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• Realized capital gains are taxed 

• Gains are offset by Losses

• Example

1. Purchase 245 shares of SPY (an S&P 500 ETF) at a price of $600/share

2. Portfolio cost basis = 245 shares x $600/share = $147,000

3. Suppose SPY falls 8.33% to $550/share 

4. Now portfolio market value = 245 shares x $550/share = $134,750

5. Unrealized loss =market value – cost basis = -$12,250

6. Sell all SPY shares, realizing short-term capital loss = -$12,250

7. The loss offsets capital gains elsewhere in portfolio, cutting investor tax bill
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Capital Gain Taxes 101

• Investors have the right, but not the obligation, to sell assets held at a loss, resulting in valuable tax credits

Realized Gain 

or Loss

Capital Gains 

Tax (40.8%)

SPY -$12,250 -$4,998

Elsewhere $20,000 $8,160

Total Tax Due $3,162



 The put “hockey stick” shows how the exercise payoff changes with the underlying asset price
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Tax Loss Harvesting Benefit as Put Exercise Payoff

147000 159250134750122500110250

245 S&P 500 ETF Shares Market Value ($)

Put Strike Price 

K =$600/share

ETF Cost Basis

K =$600/share
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 For a perpetual American put on a non-dividend paying equity, the optimal policy is to 

exercise when the underlying stock price falls below

where 𝑟 and 𝜎 are the continuous time risk-free rate and volatility of the underlying stock 

price (see John Hull, Options, Futures and Other Derivatives)

 The key points are

 The optimal policy is loss-depth trigger-based

 There is a simple analytical formula for the trigger price

 The trigger price depends on the stock volatility

 When volatility goes up, the trigger price moves down (deeper trigger)

 When volatility goes down, the trigger price moves up (shallower trigger)

 As we will describe, the tax loss harvesting option is more exotic than this
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Optimal Option Exercise

𝑃∗ =
𝑟

𝑟 + 𝜎2/2
𝐾



 When buying and selling securities, a taxable investor must adhere to the 

IRS publication 550 wash sale rules to claim deductions for realized capital 

losses

 Once a security is sold at a loss, to claim a capital gains tax deduction, the 

investor must wait 30 days before buying it back.

 Israelov and Lu (2022) argue that the IRS wash-sale rule creates a barrier to 

re-investment such that investor should be selective about when to harvest 

a loss.

 They present a trigger-based loss harvesting policy based on loss-depth 

determined by stock volatility and supported by extensive Monte Carlo 

simulation.

 We extend this line of reasoning by applying stochastic process theory to 

prove that such a trigger-based policy is optimal for a stylized, continuous 

time model of tax loss harvesting.
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IRS Wash Sale Rule

“A wash sale occurs when you sell a security at a loss and 

within 30 days before or after the sale you buy substantially 

identical stock or securities.”
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The Stylized Model

– The ETF pays no dividends

– The ETF price exhibits geometric Brownian motion; e.g the price returns are continuous-time 

log normal of constant volatility and with mean log return of zero
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The Stylized Model – Set up

– We continuously monitor the price and sell when the unrealized losses hit a given trigger 

level, as a percentage of the cost basis

– We hold cash for 21 trading days (the “wash-sale period”), and then we fully re-invest in the 

ETF
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The Stylized Model – Set up

Example simulated portfolio history: ETF 30% ann. vol with 5% loss trigger

Days 

Since 

Inception

Share Price 

(Close)

Stock Daily 

Return 

(Close)

Portfolio 

Invested in 

Equities as 

of Prior 

Day Close

Portfolio 

Market 

Value 

(Close)

Portfolio 

Cost Basis 

(Close)

Portfolio 

Unrealized 

Losses 

(Close, Pre-

Trade)

Sell at 

Close Flag

Porfolio 

Single Day 

% Realized 

Losses 

(Close)

No-Buy 

Restriction 

for the Day

Buy at 

Close Flag

0 $1.0000 0.00% FALSE $1.0000 $1.0000 0.00% FALSE 0.00% FALSE FALSE

1 $1.0206 2.06% TRUE $1.0206 $1.0000 2.06% FALSE 0.00% FALSE FALSE

2 $1.0260 0.52% TRUE $1.0260 $1.0000 2.60% FALSE 0.00% FALSE FALSE

… … … … … … … … … … …

81 $0.9612 0.26% TRUE $0.9612 $1.0000 -3.88% FALSE 0.00% FALSE FALSE

82 $0.9242 -3.85% TRUE $0.9242 $0.9242 -7.58% TRUE -7.58% FALSE FALSE

83 $0.9046 -2.12% FALSE $0.9242 $0.9242 0.00% FALSE 0.00% TRUE FALSE

… … … … … … … … … … …

101 $0.8410 0.60% FALSE $0.9242 $0.9242 0.00% FALSE 0.00% TRUE FALSE

102 $0.8278 -1.57% FALSE $0.9242 $0.9242 0.00% FALSE 0.00% TRUE FALSE

103 $0.8506 2.75% FALSE $0.9242 $0.9242 0.00% FALSE 0.00% FALSE TRUE

104 $0.8607 1.19% TRUE $0.9352 $0.9242 1.19% FALSE 0.00% FALSE FALSE

105 $0.8932 3.77% TRUE $0.9705 $0.9242 5.01% FALSE 0.00% FALSE FALSE

106 $0.8664 -3.00% TRUE $0.9414 $0.9242 1.86% FALSE 0.00% FALSE FALSE

107 $0.8757 1.08% TRUE $0.9516 $0.9242 2.96% FALSE 0.00% FALSE FALSE



9

The Stylized Model

– Consider the distribution of simulated portfolio realized loss history (colorful stairs)

– Compute the expected value of losses at each time T (heavy black line)

– Convenient to work with log losses (e.g. log(1 −
5

100
) corresponds to a 5% loss)

– Stochastic process theory: There is an analytical formula the expected log losses!
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The Stylized Model

– Different triggers have different rates of expected loss accumulation
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The Stylized Model

– We find the trigger depth with the largest expected log losses using the analytical formula 

for expected log losses 
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The analytical formula
> Let 𝜎 be the volatility of the ETF log daily returns (e.g. stdev{log(1+r)}, where r represents the 

distribution of daily ETF price returns

> Let 𝜆 = log(1 + 𝐿) where the trigger level L is expressed on a decimalized basis as a 

percentage of the cost basis; e.g. L=-0.05 represents a 5% loss trigger

> Let z =
𝜆

𝜎
represent the trigger level expressed as standard deviations of ETF log daily returns

> The expected log losses at elapsed time time T are given by

where

𝐸 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 𝑇 = 𝜆 ⋅ ෍

𝑚=0

𝑀

෨ℎ𝑚 𝑇 ⋅ 𝑚

𝑀 = ceil(𝑇/21)

෨ℎ𝑚 𝑇 =

erf
𝑚 + 1 𝑧

2(𝑇 − 21𝑚)
− erf

𝑚𝑧

2(𝑇 − 21 𝑚 − 1 )
21𝑚 < 𝑇

1 − erf
𝑚𝑧

2(𝑇 − 21 𝑚 − 1 )
21 𝑚 − 1 < 𝑇 ≤ 21𝑚

0 𝑇 ≤ 21(𝑚 − 1)



> Predicted frequency of first hitting times versus 

results of 10,000 path Monte Carlo simulation; 

30% annualized vol, 5% loss trigger
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First hitting times
> The first hitting time distribution is a foundational formula in stochastic processes and answers 

the question:  What is the probability of hitting the trigger the first time between times 𝑇0 and 

𝑇1?

> Answer: ׬𝑇0
𝑇1 𝑓 𝑡 𝑑𝑡 where 𝑓 𝑡 =

𝑧

2𝜋
𝑡−3/2𝑒−

𝑧2

2𝑡

> This integral can be computed using u-substitution with 𝑢 = 𝑡−1/2 and the established error 

function erf 𝑥 =
2

𝜋
0׬
𝑥
𝑒−𝑥

2
𝑑𝑥

> The result is ׬𝑇0
𝑇1 𝑓 𝑡 𝑑𝑡 = 1 − erf

𝑧

2𝑇1
− 1 − erf

𝑧

2𝑇0
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Renewal Processes
> Regardless of whether the return generating process is log-normal or not, the CDF of the first 

hitting time is the probability of first hitting the trigger on or before elapsed time T

> 𝐹1 𝑇 = 0׬
𝑇
𝑓 𝑡 𝑑𝑡

> For our log-normal process,

> For a given sample path, consider the function that counts the number of trigger hits by 

elapsed time T, 𝑁(𝑇). 

> 𝔼(𝑁 𝑇 ) is the expected number of trigger hits at time T

> The probability of hitting the trigger precisely m times at time T, ℎ𝑛 𝑇 = 𝑃𝑟𝑜𝑏(𝑁 𝑇 = 𝑛)

> The expected log losses are then 𝜆 ⋅ 𝔼(𝑁 𝑇 ) = 𝜆 ⋅ σ𝑛=0
∞ 𝑛 ⋅ ℎ𝑛(𝑇)

> The hit count probabilities ℎ𝑛 can be computed from the the first hitting time CDF 𝐹, as we will 

now show

𝐹(𝑇) = 1 − erf
𝑧

2𝑇
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Two Key Observations
> Observation #1 : (No wash-sale period) The probability that hit n for trigger depth 𝜆 occurs 

within elapsed time T is equal to the probability of the first hit for trigger depth n⋅ 𝜆 occurs 

within elapsed time T

> In the case of lognormal returns, we know the formula for the right-hand side

> Observation #2: Let ℎ𝑛(𝑇) be probability that precisely 𝑛 trigger hits will occur by elapsed time 

𝑇.  Then

and consequently, we can solve for the h’s

In the case of lognormal returns, we obtain

𝐹𝑛(𝜆; 𝑇) = 𝐹(𝑛 ⋅ 𝜆; 𝑇)

𝐹𝑛(𝜆; 𝑇) = 1 − erf
𝑛𝑎

2𝑇

𝐹𝑛 𝑇 = ℎ𝑛 𝑇 + ℎ𝑛+1 𝑇 +⋯

ℎ𝑛 𝑇 = 𝐹𝑛 𝑇 − 𝐹𝑛+1(𝑇)

ℎ𝑛 𝑇 = erf
𝑛 + 1 𝑧

2𝑇
− erf

𝑛𝑧

2𝑇
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Precisely m trigger hits probability formula (No wash sales)

> No wash sales, Predicted frequency of precisely m trigger hits at 252 days versus results of 

10,000 path Monte Carlo simulation; 30% annualized vol, 5% loss trigger



> It is helpful to assume that each trigger hit occurs after a 21 day waiting (wash-sale) period

> There is a small adjustment needed for the first trigger hit, since the investor in reality has no 

waiting period after inception

> We will solve the problem where there is a 21 day waiting period after inception; then we will 

adjust the solution by sliding the solution back by 21 days 

> Okay, recall that, in complete generality, 𝐹𝑛 𝑇 is the CDF of the time of the nth trigger hit 𝑇𝑛 =
𝑋1 +⋯+ 𝑋𝑛

> Then, with wash-sale restriction, the random variable of the time to the nth trigger hit is

> Thus, 

where 𝐹𝑛 is zero for negative input values
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Incorporating wash sale restrictions

෨𝑇𝑛 = ෨𝑋1 +⋯+ ෨𝑋𝑛
= 21 + 𝑋1 +⋯+ 21 + 𝑋𝑛
= 21𝑛 + 𝑋1 +⋯+ 𝑋𝑛
= 21𝑛 + 𝑇𝑛

෨𝐹𝑛 𝑇 = 𝐹𝑛(𝑇 − 21𝑛)



> The key observation #2 still holds, namely,

> In the case of log-normal returns,

> Finally, slide the entire formula 21 days back, to adjust for the missing 21 day waiting period at 

the start (replace T with T+21 in the formula)

> When 21(n-1) < T < 21n, the first term becomes 1, because it is 1-F_n+1, and F_n+1 becomes 

zero in this range.  Similarly, when T < 21(n-1) you can think of both terms becoming 1 because 

both F’s become zero in this range.
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Incorporating wash sale restrictions

෨ℎ𝑛 𝑇 = ෨𝐹𝑛 𝑇 − ෨𝐹𝑛+1 𝑇

= 𝐹𝑛 𝑇 − 21𝑛 − 𝐹𝑛+1 𝑇 − 21 𝑛 + 1

෨ℎ𝑛 𝑇 = erf
𝑛 + 1 𝑧

2 𝑇 − 21 𝑛 + 1

− erf
𝑛𝑧

2(𝑇 − 21𝑛)

෨ℎ𝑛 𝑇 = erf
𝑛 + 1 𝑧

2 𝑇 − 21𝑛
− erf

𝑛𝑧

2(𝑇 − 21 𝑛 − 1 )



> Predicted frequency of precisely m trigger 

hits at 252 days versus results of 10,000 

path Monte Carlo simulation; 30% 

annualized vol, 5% loss trigger

> Predicted frequency of m trigger hits over 

time
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Precisely m trigger hits probability



> Even though we know the analytical formula for the expected log losses for each loss 

trigger, finding the minimum using calculus has eluded me

> The minimum in the plot below was found numerically
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Finding the optimal loss trigger

𝑑𝐸[𝐿𝑜𝑔𝐿𝑜𝑠𝑠 𝑇, 𝜎 (𝜆)]

𝑑𝜆
= 0



> The optimal loss trigger depends on the time horizon 𝑇

> We can make some further progress by considering symmetries of the 

simulated portfolio histories
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Finding the optimal loss trigger



> Scaling log prices or time by a constant is a symmetry on simulated portfolio histories

> To state fully, replace duration of wash sale period “21 days” with variable 𝜏

> Notice ෨ℎ𝑛 𝜎, 𝜏, 𝜆 (𝑇) = ෨ℎ𝑛(𝑘𝜎, 𝜏, 𝑘𝜆)(𝑇), since ෨ℎ𝑛 is a function only of 𝑧 =
𝜆

𝜎

> Thus, 𝜆𝑜𝑝𝑡 𝑘𝜎, 𝜏 𝑇 = 𝑘 ⋅ 𝜆𝑜𝑝𝑡(𝜎, 𝜏)(𝑇)

> For time scaling, we can verify by substitution into the formula for ෨ℎ𝑛that

> So, 𝜆𝑜𝑝𝑡 𝜎, 𝑘𝜏 (𝑇) = 𝑘𝜆𝑜𝑝𝑡(𝜎, 𝜏)(𝑘𝑇)

> The implication is, if we know 𝜆𝑜𝑝𝑡(𝜎, 𝜏)(𝑇) for a single reference pair of values for (𝜎, 𝜏), 

then we know it for all values

> We will continue to work for the case of 30% annualized vol and 21 day wash-sale period

> For these fixed values, how does the optimal trigger vary with time horizon?

𝜆𝑜𝑝𝑡 𝜎, 𝜏 𝑇 = 𝜎 ⋅ 𝜏 ⋅ 𝜆𝑜𝑝𝑡(1,1)( 𝜏 ⋅ 𝑇)
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Scaling Laws

෨ℎ𝑛 𝜎, 𝜏, 𝜆 (𝑇) = ෨ℎ𝑛(𝜎, 𝑘𝜏, 𝑘𝜆)(𝑘𝑇)



> Plotted below is he optimal trigger at various horizons, from less than a day to 1000 years 

(note logarithmic scale on time axis)

> The scaling laws guarantee that this plot is the same, regardless of the time units (days, 

months, etc.) used to generate the plot
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Optimal Trigger at Various Horizons

𝜆𝑜𝑝𝑡 𝜎 21,
𝜏

21
= 1 (𝑇/21) = 𝜆𝑜𝑝𝑡(𝜎, 𝜏)(𝑇)



> The long-run optimal trigger of -8.25% corresponds to a log loss trigger of

> On the other hand, for an ETF of a given annualized vol, mean zero lognormal 

returns have vol over a monthly horizon given by

> For vol=30%, this given monthly horizon lognormal vol of 𝜎 = 8.61%

> Long-run optimality conjecture: 𝛌𝐨𝐩𝐭,𝐋𝐑 = −𝛔 𝝉 where 𝛔 is lognormal vol over 

time duration d (e.g. d could be 1 day, or 21 days, or 1 month) and 𝝉 is the 

duration of the wash sale period measured in multiples of d (e.g., if d is 21 

days, then for example the IRS wash-sale period is 𝝉 = 𝟏; if d is 1 day, 𝝉 = 𝟐𝟏).
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Long-Run Optimal Conjecture

𝜆𝑜𝑝𝑡,𝐿𝑅 = ln 1 −
8.25

100
= −8.61%

vol → 𝜎 = ln

1 + 1 + 4
vol
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