
idiosyncratic risk in Ang, Hodrick, Xing, and Zhang 
(2006) but was reestablished as a “betting against 
beta” anomaly by Frazzini and Pedersen (2014), 
among others. We measure exposure to the low-beta 
factor by the difference of the security beta from 1 
(1 minus each stock’s prior 36-month beta against 
the S&P 500 Index), resulting in a factor portfolio 
that has a realized beta of about 0.8.

To complete the list of five equity factors, we include 
profitability, defined as gross margin over assets 
from the most recently available annual financial 
statements. Aspects of this “quality” factor have 
been discussed by several analysts, but we used the 
definition of profitability introduced by Novy-Marx 
(2013), with an extension for stocks in the financial 
sector, which have been excluded in prior studies on 
profitability.2

Market-Risk Management 
with the Use of the VIX
Before turning to the optimal combination and risk 
management of these five factors, we pause to dis-
cuss the value of dynamic risk management for the 
market itself. Although such results for managing the 
volatility of the “market factor” are not new, being 
well documented in academic literature by Moreira 
and Muir (2017) and Ang (2014), they illustrate the 
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process for intertemporal risk management. The mar-
ket example also uses widely available data on S&P 
500 returns and Cboe Volatility Index (VIX) quotes 
that can be easily replicated. Note that option-
implied volatility from the VIX tends to forecast 
higher risk in the equity market than is realized over 
time, an effect called the “the volatility premium” 
by Eraker (2009), although the targeted level of risk 
does not affect the resulting Sharpe ratios.3 The 
objective of risk-based timing in this example is to 
increase exposure when the VIX predicts the equity 
market to be calm and decrease exposure when the 
market is predicted to be volatile, resulting in a stable 
level of realized risk over time.

Specifically, consider a strategy of maintaining a static 
50/50 exposure to the S&P 500 portfolio and cash, 
compared with a dynamic strategy of varying market 
exposure based on the inverse of predicted volatility, 
in accordance with Equation 2. The static portfolio 
has realized returns and risk of, respectively, 3.98% 
and 7.09% over the 30-year (1990–2019) period for 
which VIX quotes are available. By construction, the 
static portfolio has half the average return, risk, and 
market beta, but the same 0.561 Sharpe ratio as the 
market. In contrast, the dynamic strategy is based 
on a target volatility parameter of 10.92%, chosen so 
that that the ex post market beta is 0.50 to match the 
beta of the static strategy. The dynamic portfolio has 
a realized return of 4.92% and risk of 7.56%, yielding 
a Sharpe ratio of 0.651 compared with just 0.561 for 
the market. Using the Treynor and Black (1973) rule 
and these Sharpe ratio numbers, the information 
ratio for the impact of market-risk management is 
quite material at (0.6512 – 0.5612)1/2 = 0.329. Note 
that the results are invariant to the specific level of 
targeted risk. For example, the same Sharpe ratio 
and IR hold for a leveraged dynamic strategy with a 
targeted volatility that results in an ex post beta of 
exactly 1 to the market.

Nonpure Factors and Factor 
Risk Control
In this section, we report returns for reference 
purposes on single-factor (primary-factor) portfolios, 
in contrast to the five pure-factor portfolios in 
Table 1 that will be used in our multifactor portfolio 
construction. Then, we report statistics on risk-
controlled pure-factor portfolios. The primary-factor 
portfolios were constructed using the same security 
return data and factor definitions in Table 1, but 
the single-factor (univariate) formula in Equation 2 
was used instead of the appropriate version of 
Equation 3. The primary-factor portfolios thus have 
large ancillary, or secondary, exposures to the other 
factors that in some cases dominate the intended 
factor exposure.

Table 2 reports on the primary-factor portfolio 
returns in the same format as the bottom half of 
Table 1. As previously documented in Clarke et al. 
(2017), the primary portfolios for all five factors have 
performed poorly compared with the pure-factor 
portfolios, as seen by the lower information ratios in 
the bottom row of Table 2. Conceptually, pure-factor 
portfolios perform better because their active risk 
is reduced when the unintended exposures to other 
factors are removed. Specifically, all five primary 
factors in Table 2 have active realized risk numbers 
that are greater than the pure factors in Table 1, 
even though they have the same constant exposure 
over time as measured by one standardized score.

As a practical matter, some primary-factor portfolios 
also suffer in terms of performance because their 
exposures have been negatively correlated in the 
cross-section with other factors that have positive 
realized active returns. As shown in Table 3, the 
realized active returns of the primary-factor portfo-
lios since 1966 are highly correlated in some cases. 

Table 2. �Primary-Factor Return Statistics, 1966–2019

Measure
 

Market

Active Return

Value Momentum Small Size Low Beta Profitability

Market beta 1.000 –0.077 –0.010 0.076 –0.262 –0.014

Market alpha (%) 0.00 1.36 2.44 0.62 1.67 1.23

Active risk (%) — 4.37 6.13 3.98 4.89 3.79

IR — 0.312 0.398 0.157 0.341 0.324

https://www.cfainstitute.org
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A similar correlation matrix for the pure-factor 
returns in Table 1 has off-diagonal numbers that are 
generally close to zero. For example, the information 
ratio for the pure value factor in Table 1 is 0.628, 
about double the 0.312 number reported for the 
value factor in Table 2, because value exposures 
have tended to be negatively correlated with both 
momentum and profitability.

In contrast, the returns to the value factor shown in 
Table 2 are positively correlated with returns to the 
low-beta factor, as shown by the 0.452 correlation 
coefficient in Table 3. The reason is that for much of 
the time frame in this study, value stocks tended to 
be stocks with low betas. Without the perspective 
of pure-factor portfolio construction, the perfor-
mance of the value and low-beta factors can be 
confounded. Similar secondary exposure problems 
exist for factor portfolios constructed according to 
the Fama–French (1992, 1996) approach, except for 

small-size exposure that was heuristically controlled. 
Fama–French factor portfolios also tend to be long–
short composites with implicit leverage, as opposed 
to being anchored to the long-only benchmark.4

Before examining the dynamic risk control of 
individual-factor portfolios, we include Figure 2 to 
document changes in factor risks over time. Using 
the pure-factor returns reported in Table 1, Figure 2 
plots the rolling 36-month realized risk of each factor 
return with a constant exposure over time of 1.0. 
The realized level of active risk is clearly unstable. 
For example, the risk of the value factor has varied 
from a high of more than 6% in the mid-1970s to just 
1%–3% in 2005–2019. The realized active risk of all 
five factors jumped around the turn of the century; 
the highest numbers are for the momentum and 
low-beta factors. Note that these active-risk num-
bers are from realized returns on the pure factors, 
so the correspondence between the levels of active 

Table 3. �Return Correlations of Primary-Factor Portfolios, 1966–2019

 Value Momentum Small Size Low Beta Profitability

Value 1.000 –0.436 0.155 0.452 –0.454

Momentum  1.000 –0.117 –0.009 0.256

Small size   1.000 –0.289 –0.298

Low beta    1.000 –0.036

Profitability     1.000

Figure 2. Realized 
36-Month Active Risks 
from Constant Factor 
Exposures, 1966–2019
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risk for each factor over time is not a result of their 
secondary (i.e., unintentionally shared) exposures.

Similar to the results from risk management of the 
market factor, we now report the empirical results of 
managing the active risk of individual equity factors. 
As one might expect, more opportunity is available 
to react to changes in the predicted risk for fac-
tors whose risk is less stable over time. Although a 
variety of sophisticated risk prediction models, such 
as generalized autoregressive conditional heteroske-
dasticity (GARCH) models, are available, we use a 
simple but dynamic prediction process for individual 
monthly factor risks—namely, trailing daily-return 
standard deviation. Specifically, we use the square 
root of the sum of the squared daily active returns 
for the prior 60 trading days (approximately three 
calendar months) as the input parameter for the 
expected active risk of each factor.5 The factor 
performance results we report next were gener-
ally invariant with the number of prior days used 
(e.g., 20 instead of 60) and improve only slightly with 
GARCH-based estimates of forward risk.6

Figure 3 plots the realized active risk of the risk-
managed factor portfolios over time to illustrate 
the effectiveness of the ex ante risk control. Each 
portfolio’s exposure was adjusted over time accord-
ing to Equation 2, with a risk target of 3%, although 
other values could be used. Interestingly, the realized 
risks are generally higher than the 3% target because 

we used past daily return volatility to predict 
monthly risk. Annualized realized risk as measured by 
daily returns provides a downward bias in predicting 
the risk of monthly returns, so the desired exposure 
is too high. The result is similar (but opposite in direc-
tion) to the use of the VIX in predicting the realized 
risk for the market factor.7 The plots in Figure 3 
are generally level compared with Figure 2 and 
confirm that dynamic risk control of the individual 
factors works.

Table 4 reports the information ratio for each of 
the pure factors when exposures varied over time 
according to Equation 2. Table 4 is reported in the 
same format as the lower portion of Table 1 to allow 
a direct comparison. In addition to the objective of 
controlling and leveling out the sources of active 
risk, the IRs in the bottom row of Table 4 show how 
the performance of each pure factor was affected 
by dynamic risk management. The value factor’s 
IR drops slightly from 0.628 in Table 1 to 0.552 
in Table 4, whereas the increase in the IR of the 
momentum factor from 0.576 to 0.810 is quite large. 
The small-size factor’s IR also drops slightly in Table 4, 
but the low-beta IR increases from 0.450 to 0.584. 
Finally, the IR for the profitability factor drops from 
0.508 to 0.429. These results are generally consistent 
with the analysis by Cederburg et al. (forthcoming), 
who find that the market factor and the momentum 
factors seem to be more responsive to dynamic risk 
management than the other factors they tested.

Figure 3. Realized 
36-Month Active 
Risks with ex Ante Risk 
Control, 1966–2019
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The risk-control performance enhancements for the 
momentum factor are similar to those of Moskowitz, 
Ooi, and Pedersen (2012), Barroso and Santa-Clara 
(2015), and Moreira and Muir (2017), although less 
research has been done on the low-beta factor. From 
the ex post perspective of Figure 2, risk management 
adds more value for the momentum and low-beta 
factors because those are the factors that show the 
greatest changes in constant exposure risk over time. 

In general, the adjustment in factor exposures 
over time to maintain constant levels of active risk 
appears to do little harm to the performance of three 
factors while increasing the value added from the 
other two. The dynamic adjustment of active factor 
exposures does increase security turnover, how-
ever, as shown later in the implementation section. 
Nevertheless, the impact of transaction costs is small 
with respect to the changes in information ratios. 

Multifactor Portfolio Combination 
and Risk Control
We now examine the long-term realized informa-
tion ratios of various multifactor portfolios, with a 
final portfolio constructed according to a version of 

Equation 1 with five factors. The improvement in 
performance of the final multifactor portfolio over 
the passive benchmark comes from three sources: 
(1) the inclusion of five (as opposed to only one or 
two) nonmarket factors that have been important 
historically, (2) the use of pure-factor portfolios that 
have zero secondary exposures to the other factors 
under consideration, and (3) risk management of 
each of the five factor exposures using the persistent 
component of their active risks.

We did not examine the added value that comes 
from a potential fourth source in Equation 1—namely, 
adjusting the relative magnitudes of the individual-
factor information ratios—because we do not know 
what investors might have expected starting back 
in the 1960s. In other words, in Table 5, we do not 
show the result of optimally combining the vari-
ous active factors, although we comment later on 
improvements in performance by emphasizing some 
factors over others in sensitivity and subperiod 
analyses. For example, the recent historical perfor-
mance of the small-size factor and the value factor 
may motivate investors now to assign zeros to their 
ex ante information ratios. The IRs that might have 
seemed reasonable to investors several decades 
ago, however, are unknown, and adjusting the IRs 

Table 4. �Active Return Statistics for Risk-Managed Exposures, 1966–2019

 Value Momentum Small Size Low Beta Profitability

Market beta –0.058 –0.017 0.053 –0.220 –0.003

Market alpha (%) 2.78 3.98 0.46 2.44 1.93

Active risk (%) 5.04 4.91 3.92 4.18 4.50

IR 0.552 0.810 0.118 0.584 0.429

Table 5. �Multifactor Portfolio Return Statistics, 1966–2019

Measure Market
Equal Mix 
of Primary

Equal Mix 
of Pure

Risk-Based 
Timing

Mean (%) 6.28 7.39 7.77 10.79

Std. dev. (%) 15.07 14.32 14.47 14.10

Sharpe ratio 0.417 0.516 0.537 0.765

Market beta 1.000 0.943 0.954 0.891

Market alpha (%) 0.00 1.46 1.77 5.18

Active risk (%) — 1.80 1.58 4.32

IR — 0.811 1.122 1.200
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to account for the relative realized performance of 
the factors is a clear ex post bias, although some 
bias already exists in selecting these five factors. 
Active factors were only gradually introduced by the 
academic work of Fama and French (1992) and the 
active portfolio management frameworks of Grinold 
(1989) and Black and Litterman (1992). 

Table 5 reports statistics on the market portfolio’s 
return and the return on three multifactor portfo-
lios for the 54 years of the study. Each of the three 
actively managed portfolios illustrates the incremen-
tal impact from the various sources of multifactor 
portfolio construction. The second column of data 
reports results for an equal mix of the five primary 
factors with a constant exposure to each factor 
over time of 1/5 = 0.200. Because the primary-
factor portfolios were constructed on the basis of 
the security weights in Equation 2, they sometimes 
have substantial secondary exposures to the other 
factors, so the total (i.e., intended and unintended) 
exposure to any given factor may be quite different 
from 0.200. Nevertheless, this equal mix of the five 
primary factors provides a Sharpe ratio of 0.516 and 
a beta-adjusted information ratio of 0.811 compared 
with zero, by definition, for the market.

The calculation of the Treynor–Black (1973) rule 
for this portfolio’s Sharpe ratio, based on the 
market Sharpe ratio and its information ratio, is 
(0.4172 + 0.8112) = 0.912, higher than the 0.516 
ratio given in the third row of Table 5. The reason 
is that IRs at the bottom of Table 5 take the low 
market betas into account. Specifically, the equal-mix 
portfolios have betas that are about one-fifth of the 
way between 1.0 for the market portfolio and the 
Table 1 calculation of the pure low-beta market beta 
of 1.000 – 0.219 = 0.781. Although realized market 
betas over the full 54-year sample were used for the 
IR calculations in Table 5, the pure low-beta portfolio 
has a predictably lower beta, as shown later in the 
subperiod analysis, so the ex post bias is immaterial.

The “Equal Mix of Pure” column of Table 5 reports 
results for an equal combination of the five pure 
factors. The exposure to each factor is now exactly 
0.200, rather than being potentially offset or ampli-
fied by the secondary exposures in the other factor 
portfolios. The information ratio of this multifac-
tor portfolio increases from the 0.811 shown 
for the primary-factor portfolio to 1.122, a large 
improvement. To be more precise, the calculation of 
the impact on IR compared with the mix of primary-
factor portfolios using the Treynor–Black (1973) 
rule is (1.1222 – 0.8112)1/2 = 0.775. 

The last column of Table 5 reports results for a risk-
managed multifactor portfolio with month-by-month 
predictions of each factor’s active risk. As calculated 
later in Equation 5, the exposure without the risk 
management parameters goes from 0.200 to 0.447 
for each factor, so the active risk more than doubles, 
from 1.58% to 4.32%, compared with the prior 
column. Similarly, the magnitude of the reduction 
in market beta below 1.000 to 0.891 is about twice 
that of the equal-mix portfolios. The adjustment of 
factor exposures based on dynamic risk management 
increases the multifactor portfolio’s information ratio 
from the equal mix’s IR of 1.122 to 1.200, giving a 
Treynor–Black calculation for the incremental impact 
of (1.2002 – 1.1222)1/2 = 0.426.

The use of the Treynor–Black (1973) rule is particu-
larly important in assessing the incremental eco-
nomic impact of the already high information ratios. 
The 0.426 impact of risk management is similar to 
the addition of a completely new factor—that is, 
numerically similar to the entries in the bottom row 
of Table 1. The realized information ratio of 1.200 
compared with zero by definition for the market 
portfolio is invariant with the level of active risk 
chosen by the investor. For example, when a 2% 
(rather than 3%) active-risk target is used in portfolio 
construction, the realized alpha in the last column of 
Table 5 is 3.46% and the realized active risk is 2.88%, 
resulting in the same 346/288 = 1.200 realized IR.

Regression Analysis
We also use a regression of realized active returns 
for the entire 54 years on the primary-factor and 
pure-factor active returns to measure the value added 
by the factors in the final dynamic multifactor port-
folio. The results capture both the value added from 
individual-factor risk management and the balance 
between factor risks over time. Panel A of Table 6 
shows a regression of the active returns for the final 
risk-managed portfolio on the primary-factor active 
returns reported in Table 2. As discussed in Cederburg 
et al. (forthcoming), caution should be exercised in 
interpreting the alpha in some full-sample regressions, 
although the volatility-managed portfolios and subse-
quent regressions by those authors were structured 
differently from those here. The intercepts (alphas) 
in Table 6 represent the difference in mean return 
between the risk-managed portfolio and a portfolio 
with a constant mix of factor exposures.

The 232 basis point (bp) alpha in Panel A of Table 6 is 
the annualized (multiplied by 12) intercept term from 
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the regression, with a highly significant t-statistic 
of 5.1. The alpha is related to the improvement in 
information ratios between the portfolio in the last 
column of Table 5 and the equal mix of primary 
factors in the second column of Table 5. The regres-
sion coefficient on each factor return represents the 
average exposure over time to that factor. Given 
that the multifactor portfolio is constructed from 
the individual-factor portfolios, the slope coefficient 
t-statistics all indicate large statistical significance, 
and the R2 for the regression in Panel A of Table 6 is 
0.507.

Panel B of Table 6 reports results for a regression of 
the final risk-managed portfolio active returns on the 
pure-factor active returns shown in Table 1. Thus, 
the 67 bp alpha is related to the improvement in 
information ratios between the portfolio in the final 

column of Table 5 and the mix of pure factors in the 
prior column. Based on the reported standard errors, 
the slope coefficients in Panel B of Table 6 are even 
more statistically significant than in Panel A, and the 
regression R2 increases from 0.507 to 0.771.

Subperiod Analysis and Factor 
IR Parameters
The exposures of the risk-managed multifactor 
portfolio reported in the final column of Table 5 
change over time according to the estimated risk of 
each pure factor, as shown in Figure 4. For example, 
all five factor exposures dipped to about 0.25 at the 
turn of the century because the estimated active 
risks from prior 60-day returns were high at the time. 
This conclusion is verified by the realized 36-month 

Table 6. �Full-Sample Regressions of Risk-Managed Portfolio Returns on Factor Returns

 Alpha Value Momentum Small Size Low Beta Profitability

A. Primary-factor returns

Coefficient (%) 2.32 0.510 0.320 0.348 0.211 0.512

t-Statistic 5.1 12.4 13.4 10.0 8.2 12.9

B. Pure-factor returns

Coefficient (%) 0.67 0.691 0.422 0.415 0.394 0.583

t-Statistic 2.1 24.2 23.0 17.0 23.1 20.5

Figure 4. Risk-
Managed Factor 
Exposures over Time, 
1966–2019 
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rolling risks shown in Figure 2. The exposure does 
not vary over time or across factors on the basis 
of differences in the forecasted information ratios, 
however, in the five-factor version of Equation 1. 
In fact, based on a comparison of each factor IR with 
the square root of the sum of the five IR parameters 
squared, the formula-driven exposure to each factor 
without changes in risk is 0.447:

Exposurek
kIR

IR IR IR IR IR
=

+ + + +1
2

2
2

3
2

4
2

5
2
. 	 (5)

Equation 5 follows from Equation 1 with the risk 
terms removed and with five, rather than two, 
factors. The constant 0.447 exposure is driven by 
the fact that there are five factors—no matter what 
individual-factor IR parameters are used, as long 
as they are equal. The approach here is similar to 
the risk-parity work done by Asness, Frazzini, and 
Pedersen (2012), which links risk estimates to asset 
class weights in a portfolio, in contrast to our linking 
of individual security weights to equity factor risk.

Table 7 reports results for three equal 18-year 
(216-month) subperiods, in order to examine the 
changes in pure-factor performance over time. 
Table 7 also illustrates how investor beliefs about 
factor selection and performance affect multifactor 
portfolio construction. 

We focus on information ratios, so we report only 
those, like the bottom row of Table 1, consistent with 
the visual impressions in the risk-adjusted cumulative 

performance shown in Figure 1. Several notable 
changes occurred in performance over time, as was 
shown in Figure 1—a decline in IR for the value factor 
in the last subperiod, a decline in the momentum 
factor in each subperiod, and the almost zero IR for 
the small-size factor in the middle period. In fact, the 
small-size IR of 0.236 in the last period masks the 
decline in performance in the previous subperiod 
that is shown in Figure 1.

In contrast to the pattern for the small-size factor, 
the realized information ratios of the low-beta factor, 
which had an even lower realized market beta of 
about 0.75 in recent periods, has been fairly stable. 
The profitability factor, with a realized information 
ratio of 0.689, was the clear winner in the last subpe-
riod. Table 7 also reports the risk-managed informa-
tion ratios of each factor. Notably, risk management 
added to the performance of the value factor in the 
first subperiod. The value IR increases from 0.675 to 
0.743, which is consistent with the fact that the value 
factor’s riskiness was unstable, as shown in Figure 3, 
as a result of constant exposure in those early years.

Optimally combining factors on the basis of their rel-
ative information ratios in Equation 1 was described 
previously as a possible fourth source of added 
value, but using different IR parameters for individual 
factors in Equation 1 presents the investor with 
the challenge of how to form expectations about 
the future. The approach might also have ex post 
biases, as did the selection and definition of the (now 
popular) five factors in this study starting in 1966. 
To illustrate and measure the potential added value, 

Table 7. �Pure-Factor Return Statistics by Subperiod

Measure

Active Return

Value Momentum Small Size Low Beta Profitability

A. 1966–1983

IR 0.675 1.010 0.364 0.537 0.443

Risk-managed IR 0.743 1.176 0.274 0.742 0.444

B. 1984–2001

IR 0.848 0.537 –0.001 0.502 0.453

Risk-managed IR 0.548 0.809 –0.129 0.568 0.520

C. 2002–2019

IR 0.239 0.266 0.236 0.468 0.689

Risk-managed IR 0.277 0.362 0.217 0.472 0.290
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however, we examined several nonequal pure-factor 
mixes. For example, when the full-sample ex post IR 
numbers from the bottom of Table 1 were used in a 
five-factor version of Equation 1, an obvious ex post 
bias, the multifactor portfolio realized IR increased 
from 1.122 to 1.186 and the risk-managed, or final, 
portfolio IR increased from 1.200 to 1.231.

When the small-size factor was given no weight, by 
assigning it an information ratio of zero, the multifac-
tor portfolio IR increased from 1.122 to 1.151 and 
the risk-managed portfolio IR increased from 1.200 
to 1.229. When the small-size and value factors were 
both eliminated, as might be done in the future on 
the basis of contemporaneous investor perspectives, 
the full-sample multifactor portfolio IR declined 
from 1.122 to 0.916 because three factors do not 
provide as much factor diversification as five pro-
vide. Alternatively, the increase in value added from 
dynamic risk management in the three-factor case 
would be measured by comparing the 0.916 number 
in what would be the third column of Table 5 with 
a 1.070 number in the fourth column, because risk 
management historically did not add value over the 
full sample period to the small-size or value factors. 
Using the Treynor–Black (1973) rule, the incremental 
value added by dynamic risk management at the 
3% target level for the three-factor case would be 
(1.0702 – 0.9162)1/2 = 0.553, substantially larger than 
the 0.426 number reported previously for an equal 
mix of five pure factors. 

In summary, the ability to choose different commit-
ments to the factors by choosing different IR param-
eters for Equation 1, rather than choosing an implicit 
equal mix, could significantly improve multifactor 
portfolio construction going forward, but represents 
ex post biases in the empirical backtest.

Implementation and Turnover
The pure-factor portfolios in Table 1 and the com-
bined multifactor optimal portfolios in Table 5 are 
directly investable, as opposed to the long–short, 
or leveraged, portfolios from quintile sorts often 
used in academic studies of factor returns. The 
security weights for large-scale (e.g., 1,000-stock) 
factor-based optimal portfolios are determined by an 
intuitive closed-form formula in Equation 1. Portfolio 
weights can be calculated in a spreadsheet without 
the black-box effects associated with numerical 
optimizers and constraints. The optimal portfolio is 
anchored to the benchmark, rather than the implicit 
anchoring to an equal-weighted portfolio in other 
mean-variance-optimal solutions. With the addi-
tion of a user-specified level of active risk (e.g., 3%), 
the solution is, by nature, long only or close to long 
only without a constraint. The investor has com-
plete transparency on how each security weight 
depends on

	• the benchmark weight for that security, wM,i, 
at the beginning of the period,

	• the k = 1 to K pure-factor portfolio weights, 
Δwk,i, calculated from the security exposures to 
the factors using multivariate regression math-
ematics, and

	• mean–variance-optimal factor allocations, IRk/σk, 
based on the assumed IR and risk of each factor.

To emphasize the practicality of factor investing 
and the multifactor portfolio construction in the 
backtests of this study, we examine a year 2020 
optimal portfolio using specific parameter choices 
and then report security weights for the largest 20 
out of 1,000 US stocks. Table 8 shows the input 

Table 8. Optimal Multifactor Portfolio Parameters

Factor

Active Risk: 3.00% Low-Beta Correlation with Market: –0.600

IR Risk Return Actual Risk Actual Return Optimal Exposure

Market 0.40 15.00% 6.00%   1.000

Value 0.20 2.50 0.50   0.300

Momentum 0.30 5.00 1.50   0.225

Small size 0.10 3.00 0.30 0.125

Low beta 0.50 4.00 2.00 5.00% 0.80% 0.469

Profitability 0.50 4.00 2.00   0.469

Portfolio 0.80      
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parameters in the first two columns, including the 
user-supplied target of 3.00% portfolio active risk, 
and then the resulting expected returns and optimal 
factor exposures. We chose different information 
ratios for the various factors, in contrast to the 
equal IRs across factors in the backtest, to illustrate 
the calculations. For example, the investor in this 
example has assigned an ex ante IR of 0.20 to the 
value factor, with active risk of 2.50%, and a higher 
ex ante IR for the momentum factor, 0.30, with active 
risk of 5.00%.

As described in Appendix A (see Equation A12 and 
Equation A13), the assigned information ratio of 0.50 
for the low-beta factor in Table 8 is based on adjusted 
active-risk and return numbers and an assumed cor-
relation between the active low-beta factor return 
and the market return of –0.600. Table 8 shows that 
the actual active risk of the low-beta factor is 4.00/
(1 – 0.6002)1/2 = 5.00% and the actual active return 
is just 2.00 – 0.60 × (5.0/15.0) × 6.0 = 0.80%.

The IR for the optimal portfolio, the last row of 
Table 8, is exactly 0.80, calculated as the square 
root of the sum of the five factor IRs squared. The 
user-supplied active-risk parameter of 3.00% and the 
portfolio IR of 0.80 are then used to calculate the 
optimal factor exposures, as specified by the five-
factor version of Equation 1. For example, the calcu-
lation of the optimal exposure to the value factor is 
(3.00/0.80) × (0.20/2.50) = 0.300, and the optimal 
exposure to the momentum factor is (3.00/0.80) × 
(0.30/5.00) = 0.225.

To illustrate how investor expectations in Table 8 
translate into the portfolio weights of individual 
securities, we next describe exposure data for 1,000 
stocks in early 2020. Table 9 reports the bench-
mark (i.e., market portfolio) weight, the five active 
weights, and the total managed portfolio weight for 
the largest 20 (sorted by declining market weight) 
stocks in the optimal portfolio. The market weight 
and active weights in each row of Table 9 sum 
to the total portfolio weight in the final column, 
where each factor’s active weight is the optimal 
exposure calculation from Table 8 times the pure-
factor active weight in the five-factor version of 
Equation 4. The weights shown in Table 9 cannot be 
replicated without the 1,000-by-6 exposure matrix 
designated B in Appendix A, too large a table for 
this article.

As an example, consider the portfolio weight on 
Facebook (ticker FB) of 2.16% in Table 9. The total 
portfolio weight is the market weight of 1.70% plus 

the sum of the active tilts. Most of the active tilt 
in favor of FB is from exposure to the profitability 
factor, although this effect is offset by the tilt away 
from FB on the basis of its negative exposure to 
the low-beta factor. Ironically, the biggest negative 
total portfolio weight among the largest 20 stocks in 
Table 9 is the –1.00% for Berkshire Hathaway (BRK), 
with negative tilts from all five factors. This negative 
total weight indicates the investor should sell BRK 
short in the optimal portfolio, although as indicated 
in Table 10, the total short weight for all stocks 
is only 7.7% (i.e., effectively a “108/8” long–short 
portfolio).

Table 10 reports the expected return and risk for 
the optimal portfolio described in Table 9 based on 
basic portfolio calculations and all 1,000 security 
weights. Also shown is the performance of a strictly 
long portfolio created by setting the few negative 
security weights to zero and resizing the rest to sum 
to 100%. The expected annual alpha of the optimal 
portfolio is 240 bps, and by design, the ex ante active 
risk is exactly 300 bps, giving an information ratio of 
240/300 = 0.800. This result confirms the calculation 
from the underlying portfolio construction param-
eters in Table 8. The optimal portfolio’s Sharpe ratio, 
which does not account for the ex ante market beta 
of 0.906, is 0.563, compared with the benchmark 
Sharpe ratio of 0.400.

The third column in Table 10 shows the expected 
return and risk of a strictly long-only portfolio based 
on the simple heuristic of setting the weights of 
the few short-sell stocks to zero and resizing the 
rest to 100%. Because this portfolio is no longer 
strictly optimal, the expected information ratio drops 
slightly, from 0.800 to 0.794. The result is an ex ante 
transfer coefficient (TC) of 0.794/0.800 = 0.992, 
suggesting that this approach has little impact on 
performance at the 3% target active-risk level.8 The 
long-only portfolio has materially lower risk and mar-
ket beta than the benchmark, however, so in the final 
column of Table 10, we report the performance of a 
levered portfolio with a market beta of exactly 1.0. 
The leverage factor based on the ex ante market beta 
is 1/0.927 = 1.08, meaning 8% of the notional value 
of the portfolio is borrowed at the risk-free rate and 
used to proportionally increase the position sizes of 
all the positive-weight securities. The portfolio alpha 
of 195 bps was calculated directly from expected 
returns of the managed and market portfolios of, 
respectively, 7.95% and 6.00%. Note that leverage 
does not alter the long-only Sharpe ratio of 0.523 or 
the underlying IR of 0.794.
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Table 9. Optimal Portfolio Weights of the Largest 20 Market Cap Stocks, 2020

Market Weight

Optimal Exposure

Total Weight

0.300 0.225 0.125 0.469 0.469

Active Weights

Value Moment Small Size Low Beta Profit

AAPL 4.49% 0.27% 1.57% –0.87% –0.25% –0.46% 4.75%

MSFT 4.14 –0.30 0.59 –0.82 0.15 –0.42 3.35 

AMZN 3.15 –1.10 –0.95 –0.58 –2.56 1.92 –0.11 

FB 1.70 0.13 0.26 –0.18 –0.49 0.74 2.16 

GOOG 1.58 0.35 –0.08 –0.19 0.06 0.23 1.94 

JPM 1.50 0.34 0.10 –0.22 –0.23 –0.88 0.61 

GOOGL 1.38 0.43 –0.07 –0.15 0.03 0.24 1.85 

JNJ 1.32 –0.08 –0.31 –0.15 0.19 0.25 1.22 

WMT 1.16 –0.13 –0.03 –0.08 0.52 0.86 2.31 

V 1.11 –0.06 0.09 –0.11 0.20 –0.32 0.91 

BAC 1.09 0.35 0.03 –0.14 –0.63 –0.63 0.07 

BRK 1.08 –0.49 –0.33 –0.16 –0.15 –0.94 –1.00 

PG 1.07 –0.24 0.08 –0.09 0.76 –0.05 1.52 

MA 1.03 –0.16 0.21 –0.08 0.16 0.01 1.17 

XOM 1.02 0.12 –0.30 –0.13 –0.32 –0.42 –0.03 

T 0.98 0.24 0.14 –0.08 0.42 –0.30 1.40 

UNH 0.96 –0.02 –0.17 –0.09 0.20 0.09 0.97 

INTC 0.90 0.37 0.03 –0.05 0.40 0.32 1.96 

VZ 0.87 0.15 –0.10 –0.07 0.55 0.01 1.42 

HD 0.82 0.15 –0.01 –0.01 0.12 1.12 2.18

Table 10. Expected Optimal Multifactor Portfolio Characteristics, 2020

 Market Optimal Long Only Levered Long

Expected return (%) 6.00 7.84 7.37 7.95

Total risk (%) 15.00 13.92 14.08 15.20

Sharpe ratio 0.400 0.563 0.523 0.523

Market beta 1.000 0.906 0.927 1.000

Market alpha (%) 0.00 2.40 1.81 1.95

Active risk (%)  3.00 2.28 2.46

IR  0.800 0.794 0.794

Transfer coefficient 1.000 0.992 0.992

Total long (%) 107.7 100.0 107.9
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The illustrative optimal and long-only portfolios in 
Table 10 were constructed under the assumption 
of an active-risk target of 3%, the same parameter 
used in the empirical backtests in this study. Figure 5 
explores the sensitivity of the portfolio’s amount 
of shorting and TC presented in Table 10 to various 
levels of active risk. For example, at the 3% active-
risk level, the optimal portfolio has shorting equal 
to –7.7% of the portfolio notional value, shown at 
that risk level in Figure 5. When the short sells are 
removed, the heuristic long-only portfolio has a TC 
of 0.992, as reported in Table 10, shown at that risk 
level in Figure 5.

At lower levels of active risk, shorting and the 
information ratio loss as measured by the TC reduc-
tion are essentially zero, but as the active-risk target 
parameter increases to 6% and 7%, shorting goes 
up to more than 30% of the notional value of the 
portfolio, producing, essentially, a 130/30 long–short 
portfolio. Even at these relatively high levels of active 
risk, the distortion in optimal exposures from using 
the long-only portfolio construction heuristic is rela-
tively minor; the TC is still above 0.98. We obtained 
similar results for most other choices for the factor 
information ratios in Table 10. The exception was 
that high loadings on the small-size factor from using 
a larger ex ante IR resulted in a materially lower TC.

An additional consideration in the implementation 
of multifactor portfolios is security turnover, which 
we measured by monthly percentage changes in 

security weights. Specifically, we calculated turn-
over as the sum of the absolute differences in the 
rebalance weight and the weight of each security 
in the prior month, adjusted for the return on that 
security during the month, divided by two. For 
reference purposes, Table 11 reports the average 
monthly turnover over the full sample period for 
the market portfolio, the five pure-factor portfo-
lios, and the equal mix of pure factors reported in 
the third column of Table 5. Table 11 also reports 
turnover on the strictly long-only implementation 
of the equal mix of the pure-factor portfolio and the 

Figure 5. Optimal 
Portfolio Shorting and 
Long-Only Portfolio 
Transfer Coefficients
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Table 11. �Average Monthly Portfolio 
Turnover, 1966–2019

Portfolio Turnover

Market (largest 1,000 stocks) 0.8%

Pure value 9.9

Pure momentum 19.6

Pure small size 5.7

Pure low beta 11.0

Pure profitability 5.4

Equal mix of pure factors 6.3

Long-only equal mix of pure factors 5.9

Risk-managed optimal portfolio 22.3
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dynamic risk-managed portfolio in the final column 
of Table 5. The turnover numbers may be higher than 
what would be experienced in practice based on a 
transaction-cost model as part of the rebalancing 
process, so these data should be viewed on a relative 
basis by factor.

The market portfolio, based on changes in the consti-
tution of the index and the reinvestment of individual 
stock dividends, has a nonzero monthly turnover; 
the annual rate would be 9.6%. The value portfolio 
turnover tends to accumulate in April of each year 
because of the use of calendar-year financial state-
ments with an assumed four-month reporting lag to 
ensure the information was available to investors in 
real time. The momentum portfolio turnover is the 
highest of the five factors in this study because the 
exposure (the prior 11-month return, lagged 1 month) 
changes faster over time than the other factors. The 
small-size portfolio turnover is relatively low because 
these factor portfolios are anchored to the cap-
weighted benchmark. 

The low-beta portfolio turnover is high compared 
with that of the other factor portfolios, except for 
momentum, because of constant changes in the roll-
ing 36-month market beta for each stock. The pure 
profitability portfolio has relatively low turnover. 
As with the value portfolio, turnover in the profit-
ability portfolio occurs mostly in the month of April 
when the new calendar-year financial statements 
are incorporated into the signal. Turnover for the 
profitability-based portfolio is even lower than for 
the value portfolio, which also has month-to-month 
changes in the earnings yield signal (i.e., inverse 
trailing P/E) because of changes in individual stock 
prices. The turnover results for individual-factor 
portfolios are generally consistent with the findings 
of Li and Shim (2019).

Table 11 shows that the multifactor portfolio with an 
equal mix of pure factors (i.e., constant exposure of 
0.200 over time to each factor) has monthly turnover 
(6.3%) that is much lower than a simple average of 
the five factors. This illustrates a key advantage in 
our portfolio construction process that allows for 
offsets between factors in total security weights. 
For example, a security that has increased weight 
in the optimal multifactor portfolio because of an 
increase in the momentum signal might be offset in 
that same month because of a decrease in the low-
beta signal. The strictly long-only application of the 
equal-mix portfolio, based on the simple reweighting 
heuristic, has slightly lower turnover than that of the 

multifactor portfolio with an equal mix of pure fac-
tors because some of the rare short-sell positions in 
the portfolio were set to zero in consecutive months.

The key statistic from Table 11 for active-risk 
management of equity market factors is reported 
in the last row: the 22.3% turnover of the dynamic 
portfolio. The final portfolio’s factor exposures, as 
plotted in Figure 4, change from month to month on 
the basis of changes in predicted factor risks, neces-
sitating adjustments to the weights of all the securi-
ties that have a large exposure to any given factor. 
At the 3% active-risk target used as the base case in 
this study, turnover is about three times higher than 
for static multifactor portfolios; it would be naturally 
lower or higher at different levels of active risk.

Based on the multifactor portfolio implementation 
study of Li and Shim (2019), we applied a simple 
method of estimating transaction costs that mini-
mized trades to about 10% of annualized portfolio 
turnover. For example, a rough transaction-cost 
calculation for implementation of the equal-mix 
pure-factor portfolio in Table 11 is 10% × 12 × 
6.3% = 8 bps per year, and a rough transaction-cost 
calculation for the dynamic risk-managed multifactor 
portfolio is 10% × 12% × 22.3% = 27 bps. Rounding 
up, we infer reductions of approximately 10 bps in 
the gross annualized returns for our static portfolios 
and approximately 30 bps for dynamic portfolios. 
In other words, the gross alpha of 67 bps from the 
regression analysis in Table 6 that is specific to risk 
management would be, after costs, about 47 bps.

Conclusion
So, what have we learned? Intertemporal portfolio 
risk management based on the construction of an 
optimal multifactor portfolio has worked histori-
cally and carried a performance bonus. For example, 
month-to-month adjustments to the S&P 500 
exposure in an equity/cash portfolio using the prior 
month-end VIX quote not only smooth out the level 
of market risk over time but also produce the bonus 
of a higher realized Sharpe ratio. Similar procedures 
for multifactor optimal portfolios, with the use of 
factor-specific prior 60-day return standard devia-
tions, smooth out the level of active risk over time 
and enhance performance as measured by real-
ized information ratios. We find that the combined 
impact of risk management on five well-known active 
factors is roughly equivalent to the addition of a new 
independent factor.
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The empirical tests in this article illustrate several 
recent methodological innovations, including the 
construction of pure-factor portfolios from cap-
weighted Fama–MacBeth (1973) cross-sectional 
regression mathematics. In addition to using pure-
factor portfolios, we develop a formula for the 
construction of multifactor optimal portfolios that is 
anchored to the market benchmark, rather than the 
implicit anchoring to an equal-weighted portfolio that 
comes from the use of arithmetically constructed 
scores. We include the ability for investors to specify 
the level of active risk, rather than using the optimal 
level that results from maximizing the managed 
portfolio’s Sharpe ratio. With one formula, investors 
can construct risk-controlled multifactor portfolios in 
a spreadsheet with complete transparency as to the 
sources of realized performance.

The examination of five currently popular factors, 
each over a 54-year time frame, is facilitated by the 
factors being pure and adjusted for both benchmark 
beta and active risk. Value and small-size active 
returns have been flat or declining in the US equity 
market for so long that investors may question 
whether they are still beneficial. The low-beta factor 
in its leveraged form has been a relatively steady 
performer, and the profitability factor has been con-
sistently positive. We use simple analytic formulas 
to construct the factor portfolios, so the analysis of 
these five factors can be readily replicated for other 
potential factors. Because closed-form formulas are 
used to create the optimal multifactor portfolio, the 
empirical research can easily be extended to other 
country markets or the global equity market.

Appendix A. Optimal Multifactor 
Portfolios
The factor-based portfolio that maximizes the Sharpe 
ratio was identified in Clarke et al. (2016) as

w B B B V UP
P

PSR
= ′











− −( ) ,1 1 σ
 	 (A1)

where 

B is an exposure matrix of N securities to 
1 + K factors

V is a factor-return covariance matrix

U is a vector of expected factor returns

The final scalar term at the end of Equation A1, 
given as portfolio risk, sP, divided by the portfolio 
Sharpe ratio, SRP, ensures that the individual security 
weights sum to 100%. The solution in that article 
followed from the standard mean–variance objective 
function, with expected security returns given by the 
matrix B U, and the security covariance matrix given 
by B V B′. A key distinction with respect to other 
mean–variance solutions is that Equation A1 is factor 
based, meaning the objective function does not have 
security-specific alpha parameters and idiosyncratic 
risk is ignored. The expected alpha of any given 
security is determined solely by the exposure of 
that security to the underlying factors. Idiosyncratic 
risk is left out of the objective function under the 
assumption that the securities will be part of well-
diversified factor portfolios.

Another distinction with respect to other factor-
based portfolio solutions is that the first factor in 
Equation A1 is the benchmark (e.g., cap-weighted 
market) portfolio and the remaining K factors are 
defined to be benchmark relative. Specifically, the 
first column of the exposure matrix B is filled with 1s, 
and each of the next K columns have mean-zero unit-
variance scores for the factor exposures. Similarly, 
the first element of U is the expected excess (of the 
risk-free rate) return on the benchmark portfolio, 
and the other K elements are the expected active 
(i.e., market differential) factor returns. Note that 
Equation A1 is not technically closed form because 
the scalar multiple at the end uses values that can be 
determined only after the fact. But given the struc-
ture of B, that adjustment can be calculated directly 
(i.e., without reference to the final portfolio solution) 
as 1.0 over the first element of V–1 U, which is hereaf-
ter referred to as d for “divisor.” For example, with 
uncorrelated factors we have d = SRM/σM, the market 
(benchmark) Sharpe ratio divided by market risk.

The portfolio solution in Equation A1 is not unique, 
in that alternative sets of security weights also 
maximize the factor-based Sharpe ratio. Lack of 
uniqueness is a problem for numerical searches, 
commonly used in portfolio optimizations involving 
a large security set, although not in Equation A1 
because security weights are calculated directly 
from the underlying parameters. For example, the 
cap-weighted version of exposure matrix B used in 
this article also results in an optimal portfolio, and it 
has the virtue of having larger active (deviation-from-
benchmark) weights associated with larger stocks, 
which reduces turnover and transaction costs in 
rebalancing. In addition, the optimal portfolio that 
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uses benchmark-weighted exposures is closer to 
being long only—in contrast to Equation A1, which 
uses arithmetic scores and thus anchors the solution 
to an equal-weighted portfolio.

Benchmark Anchoring
To anchor the optimal portfolio to the market bench-
mark, the scores in each column of exposure matrix B 
are adjusted to have benchmark-weighted means of 
zero and benchmark-weighted variances of 1.0. The 
matrix form wM ◦ B uses the dot product function 
so that each element of B is multiplied by the cor-
responding row’s element in the N-by-1 benchmark 
weight vector wM. The resulting 1 + K by 1 + K expo-
sure correlation matrix ′( )B w BM   is symmetrical, 
with 1s down the diagonal and 0s in the first column 
and the first row. The benchmark-anchored version 
of Equation A1 is thus

w w B B w B V UP M M d= ( ) ′( ) 
− −

 

1 1 / . 	 (A2)

Proof of factor-based optimality follows from the 
fact that the portfolio expected return, w BUP′ ,  
and portfolio variance, w B V B wP P′ ′ , eliminate the 
security-specific exposures, leaving only the fac-
tor return matrices in the portfolio Sharpe ratio 
of ′ −U V U1 .

The first part of Equation A2,

w w B B w B
1

F M M= ( ) ′( )  

−−
, 	 (A3)

gives the pure portfolio weights of Clarke et al. 
(2017), where the first column of wF contains the 
benchmark weights and each of the next K columns 
contains the active weights of portfolios that have an 
exposure of 1 to the factor of interest and an expo-
sure of 0 to each of the other nonmarket factors.

The construction of pure-factor portfolios fol-
lows from cap-weighted Fama–MacBeth (1973) 
cross-sectional regressions of security returns on 
the cap-weighted scores in matrix B. The use of 
Fama–MacBeth regression mathematics to calculate 
factor-replicating portfolio returns—and implicitly the 
weights within such portfolios—has a long tradition in 
academic research. The methodology of benchmark 
versus equal weighting of the observations, however, 
is relatively recent. Defining factor portfolios through 
regression analysis avoids the use of portfolio 
construction heuristics such as quintile and double 

sorting, arbitrarily chosen delimiters that exclude 
securities with lower exposure, equal weighting of 
securities included in each factor portfolio, and, most 
importantly, the secondary or unintended factor 
exposures of such portfolios.

Optimal Factor Allocation
The second part of Equation A2 is a 1 + K vector of 
Sharpe ratio–maximizing allocations to the factors:

A = V–1 U/d. 	 (A4)

Equation A4 specifies how the benchmark portfolio 
and the active portion of the various pure-factor 
portfolios are combined into the optimal portfolio. 
Specifically, the first element of vector A is, by defini-
tion, 1.0, and the other K elements are scalars that 
determine how the various sets of active weights 
in Equation A3 are optimally added to the bench-
mark weights. The combination of factor portfolios 
is determined by mean–variance optimization and 
allows the investor to choose more exposure to some 
active factors than to others on the basis of either 
higher expected information ratios or lower expected 
factor risk.

To provide some intuition for vector A, note that 
the K active-factor active returns can be assumed to 
be uncorrelated because factor correspondence is 
already modeled by the correlation of factor expo-
sures. In addition, the K active-factor returns can 
be assumed to be uncorrelated with the benchmark 
return, except for the low-beta factor, for which the 
definition of security exposures is specifically based 
on the correlation of the past security returns with the 
market return. Under the assumption of uncorrelated 
active-factor returns, the square covariance matrix V 
is diagonal (i.e., off-diagonal elements are zero), and 
the optimal factor allocation elements are simply

a
IR
SRk

k k

M M
=

/
/

,
σ

σ
	 (A5)

where IRk/σk is the expected information ratio over 
active risk of factor k and SRM is the market’s Sharpe 
ratio. Intuitively, the mean–variance-optimal active 
allocation to each factor is the active mean–variance 
ratio for that factor over the mean–variance ratio of 
the market.

Taken together, the pure-factor portfolios in matrix 
wF of Equation A3 and the optimal factor exposures 
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in vector A of Equation A4, allow for a closed-form 
calculation of optimal security weights for large-set 
portfolios. The individual security weights, sub-
scripted by i, are written without matrix notation as

w w a w a w a wP i M i i i K K i, , , , ,... ,= + + + +1 1 2 2∆ ∆ ∆ 	 (A6)

where the ak parameters are constants across securi-
ties. Equation A6 for any given security starts with 
the benchmark weight, to which pure active-factor 
portfolio weights are added after being multiplied by 
the optimal allocation to each factor.

Controlled Active Risk
The separation of optimal factor allocations 
(Equation A4) from pure-factor portfolio construc-
tion (Equation A3) allows for a constrained active-risk 
portfolio solution. Consider the simple case of one 
nonmarket factor with an information ratio of 0.20, 
based on an expected active return of 1.0% divided 
by active risk of 5.0%. Assume that the market 
portfolio’s Sharpe ratio is 0.4, based on an expected 
excess (of the risk-free rate) return of 6.0% over 
market risk of 15.0%. According to the Treynor–Black 
(1973) rule, SR SR IRP M= +( ) /2 2 1 2, the Sharpe ratio of 
the optimal portfolio is (0.402 + 0.202)1/2 = 0.45, 
and the optimal factor exposure in Equation A5 is 
(0.20/0.05)/(0.40/0.15) = 1.50. This relatively high 
level of exposure is based on the investor taking the 
optimal amount of active risk, defined in Clarke et al. 
(2016) as

σ β σA
M

P M
IR
SR

= .	 (A7)

The optimal level of active portfolio risk from 
Equation A7 associated with a 1.50 exposure to the 
nonmarket factor is equal to (0.20/0.40) × 1.00 × 
0.15 = 7.50%, too high for many investors. Note that 
the ex ante portfolio beta in this example is 1.0 if the 
single nonmarket factor is not the low-beta factor.

Investors can back off from the optimal level of 
factor exposure—and thus optimal active risk—but at 
the sacrifice of the managed portfolio’s Sharpe ratio. 
Suppose the investor specifies the active portfolio 
risk, defined by

σ σ β σA P P M= −( )2 2 2 1 2/
, 	 (A8)

to be 3.0%. The ratio of the investor-specified 3.0% 
active risk to the 7.5% optimal level of active risk, 
3.0/7.5 = 0.4, times the optimal factor exposure of 
1.50 translates into a more modest factor exposure 
of 0.40 × 1.50 = 0.60. This level of exposure allows 
for a portfolio Sharpe ratio of only 0.43, not the 
unconstrained value of 0.45, because the exposure 
to the factor is not optimally balanced with the 
market factor.

Returning to K (more than one) nonmarket factors, 
the definition of total portfolio risk from matrix 
algebra is σP d= ′ −U V U1 / , and the relationship of 
the portfolio beta to the benchmark is defined by 
β σP M MSR d= / . Plugging these results into the defini-
tion of active risk in Equation A8 gives

σA
MSR

d
=

′ −−U V U1 2
. 	 (A9)

Under the maintained assumption that the k = 1 to 
K active-factor returns are uncorrelated with the 
market factor, we have d SRM M= / ,σ  so the portfolio 
beta is 1.0. The portfolio active risk in Equation A9 
under this assumption is σ σA M P MIR SR= / , where the 
portfolio or combined information ratio is

IR IRP k
k

K
=

=
∑ 2

1
. 	 (A10)

To set the active risk of the portfolio to a user-spec-
ified level, σC, we divide each of the optimal factor 
allocations, ak, by the scalar value in Equation A10 
and insert the user-specified active-risk parameter to 
derive the nonmatrix algebra solution:

w w
IR

IR
w

IR
w

IR
wP i M i

C

P
i i

k

k
K i, , , , ,...= + + + +











σ

σ σ σ
1

1
1

2

2
2∆ ∆ ∆  ,  	

�
(A11)

which is equivalent to Equation 1 in the body of this 
article for two nonmarket factors.

Low-Beta Factor Allocation
For the low-beta factor, the assumed structure 
of the factor covariance matrix, V, is nondiagonal 
because one active factor has an expected non-
zero correlation parameter of ρβ with the market 
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factor. Note that the ρβ parameter will typically be 
negative because it describes the correlation of the 
returns with the active (market differential) low-beta 
(below 1.0) factor with the market return. Solving the 
matrix algebra for the inverse of the factor–return 
covariance matrix shows that the optimal allocation 
to the low-beta factor, in balance with other active 
factors, should correspond to a modified information 
ratio, IRβ = αβ/σβ, in Equation A11 as opposed to the 
generic IR for factor k of IRk = αk/σk. Going through 
the matrix algebra derivations for the optimal mul-
tifactor portfolio, where factor covariance matrix V 
has a single nonzero off-diagonal parameter, gives 
the modified expected market differential return as

µ µ ρ
σ

σ
µβ β= −k

k

M
M 	 (A12)

and the modified ex ante risk as

σ σ ρβ β= −k 1 2 , 	 (A13)

where μk and σk are the raw low-beta factor param-
eters. Note that with ρβ = 0, Equations A12 and A13 
revert back to the unadjusted, or generic, factor 
equations.

Equation A12 shows how an allocation to the low-
beta factor can add value, even if the actual expected 
active return is zero. According to the classic CAPM, 
the expected active return to the low-beta factor 
should be μk = ρβ(σk/σM) μM. As a numerical example, 
suppose that ρβ is –0.6, the active-factor risk is 5%, 
and the market risk is 15%. These data translate 
into a total beta for the low-beta factor portfolio of 
1 – 0.6 × (5/15) = 0.8, which is close to the long-term 
value seen empirically over time. In other words, if 
the expected excess market return is 6.0%, the active 
return to the low-beta factor according to the classic 
CAPM should be –0.6 × (5/15) × 6.0 = –1.2%. In con-
trast, the observed active return to low-beta factor 
portfolios over time has been slightly positive.

Pure-Factor Portfolios
Fama–MacBeth (1973) cross-sectional regression 
math defines the pure-factor portfolio weights in 
Equation A3. For the market plus one active factor, 
designated Factor 1, the weighted cross-sectional 
regression is univariate and the factor portfolio 
weight for each security is wk,i = wM,k(1 + bk,i). The 
factor portfolio weights start with the benchmark 

weight and then proportionally scale up or down 
(rather than arithmetically deviating up or down) 
depending on the exposure of each security to the 
factor of interest. The active weight on the security, 
Δwk,i = wk,i – wM,i, is a simple multiplicative product 
of the benchmark weight and the standardized factor 
exposure of the security, as given in Equation 2 of 
the body of the article. For two nonmarket factors, 
Factor 1 and Factor 2, the individual securities’ active 
weights, derived from the math that underlies a mul-
tivariate Fama–MacBeth cross-sectional regression, 
are, respectively,
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and
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where ρ =
=
∑w b bM i
i

N

i i, , ,
1

1 2  is used in Equation 4 in the 

body of this article.

More complex expressions can be derived for three 
or more factors, but the investor would typically 
simply calculate active-factor weights from the 
matrix algebra in Equation A3 that describes the cap-
weighted Fama–MacBeth (1973) regression. In mul-
tifactor or combined portfolios, some active-factor 
weights for any given security are negative and 
some are positive and thus cancel each other out. 
In addition, given typical values for a user-specified 
active-risk parameter, σC, few securities have enough 
negative active weight on each of the factors to 
lead to a negative total weight or short selling. Thus, 
although the optimal multifactor portfolio solution 
in Equation A11 can in theory lead to short selling 
of some securities at given times, the formal imposi-
tion of a no-shorting constraint has little impact on 
portfolio construction or realized returns.
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Notes
1.	 “Most quantitative mutual funds are failing to beat their 

benchmarks as US stocks are on track for their best annual 
performance since 2013, according to research from Bank 
of America Corp. Large-cap quant funds lagged the Russell 
1000 index by an average 3.2 percentage points this year 
through November” (Idzelis 2019).

2.	 The Novy-Marx (2013) definition of profitability is revenue 
minus cost of goods sold, all divided by total assets—
(REVT – COGS)/AT—using Compustat account codes. For 
financial sector stocks—for example, commercial banks—
we subtracted customer deposits from total assets, so our 
definition of profitability is (REVT – COGS)/ 
(AT – DPTC). Deposits, which are technically a liability 
rather than an asset of a bank, represent a source of 
capital that is neither equity nor long-term debt.

3.	 Earning positive returns from the volatility premium 
requires positions in the derivatives market—for example, 
delta-neutral writing of at-the-money index put and call 
options—together with a long position in the market 
portfolio or, recently, derivative contracts known as 
“volatility swaps.”

4.	 We use the phrase “anchoring to the benchmark” to 
describe the impact of using scores with cross-sectional 
cap-weighted means of zero and variances of 1.0, as 
described in Clarke et al. (2016), in contrast to arithmetic 
mean-zero unit-variance cross-sectional scores. The 
benchmark-anchored pure factor returns used in this 
study are available at www.deepcreekm.com.

5.	 Daily factor returns in this study were calculated from 
beginning-of-month factor exposures and the total 
daily return to each security in CRSP. In other words, 
the factor portfolios are not rebalanced during the 
month, although such rebalancing does not materially 
change the results.

6.	 The Bollerslev (1986) GARCH(1, 1) model estimates for the 
daily pure-active-factor returns over the entire 54-year 
sample are similar to market returns, with highly significant 
ARCH and GARCH terms. Specifically, the ARCH param-
eter estimate for the excess market return was 0.088 
(t-statistic of 39.0), and the GARCH parameter estimate 
was 0.898 (t-statistic of 283.8). The ARCH and GARCH 
estimates for the active factor returns are as follows:

Factor ARCH GARCH

Value 0.084 0.902

Momentum 0.098 0.884

Small size 0.104 0.879

Low beta 0.095 0.887

Profitability 0.086 0.898

	 Similar to the market return, the active returns to all five 
factors have large and significant “theta” coefficients in the 
EGARCH (“E” for exponential) specification of Nelson and 
Cao (1992), indicating that negative returns have a larger 
impact on subsequent volatility than do positive returns.

7.	 Daily returns tend to be positively autocorrelated, so sample 
variance is less than it would be for more independent obser-
vations, such as monthly returns. This issue was first noted 
by Lo and MacKinlay (1988) in their “volatility ratio” tests.

8.	 The transfer coefficient, introduced in Clarke, de Silva, and 
Thorley (2002), has various interpretations, including the 
cross-sectional correlation coefficient between security 
positions that are constrained to be long only and those 
positions in an unconstrained optimization. In this context, 
the TC is defined by the quotient of the long-only portfolio 
IR and the optimal IR.
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