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Damir Filipović, Markus Pelger, Ye Ye

EPFL and Swiss Finance Institute, Stanford University

1



This Paper

Research Problem:

• Question: Which factors span the cross-section of fixed income returns?

• Challenge: Term structure estimated from sparse and noisy Treasury prices

Methodology

• Unifies non-parametric curve estimation with factor modeling

• Optimal sparse basis functions = cross-sectional term structure factors

• Closed-form solution as ridge regression based on economic principles

⇒ Publicly available data sets of precise and tradeable term structure factors

Explanation for slope and curvature type factors:

• Smoothness is fundamental principle of the term structure of returns

• Slope and curvature PCA factors arise for smooth curve fitting problems

Cash flows are covariances:

• Exposure of bonds to factors is fully explained by cash flow information

• Cash flows have same risk information as covariances of bond returns

Complexity premium:

• 4 factors explain Treasury excess returns and term structure premium

• High premium for 4th factor capturing complex shapes

• Complexity factor is a hedge for bad economic timess 2
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Fundamental Problem

Unobserved discount bond excess return curve rt(x):

• excess return of discount bond with time to maturity x over t − 1 to t

rt(x) = dt (x)
dt−1(x+1)

− 1
dt−1(1)

• dt(x) = price at t of discount bond with time to maturity x

Observed: Mt coupon bond securities with prices Pt,i and:

• cash flows Ct,ij at cash flow dates 0 < x1 < · · · < xN ,

• excess returns Rbond
t,i =

Pt,i+Ct−1,i1

Pt−1,i
− 1

dt−1(1)

No-arbitrage pricing relation:

Rbond
t,i = Zt−1,iRt︸ ︷︷ ︸

fundamental returns

+ εt,i︸︷︷︸
return errors

• coupon bond = portfolio of discount bonds

• normalized discounted cash flows Zt−1,ij :=
Ct−1,ij+1dt−1(xj+1)

Pt−1,i

• Rt := (rt(x1), . . . , rt(xN))> vector evaluated at cash flow dates

⇒ Discount bond returns are basis assets to replicate any fixed income claim
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Estimation Problem

Problem: Minimize return errors:

min
rt

{
1

Mt

Mt∑
i=1

(
Rbond
t,i − Zt−1,iRt

)2
}

• Observe only M ≈ 300 treasuries, need to estimate N ≈ 3650 (10 years x

365 days) discount bond excess returns

• Any estimation approach imposes regularizing assumptions to limit the

number of parameters

• Restrict the class of potential discount curves either in terms of their

functional form or their smoothness

• Existing approaches ad-hoc assumptions ⇒ misspecified form

Our approach: Smoothness regularization

• Smoothness of the discount curve is motivated by economic principles.

• Spikes in discount return curve imply extreme (and infeasible) payoffs

• Regularizes the problem as smooth curve needs fewer parameters

• Intuition: Similar bonds should have similar returns
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Our Estimation Problem

Fundamental optimization problem:

min
rt∈Hα

{
1

Mt

∥∥∥Rbond
t − Zt−1Rt

∥∥∥2

2︸ ︷︷ ︸
return error

+λ ‖rt‖2
Hα︸ ︷︷ ︸

smoothness

,

}
(1)

• Smoothness parameter λ > 0 captures error and smoothness trade-off

General measure of smoothness for functions

‖rt‖2
Hα :=

∫ ∞
0

r ′′t (x)2eαx dx

• We study extremely large space of twice differential functions:

Hα := twice differentiable functions with rt(0) = 0 and norm ‖rt‖2
Hα

• Function space without loss of generality; includes all arbitrage-free curves

• Smoothness of the return curve is motivated by economic principles: limits

to excessive (butterfly) returns rt(x −∆)− 2rt(x) + rt(x + ∆) ≈ r ′′t (x)∆2

⇒ flexible non-parametric data-driven approach: smoothness penalty λ > 0

and maturity weight α > 0 selected empirically by cross-validation
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General Solution

Reproducing kernel Hilbert space (RKHS) approach:

• Celebrated representer theorem: Simplifies an infinite dimensional

optimization problem to a finite dimensional one

• Objective function (return error and smoothness measure) and function

space (twice differentiable) uniquely pins down basis functions

⇒ The solution is linear in these basis functions and simple ridge regression.

Properties of optimal basis functions:

• Basis functions represented in decreasing order of smoothness

• Solution spanned by N kernel basis functions k(x1, ·), . . . , k(xN , ·)
• Kernel matrix Kij := k(xi , xj) admits spectral decomposition K = VSV>,

with eigenvectors V = [v1| · · · |vN ], eigenvalues s1 ≥ · · · ≥ sN > 0

• Eigenvectors V span function space and are orthogonal basis functions in

decreasing order of smoothness.

Empirical finding: Shapes of v1, v2, . . . resemble and explain PCA loadings

(slope, curvature,. . . )
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Kernel Ridge (KR) Solution

Theorem (Conditional Factor Model Representation)

The unique solution r̂t to (1) can be represented as factor model

R̂t = (r̂t(x1), . . . , r̂t(xN))> = βF̂t , with loadings β := VS1/2,

where the factors F̂t are unique solution to the cross-sectional ridge regression

min
Ft∈RN

{
1

Mt

∥∥∥Rbond
t − βbond

t−1 Ft

∥∥∥2

2
+ λ ‖Ft‖2

2

}
, (2)

where the conditional loadings βbond
t−1 are given in terms of the normalized

discounted cash flows (bond characteristics) Zt−1 by

βbond
t−1 := Zt−1β.

The factors F̂t are given in closed form by

F̂t = ωt−1R
bond
t ,

which are the excess returns of traded bond portfolios with portfolio weights

ωt−1 :=
(
βbond
t−1

>
βbond
t−1 + λMt IN

)−1

βbond
t−1

>
. 7



Implication of Kernel Ridge (KR) Solution

Solution form:

• General curve fitting problem expressed as simple ridge regression

• Simple closed-form solution, easy to implement

• Ridge regression penalizes higher order (less smooth) basis functions in V

Tradability:

• Factors are investable portfolios of traded coupon bonds

• Discount bonds are portfolios of factors and thus investable portfolios

• Model to replicate and hedge any default-free fixed-income security

Factor model:

• No low dimensional factor model so far!

Factors correspond to number of basis functions

• Unconditional factor model for discount bonds:

Discount bonds have constant loadings on factors

• Conditional factor model for coupon bonds:

Coupon bonds have conditional loadings on factors instrumented by cash

flow characteristics βbond
t−1 := Zt−1β
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Low Dimensional Factor Models

KR-n model

• Select first n < N loadings β
(n)
t−1 and replace βbond

t−1 in ridge regression (2)

• Solution is the KR-n factor model:

F̂
(n)
t =

(
β

(n)>
t−1 β

(n)
t−1 + λMt In

)−1

β
(n)>
t−1 Rbond

t .

Optimal sparse n-factor models:

• Ridge penalty in (2) shrinks all factors towards zero, at lower cost for

small eigenvalues ⇒ shrinkage effects concentrated on small eigenvalues

• Aim: find the optimal sparse selection of n factors

• Add a lasso selection penalty to (2)

min
Ft∈RN

{
1

Mt

∥∥∥Rbond
t − βbond

t−1 Ft

∥∥∥2

2︸ ︷︷ ︸
return error

+ λ ‖Ft‖2
2︸ ︷︷ ︸

smoothness

+λ1 ‖Ft‖1︸ ︷︷ ︸
selection

}

Empirical finding: lasso selects first n factors with high probability, which

confirms the intuition that shrinkage concentrates on small eigenvalues
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Data

Out-of-sample analysis on U.S. Treasury securities:

• U.S. Treasury securities from the CRSP Treasury data file

• Daily ex-dividend bid-ask averaged mid-price

• Sampling period: June 1961 to December 2020 (14,865 days)

• All bonds maturing within 10 years with standard filters

• Total of 5,335 issues of Treasury securities and 2,168,382 price quotes

Estimation and evaluation:

• Root-mean-squared errors (RMSE) for returns

• Cross-sectional leave-one-out cross-validation for parameter selection

• Models: KR-full (all basis functions) and low-dimensional KR-n factors

Companion paper (Stripping the Discount Curve):

• Extensive out-of-sample comparison study for yield curve estimation

• Full KR method dominates all parametric and non-parametric benchmarks

• We document systematic biases and instabilities of popular methods

• This paper: Comparison between low-dimensional and full KR model
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Benchmark models

Parametric models:

• NSS: Nelson-Siegel-Svensson model

• GSW: Gurkaynak, Sack, and Wright (2007)

NSS yield curves on more restricted dataset that excludes Treasury bills

Non-parametric models:

• FB: Fama and Bliss (1987): piecewise constant forward curve

• LW: Liu and Wu (2021): kernel-smoothing method

pre-specified normal kernel with specific adaptive bandwidth

(dominates spline-based estimates)

Return calculation:

• Existing approaches compute discount bond excess return curve from

consecutive estimated discount bond price curves

• Artificial prices that do not map into tradable portfolios

⇒ Our companion paper shows that full KR model dominates all benchmarks

⇒ This paper is about the factor and asset pricing implications
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Cross-Validation Excess Return RMSE for λ and α
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• Cross-validated out-of-sample return errors (in BPS)

• Vary smoothness penalty λ and maturity weight α

• Baseline choice: λ = 10, α = 0.05

⇒ Optimal estimator requires smoothness regularization 12



Cross-Validation Excess Return RMSE for λ and n
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• Vary smoothness penalty λ and factor number n (for α = 0.05)

• Factors selected based on order of kernel decomposition

• Baseline choice: λ = 10, α = 0.05

⇒ Low-dimensional KR-n model with n ≤ 6 close to full model 13



Selection of Term Structure Factors
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• Frequency (%) of factors selected by LASSO

• Data-driven approach to select an optimal low-dimensional factor model

⇒ First n optimal factors selected based on kernel order
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Factor Structure: Weights on Discount Bonds
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• Cross-sectional factor loadings of KR and PCA factors on discount bond

excess returns (= portfolio weights on different maturities)

• Optimal basis functions of decreasing smoothness (slope, curvature,...)

• Higher order factors capture more curvature and complex patterns

⇒ KR basis functions explain patterns for PCA
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Factor Structure: Misspecified Parametric Benchmark
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• PCA factor loadings of KR and GSW discount bond excess returns

• Misspecified GSW has substantially larger errors than KR estimates

• Overly simplistic discount bonds (GSW) omit relevant factors

⇒ Joint non-parametric curve estimation and cross-sectional factor problem
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Factor Structure: Smoothness is Underlying Principle
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• PCA factor loadings of KR, GSW, and LW discount bond excess returns

• Precise benchmarks (LW) have same shapes (slope, curvature,...) as KR

⇒ Smoothest basis functions (KR) explain most variation in discount bonds

⇒ Smoothness is underlying principle for term structure of Treasury markets
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Cash Flows are Covariances: Discount Bond Excess Returns
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• Conditional loadings β and time-series regression slopes on discount bonds

• Cash flows are “characteristics” of bonds and explain risk exposure

• Discount bonds special case with constant characteristics.

⇒ Cash flows and time-series covariances lead to the same betas
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Cash Flows are Covariances: Coupon Bond Excess Returns
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(d) Factor 4

• Conditional loadings βbond
t−1 and local time-series regression β̂t−1

• Coupon bonds have time-varying conditional betas βbond
t−1 = Zt−1β

⇒ Cash flows and time-series covariances lead to the same betas
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How Many Term Structure Factors?
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(b) Normalized cumulative sum of eigenvalues of excess

return Σ and forward return Σf covariance matrices

• Explained variation and eigenvalue structure for different number of factors

• Crump and Gospodinov (2022): mechanical inflation in eigenvalues of

excess returns (similar to unit-root processes in cross-section)

• More informative test assets: forward returns Rt,i − Rt,i−1 (first

differences)

⇒ Need 4 term structure factors to explain 90% correlation for more

informative forward returns
20



How Many Term Structure Factors?
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(b) Correlation of forward returns

• Explained variation and eigenvalue structure for different number of factors

• Crump and Gospodinov (2022): mechanical inflation in eigenvalues of

excess returns (similar to unit-root processes in cross-section)

• More informative test assets: forward returns Rt,i − Rt,i−1 (first

differences)

⇒ Need 4 term structure factors to explain 90% correlation for more

informative forward returns
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Asset Pricing and Investment



Asset Pricing and Investment

Asset pricing is fundamentally a spanning problem:

• Variation (second moment) in coupon and discount bond return almost

completely explained by 4 tradable KR factors

• To show: Mean return (first moment) is precisely spanned by 4 KR factors

⇒ Tradable 4 KR factors sufficient to replicate any fixed income claim

Stochastic Discount Factor (SDF):

• SDF is projection on the asset space that prices all assets

• All default-free fixed income claims spanned by full set of discount bonds

• 4 KR factors span the cross-section of discount bonds

⇒ Sufficient to project the SDF on the KR factors to price themselves

⇔ construct tangency portfolio based on KR factors

• Sharpe ratio of implied SDF direct measure of pricing information

Investment perspective:

• Four tradeable portfolios replicate and hedge the full term structure

⇒ effective dimensionality of treasury market is n = 4

• Maximum Sharpe ratio obtained from trading 4 KR factors
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Term Structure Premium (Mean of Discount bond Returns)
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• Term structure premium implied by different estimators

• Term structure premium strongly affected by number n of KR-n factors

• Benchmark methods unstable and problematic for portfolio optimization

• Only KR returns tradeable assets; benchmark returns “artificial numbers”

⇒ Precision of estimation crucial for asset pricing questions
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Average discount bond returns conditioned on boom/recession
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(b) Boom

• Average discount bond returns conditioned on boom/recession

• Return distortion for benchmark estimator more extreme for recessions

⇒ Precision of KR matters even more for conditional investment analysis
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Average discount bond returns conditioned on boom/recession
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(b) Boom

• Average discount bond returns conditioned on boom/recession

• More complex term structure during recessions

• < 4 factors substantial bias during recessions

• 4th KR factors most relevant during recession time periods

⇒ “Complexity premium” during bad times requires 4th KR factor
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Investment Implications: Cumulative SDF returns

• Out-of-sample cumulative excess returns of implied stochastic discount

factor (SDF) = mean-variance efficient factor portfolio

• “Complex” 4th KR factor is hedge for bad economic times

• Omitting 4th factor results in worse performance during recessions.

⇒ Feasible investment strategy as factors are tradeable!

⇒ Complexity premium of 4th factor pays off during recessions

25



Sharpe ratios of implied SDF

Out-of-sample In-sample

KR-1 KR-2 KR-3 KR-4 KR-1 KR-2 KR-3 KR-4

Unconditional

0.51 0.69 0.75 0.85 0.47 0.67 0.74 0.84

Conditional on boom and recessions

Boom 0.46 0.53 0.48 0.63 0.31 0.38 0.37 0.54

Recession 0.15 0.68 0.77 1.65 0.59 0.99 1.26 1.99

• Sharpe ratios of implied SDF for KR-n models

• Substantial increase in Sharpe ratios with 4th KR factors during bad times

⇒ Complexity premium of 4th factor pays off during recessions
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Bond Market Complexity over Time

1960 1970 1980 1990 2000 2010 2020
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• Unexplained variation by the first 4 KR factors

• Cross-sectional variation explained by factors is time-varying and

informative about real economic conditions

• Exposure to term structure risk factors provides two measures for the state

of the bond market:

1. Treasury Market Complexity (T-COM)

(= difference between n = 1 and n = 4 line)

2. Idiosyncratic Treasury Volatility measure (IT-VOL) (= n = 4 line)
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Bond Market Complexity over Time (T-COM)

1960 1970 1980 1990 2000 2010 2020
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• Time-series of T-COM measure (Treasury Market Complexity)

• Percentage of variation explained by factors 2-4:

T-COMt =
∥∥∑4

k=2 β
bond
t−1,kFt,k

∥∥2

2
/
∥∥Rbond

t

∥∥2

2

• Changes in T-COM predict changes in unemployment rate one year ahead

• Correlation of 21% between changes in T-COM and changes in

unemployment rates 14 months ahead

• Predictability is statistically highly significant

• Bond market complexity informative about real economic conditions
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KR factors conditioned on IT-VOL and T-COM

SR

T-COM F1 F2 F3 F4

Tercile 1 1.03 -0.01 -0.19 -0.35

Tercile 2 0.04 0.23 0.09 0.57

Tercile 3 -0.44 0.36 0.06 0.58

• Sharpe ratio of KR factors conditioned on terciles of T-COM

• Sign of risk premium of first KR factor changes from positive to negative

• 4th KR factor hedges against risk of changing market conditions

• T-COM measures second moments (explained variation) but predicts first

moment (mean and Sharpe ratio)

• 4th KR factor earns high risk premium during complex bond markets

• Similar results for IT-VOL
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Cross-Sectional Asset Pricing

Setup:

• Conventional panel setup for cross-sectional asset pricing

• Test assets: 10 discount bonds from full KR model (maturity 1 - 10 years)

• Factors: KR factors, PCA factors, Fama-French factors

• In- and out-of-sample time-series regressions to obtain pricing errors α

Findings:

• Four KR factors needed to price all discount bonds

• GSW test assets “easy to price” as by construction omit structure

• Equity factors (Fama-French 5) do not price term structure

30



Cross-Sectional Asset Pricing
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• Root-mean-squared pricing errors (α) for discount bond excess returns

• KR-4 and PCA-4 price the complete panel extremely well

• Large α’s for < 4 factors

⇒ Higher order factor and precision matters for risk premia!
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Pricing errors of discount bonds
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(c) KR-4

• Root-mean-squared pricing errors (α) for discount bond excess returns

• 4 factors price the complete panel extremely well

• Large α for long maturities for < 4 factors

⇒ Higher order factor and precision matters for risk premia!
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Conclusion

Methodology:

• Simple, fast, robust, and precise estimator for term structure factors

• Unifies non-parametric curve estimation with cross-sectional asset pricing

• Learns optimal sparse basis functions in RKHS with smoothness reward

• Closed-form solution as simple ridge regression with tradeable factors

⇒ Novel perspective that combines financial theory with machine learning

Empirical results:

• Extensive out-of-sample study on U.S. Treasury excess returns

• 4 factors explain Treasury excess returns and term structure premium

• Cash flows and time-series covariances lead to the same betas

• KR basis functions explain patterns for PCA

• Higher order factors and estimation precision important for asset pricing

• 4th KR factor explains “complexity premium” during bad times

⇒ Method of choice for industry, regulators, central banks and researchers

⇒ Publicly available data sets: https://www.discount-bond-data.org
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Simple vs. Logarithmic Bond Excess Returns

• Most existing bond pricing literature considers zero-coupon yields

dt(x) = exp(−yt(x))

• Simple discount bond excess returns ≈ logarithmic excess returns

rt(x) =
dt(x)

dt−1(x + ∆t)
− 1

dt−1(∆t)

≈ log
dt(x)

dt−1(x + ∆t)
− log

1

dt−1(∆t)

= −(yt(x)− yt−1(x + ∆t))− yt−1(∆t) =: ρt(x)

• KR and PCA factor models rt(x) = β(x)Ft imply tradable factors Ft

• PCA factor models ρt(x) = b(x)Yt imply non-tradable factors Yt

(abstract yield portfolios)
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General Solution

• Hα is a reproducing kernel Hilbert space with kernel k given in closed form

• Problem (1) is a kernel ridge regression with unique solution r̂t in Hα,

which is spanned by the N kernel basis functions k(x1, ·), . . . , k(xN , ·)
• Kernel matrix Kij := k(xi , xj) admits spectral decomposition K = VSV>,

with eigenvectors V = [v1| · · · |vN ], eigenvalues s1 ≥ · · · ≥ sN > 0

• Hα-norm induces smoothness measure on vectors w in RN :

µ(w) := ‖h‖Hα =
∥∥K−1/2w

∥∥
2
, for w = (h(x1), . . . , h(xN))>

Indeed, K−1/2 behaves like second-order difference operator on (0,w)

Lemma (Eigenvectors of K are the smoothest unit vectors in RN)

• v1 = arg min‖w‖=1 µ(w) is the smoothest vector in RN

• vn = arg min‖w‖=1,w⊥v1,...,vn−1
µ(w) is smoothest vector in {v1, . . . , vn−1}⊥

Empirical finding: shapes of v1, v2, . . . resemble and explain PCA loadings

(slope, curvature,. . . )
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Intrinsic Relationship between PCA and KR Factors

• Covariances of excess returns Rt = βFt and KR factors Ft are related as

Cov(Rt) = VS1/2 Cov(Ft)S
1/2V>

• Mean vectors µR = E[Rt ] and µF = E[Ft ] = (β>β)−1β>µR = S−1/2V>µR

Lemma

The following are equivalent:

1. S1/2(Ft − µF ) are the PCA factors of Rt ;

2. V are the normalized PCA loadings of Rt ;

3. Cov(Ft) is diagonal and sj Var(Ft,j) = Var(v>j Rt) are descending in j

Empirical finding: properties 1 and 2 are approximately satisfied
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Excess Return RMSE Comparison Among Methods
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(b) Excess return RMSE by maturity bucket

• RMSE of KR and GSW ( Gurkaynak, Sack, and Wright (2010))

• In-sample RMSE of GSW is larger than out-of-sample RMSE with KR

• Out-of-sample errors of KR-2 smaller than in-sample errors of GSW

⇒ Comprehensive comparison study in companion paper

⇒ KR most precise estimator!
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Similarity between KR and PCA Factors

Number of factors n 1 2 3 4 5 6

Explained variation of KR 0.916 0.976 0.992 0.997 0.999 1.000

Explained variation of PCA 0.920 0.982 0.994 0.997 0.999 1.000

Generalized correlation 0.998 0.936 0.901 0.943 0.922 0.986

• Explained variation of KR and PCA factors identical

• Generalized correlation between KR and PCA factors close to 1

⇒ KR and PCA factors have the same time-series span

⇒ KR factors explain the most variation
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Factor Structure: Weights on Forward Returns
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(f) Factor 6

• PCA loadings on discount bond excess returns and forward returns

⇒ Same patterns for PCA (except for mechanical shift)
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Conditioning on Yield Spreads

1970 1980 1990 2000 2010 2020
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• Time-series of the yield spread between yields of 10 years and 1 year of

maturity.

• Three yield spread terciles (low, medium, high) based on quantiles of the

full time-series
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Average discount bond returns conditioned on yield spreads
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(b) medium yield spread

0 2 4 6 8 10
Time to Maturity in Years

0.02

0.04

0.06

0.08

0.10

0.12 KR-full
KR-4
NSS
GSW
FB
LW

(c) high yield spread

• Average discount bond returns conditioned on yield spreads

• Return distortion for benchmark estimator more extreme for low yield

spreads

⇒ Precision of KR matters even more for conditional investment analysis
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Average discount bond returns conditioned on yield spreads
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(b) medium yield spread
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(c) high yield spread

• Average discount bond returns conditioned on yield spreads

• More complex term structure during low and medium yield spreads

• < 4 factors substantial bias during low and medium yield spreads

• 4th KR factors most relevant during low and medium yield spreads

⇒ “Complexity premium” during inverted yield spread times requires 4th KR

factor
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Sharpe ratios of implied SDF

Out-of-sample In-sample

KR-1 KR-2 KR-3 KR-4 KR-1 KR-2 KR-3 KR-4

Unconditional

0.51 0.69 0.75 0.85 0.47 0.67 0.74 0.84

Conditional on boom and recessions

Boom 0.46 0.53 0.48 0.63 0.31 0.38 0.37 0.54

Recession 0.15 0.68 0.77 1.65 0.59 0.99 1.26 1.99

Conditional on yield spread terciles

Low yield spread 0.21 0.39 0.33 0.50 -0.21 0.04 0.04 0.39

Medium yield spread 0.21 0.43 0.48 1.18 0.53 0.74 0.88 1.38

High yield spread 0.71 0.75 0.74 0.93 0.81 0.90 0.99 1.22

• Sharpe ratios of implied SDF for KR-n models

• Substantial increase in Sharpe ratios with 4th KR factors during bad times

⇒ Complexity premium of 4th factor pays off during recessions
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KR factors conditioned on economic conditions

SR Mean Standard Deviation

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

Conditional on boom and recessions

Boom 0.31 0.12 0.10 0.23 7.17 10.24 13.95 33.29 23.41 83.24 137.98 142.00

Recession 0.59 0.74 -0.31 0.79 22.45 96.39 -72.03 213.42 37.79 130.48 231.46 269.63

Conditional on yield spread terciles

Low yield spread -0.21 0.26 0.15 0.48 -5.96 33.04 31.04 102.37 27.92 127.19 212.01 214.24

Medium yield spread 0.53 0.38 -0.14 0.50 11.61 23.35 -15.92 65.71 22.11 61.79 110.08 132.05

High yield spread 0.81 0.11 -0.06 0.01 21.79 7.76 -6.62 1.68 26.75 68.67 115.99 132.50

• Sharpe ratios, mean and standard deviation for KR-4 factors

• Substantial increase in Sharpe ratio of 4th KR factor during bad times

⇒ Complexity premium of 4th factor pays off during recessions
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Investment Implications: Cumulative SDF returns

• In-sample cumulative excess returns of implied stochastic discount factor

(SDF) = mean-variance efficient factor portfolio

• “Complex” 4th KR factor is hedge for bad economic times

• Omitting 4th factor results in worse performance during recessions.

⇒ Feasible investment strategy as factors are tradeable!

⇒ Complexity premium of 4th factor pays off during recessions
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T-COM and unemployment rates

(a) Level in T-COM and monthly unemployment rate

(b) Changes in T-COM and monthly unemployment rate

• Time-series of T-COM and unemployment rates

⇒ Higher complexity in the term structure is correlated with higher future

unemployment rates
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IT-VOL and VIX

• Time-series of IT-VOL and VIX index

• Idiosyncratic volatility in bond markets correlated with volatility in equity

markets.
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Bond Market Complexity over Time
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• IT-VOL (Idiosyncratic Treasury Volatility)

• Unexplained variation with 4 factors:

IT-VOLt =
∥∥Rbond

t −
∑4

k=1 β
bond
t−1,kFt,k

∥∥2

2
/
∥∥Rbond

t

∥∥2

2

48



Illustration of Complexity Measures
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(b) 2005-03-03

IT-VOL: 0.003, T-COM: 0.11

• Market Conditions on Example Days
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KR factors conditioned on IT-VOL and T-COM

SR Mean Standard Deviation

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

IT-VOL

Tercile 1 0.70 0.19 -0.14 -0.32 24.49 12.55 -11.29 -37.19 34.76 64.51 82.16 115.16

Tercile 2 0.38 0.19 0.01 0.53 9.50 22.44 1.20 94.23 25.01 115.48 189.98 177.92

Tercile 3 -0.53 0.34 0.11 0.59 -6.55 29.16 18.6 112.72 12.25 84.94 166.36 189.58

T-COM

Tercile 1 1.03 -0.01 -0.19 -0.35 34.27 -0.37 -16.15 -40.43 33.22 44.39 87.20 117.09

Tercile 2 0.04 0.23 0.09 0.57 0.85 18.88 12.88 90.65 23.91 83.82 146.66 158.06

Tercile 3 -0.44 0.36 0.06 0.58 -7.68 45.64 11.77 119.54 17.50 125.35 203.49 205.33

• Sharpe ratio, mean, and standard deviation of the four KR factors

conditioned on terciles of IT-VOL and T-COM

• Sign of risk premium of first KR factor changes from positive to negative

• 4th KR factor hedges against risk of changing market conditions
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Risk Premium Conditioned on Market Complexity
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• Sharpe Ratio of KR factors conditioned on T-COM

• Sign of risk premium of first KR factor changes from positive to negative

• 4th KR factor hedges against risk of changing market conditions

• T-COM measures second moments (explained variation) but predicts first

moment (mean and Sharpe ratio)
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Risk Premium Conditioned on Market Complexity
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Factor 4

• Sharpe Ratio of KR factors conditioned on IT-VOL

• Sign of risk premium of first KR factor changes from positive to negative

• 4th KR factor hedges against risk of changing market conditions

• IT-VOL measures second moments (explained variation) but predicts first

moment (mean and Sharpe ratio)
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