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Abstract

Factor analysis of security returns aims to decompose a return covariance matrix into
systematic and specific risk components. To date, most commercially successful factor
analysis has been based on fundamental models, although there is a large academic lit-
erature on statistical models. While successful in many respects, traditional statistical
approaches like principal component analysis and maximum likelihood suffer from sev-
eral drawbacks. These include a lack of robustness, strict assumptions on the underlying
model of returns, and insensitivity to narrow factors such as industries and currencies,
which affect only a small number of securities, but in an important way.

We apply convex optimization methods to decompose a security return covariance
matrix into its low rank and sparse parts. The low rank component includes the market
and other broad factors that affect most securities. The sparse component includes narrow
factors and security specific effects.

We measure the variance forecasting accuracy of a low rank plus sparse covariance
matrix estimator on an equally weighted portfolio of 125 securities simulated from a
model with two broad factors and 25 narrow factors. We find that the low rank plus
sparse estimators are more accurate than estimates made with classical principal compo-
nent analysis, in particular, at forecasting risk due to narrow factors. Finally, we illustrate
a low rank plus sparse decomposition of an empirical covariance matrix of 125 equities
drawn from 25 countries.
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1 Introduction

It is a standard assumption in financial economics that security returns are driven by
a relatively small number of risk factors, plus security specific returns. This assump-
tion is at the heart of asset pricing models and portfolio risk analysis. Quantitative
methods for identifying financial risk factors fall into two categories. In a structural
or fundamental model, factors are identified by humans, while factor attributes such
as volatility and correlation are estimated with statistical methods. In a data-driven or
latent factor model, statistical methods are used both to identify factors and to estimate
their attributes.

The strengths and weaknesses of fundamental and latent factor models are complemen-
tary. Fundamental models are intuitive, and practitioners use them for risk forecasting,
risk reporting, exposure analysis and portfolio construction. On the negative side, the
inclusion of new factors typically requires a structural change, so fundamental models
are prone to mistaking an emerging factor for noise. Latent factors are not readily in-
terpretable, and that may be the primary reason why they have been less popular with
practitioners. Yet, there is a vast academic literature on latent factor models, which rely
on the rapidly developing field of data science. Latent factor models respond dynami-
cally to new information. This feature gives latent factor models the potential to detect
emerging factors, but it predisposes them to mistake chance correlation for signal.

Many latent factor models are estimated with principal component analysis (PCA),
which extracts factors from a sample covariance matrix of security returns. PCA relies
on spectral analysis (Jolliffe 2002), which identifies factors as sample covariance matrix
eigenvectors with the largest eigenvalues. In financial return data, these eigenvectors
tend to represent broad risk drivers (such as sensitivity to the market or to interest
rates), each of which affects most securities. However, they may omit narrow risk
drivers (such as industry or country membership), each of which affects only a few
securities, but has a pronounced impact on security return correlation nevertheless. To
be detected by classical PCA, a factor must affect a significant fraction of the securities
(Miller 2006). As PCA requires no distributional assumptions, it is appropriate only
when the broad factors are assumed to be variance maximizing (latent) variables. A
negative consequence of this fact is that the analysis is highly sensitive to outliers.

In this article, we develop a factor identification scheme that relies on the low-rank plus
sparse (SLR) matrix decompositions of covariance matrices, which were proposed as
a robust alternative to PCA (see Chandrasekaran, Sanghavi, Parrilo & Willsky (2011),
Candès, Li, Ma & Wright (2011), and Agarwal, Negahban, Wainwright et al. (2012)).
To date, these methods have been successfully applied to image processing, latent se-
mantic indexing, collaborative filtering, graphical model learning, gene expression, and

2



other problems. Some experimentation with SLR decompositions of financial return
covariance matrices has been attempted by academics in Chandrasekaran, Parrilo &
Willsky (2012) and discussant papers. More, recently SLR formulations have been
investigated in the context of portfolio risk in Luo (2013) and Fan, Han & Liu (2014).

SLR recovery methods differ from PCA in that they do not rely directly on spectral
methods to extract broad factors from the sample covariance of returns. Instead they
have much more in common with factor analysis (FA) Jolliffe (2002, see Chapter 7). A
model of security returns for which the covariance matrix (or the concentration matrix)
is a sum of a low rank matrix and a sparse matrix is hypothesized. The low rank compo-
nent corresponds to broad factors and the sparse component corresponds to the narrow
factors and security specific returns. Surprisingly, under quite mild assumptions such a
decomposition is unique. The aim of SLR recovery is to formulate a (typically convex)
programming problem that may be solved efficiently, and that yields the true decom-
position. The methods turn out to be robust to outliers. They can incorporate various
statistical modeling assumptions, but may remain distribution-free as well.

We apply a method for SLR recovery proposed in Chandrasekaran, Parrilo & Willsky
(2010) and analyzed in Chandrasekaran et al. (2012). While their distributional as-
sumptions are not met by financial return data, the results are encouraging. We develop
metrics to assess risk forecasting accuracy similar to those of Bender, Lee, Stefek &
Yao (2009). We benchmark the SLR method against classical PCA on simulated data.
We also apply SLR to empirical data to illustrate the promise of the method for practical
applications.

The rest of the article is organized as follows. In Section 2 we formulate our model
of security returns and justify the SLR structure of the security covariance matrix. In
Section 3, we relate SLR decompositions of a covariance matrix and its associated
concentration matrix. We state the convex program for SLR recovery in Section 4.
An outline of an application SLR recovery to portfolio risk forecasting is in Section 5.
This section also reviews measures of the accuracy of SLR risk forecasts on simulated
financial return data. Section 6 presents results of simulation experiments and Section 7
illustrates an SLR recovery from a sample covariance matrix estimated from empirical
data. Section 8 concludes. Supporting ideas and technical details are described in
our appendices. Appendix A describes the graphical structure associated with a SLR
decomposition of the concentration matrix of Gaussian variables. The implementation
of our SLR algorithm is described in Appendix B.
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2 Factor model and problem formulation

While the relationship between security returns and factor returns may be non-linear
in general, we explore a linear model, which has proven to be a useful specification for
public equities and sovereign bonds. Specifically, we assume the generating process1

for the 𝑁-vector of security returns 𝑅 is given by

𝑅 = 𝑍𝜁 + 𝜖, (1)

where 𝑍 is an 𝑁 × 𝑀 matrix of factor exposures, 𝜁 is an 𝑀-vector of factor returns
and 𝜖 is an 𝑁-vector of diversifiable specific returns. While the returns (𝑅, 𝜁, 𝜖) are
random, we treat the exposures is 𝑍 as constants to be estimated. The factor returns
and specific returns are taken to be mean zero and uncorrelated, i.e. 𝐄(𝜁 ) = 0𝐾 ,
𝐄(𝜖) = 0𝑁 and 𝐄(𝜁𝜖⊤) = 0𝑀×𝑁 . Under these assumptions, the security covariance
matrix Σ = 𝐄(𝑅𝑅⊤) can be expressed as

Σ = 𝑍𝐻𝑍⊤ + Δ (2)

where 𝐻 is an 𝑀 ×𝑀 factor covariance matrix and Δ = 𝐄(𝜖𝜖⊤) is a diagonal 𝑁 ×𝑁
covariance matrix of specific returns.

In anticipation of the latent factor analysis that we will explore, it is useful to refine
(1) to take account of the division between broad and narrow factors. We assume that
returns may be attributed to𝐾 broad factors and 𝜅 narrow factors. A broad factor affects
most of the securities while a narrow factor may influence only a “small” subset.

𝑅 = 𝑌 𝜓 +𝑋𝜙 + 𝜖, (3)

where 𝜁 = (𝜓, 𝜙)⊤. In (3), 𝑌 is an 𝑁 × 𝐾 matrix of broad factor exposures, 𝜓 is a
𝐾-vector of broad factor returns, 𝑋 is an 𝑁 × 𝜅 matrix of narrow factor exposures, 𝜙
is a 𝜅-vector of narrow factor returns, and 𝑀 = 𝐾 + 𝜅. We assume 𝐄(𝜓𝜙⊤) = 0𝐾×𝜅 .
In light of the above assumptions on the factors, the matrix 𝑌 is considered dense (few
zero entries) while 𝑋 is a sparse matrix (a relatively large number of zero entries).

We define the rank 𝐾 , broad factor approximation to the covariance matrix Σ in (2) as

𝐿 = 𝑌 𝐹𝑌 ⊤ , (4)

where 𝐹 is the 𝐾 × 𝐾 covariance matrix of the broad factor returns 𝜓 . We assume
𝐾 ≪ 𝑁 , i.e. a relatively small number of broad factors drive the security returns.

1To ease notation we omit the dependence on time in equation (1). That is, (𝑅𝑡, 𝑌𝑡, 𝜖𝑡) would denote
the returns at some time 𝑡 ≥ 0 but 𝑌 is typically treated as constant. Analogous comments apply to (3).
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We do not impose such an assumption on the number of narrow factors. The residual
covariance 𝑆 is the sum

𝑆 = 𝑋𝐺𝑋⊤ + Δ, (5)

where 𝐺 is the 𝜅 × 𝜅 covariance matrix of the narrow factor returns 𝜙. Sparsity of
the exposures 𝑋 to the narrow factors often induces sparsity in 𝑆 as we shall see in
Section 6. Thus, the covariance matrix Σ is expressed as a sum of a low-rank matrix
and a residual matrix,

Σ = 𝐿 + 𝑆. (6)

In what follows, we adopt the standard assumption that security returns follow the re-
turn generating process (3), and we explore statistical methods for estimating the low
rank and residual components of the decomposition (6). These methods distinguish
broad factor return from the sum of narrow factor return and specific return, putting us
closer to a fully automated identification of the factors that drive financial risk.

3 Sparse and low rank decompositions of a covariance
matrix or its inverse

The problem of decomposing a covariance matrix into low rank and residual compo-
nents is complicated by the question of identifiability. Under mild technical conditions,
the decomposition (6) is unique when the residual matrix 𝑆 is sparse and the low rank
matrix 𝐿 is not sparse. The low rank condition on 𝐿 is natural in view of the assump-
tion that the number of broad factors 𝐾 is small relative to 𝑁 . The sparsity assumption
on 𝑆 hinges on the structure of the narrow factors.

In many statistical applications, however, sparse representations of sample data are im-
posed on the concentration matrix, Σ−1 (Dempster 1972, and others). For example, this
is particularly appropriate in the context of Gaussian data where zeros in the concentra-
tion matrix dictate conditional independence relationships known as graphical models
(Anderson 2003, Chapter 15). While imposing sparsity on Σ−1 is not appropriate in
the broad factor setting of Section 2, one could aim to decompose this concentration
matrix as

Σ−1 =  −  . (7)

where  is low rank. There is a simple connection between (7) and (6).

5



LEMMA 3.1. Let Σ and 𝑆 in (6) be invertible. Then (7) holds with  = 𝑆−1 and = 𝑆−1𝐿Σ−1. Conversely, given (7), we have 𝑆 = −1 and 𝐿 = −1Σ in (6).
Moreover, rank() = rank(𝐿) .

Proof. Multiplying Σ from the left by 𝑆−1 − 𝑆−1𝐿Σ−1 and substituting 𝐿 = Σ − 𝑆
verifies  −  is the left inverse of Σ (hence, the inverse). As  and Σ−1 are full rank,
the second claim is a basic property of rank (Horn & Johnson 2012, 0.4.6 (b)). The
reverse direction follows by similar arguments.

Lemma 3.1 allows us to pass between decompositions (6) and (7) and says that when
𝐿 is low rank so is  and vice versa. However, it does not provide information on
which decomposition yields sparsity in the remaining matrices 𝑆 and  . Note, that the
inverse of a sparse matrix is not in general sparse.2 Sparsity in 𝑆 implies most of the
security returns to the narrow factors (i.e., 𝑋𝜙) are uncorrelated. The matrix  , on the
other hand, is the concentration matrix of the narrow factor and specific risk covariance.
Sparsity in this context may have several interpretations. For instance, when (𝑅,𝜓 ) are
jointly Gaussian, sparsity of  implies the security returns to the narrow factor depend
on each other not directly, but through the other securities (see Appendix A).

4 Estimating the decomposition

Low rank plus sparse decompositions may be identified via solutions to certain convex
optimization problems (see Candès et al. (2011) and Chandrasekaran et al. (2011)). A
standard formulation is known as principal component pursuit (PCP), which minimizes
the trace of one variable subject to a sparsity constraint on another. When this approach
is adapted to decomposing the covariance matrix Σ of security returns as in (6), PCP
minimizes the convex objective function

𝒫 (𝐿,𝑆 |𝛾 ) = ‖𝐿‖∗ + 𝛾‖𝑆‖1 (8)

subject to the constraint Σ = 𝐿 + 𝑆. Here, ‖ ⋅ ‖∗ denotes the nuclear norm and ‖ ⋅ ‖1
denotes the vector 𝓁1-norm. The nuclear norm computes the sum of singular values
of 𝐿 which when symmetric is equal to the sum of its eigenvalues. The ‖ ⋅ ‖1 norm
regards 𝑆 as a long 𝑁2-vector and encourages sparsity in this variable.

2Howerever, as one example, a block matrix 𝑆 yields a block matrix  with at least as many off-block
zero entries.
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A difficulty with the application of PCP to return covariance matrix decomposition is
that in practical applications, Σ is not known.3 Instead, we are given a sample covari-
ance matrix Σ̂ estimated from observed returns. Hence, the decomposition we look for
may be phrased as

Σ̂ = 𝐿 + 𝑆 +𝑊 , (9)

where 𝑊 is a noise term. A method of dealing with such estimation errors was pro-
posed by Chandrasekaran et al. (2012). The authors replace the constraint (9) by pe-
nalizing4 (8) with a Gaussian likelihood function 𝓁 to solve the optimization problem,

min
( ,)

𝜆𝒫 (, |𝛾 ) − 𝓁 ( −  | Σ̂) (10)

subject to  −  ≻ 0,  ⪰ 0 .

The constraints (⪰) ≻ impose symmetry and positive (semi)definiteness. The constants
𝛾, 𝜆 > 0 are parameters that control the rank and sparsity of the solution ( ,) . The
Gaussian likelihood function 𝓁 is a proxy for the constraint (9) and is defined as

𝓁 (𝑄 | Σ̂) = log det𝑄 − ⟨𝑄⊤, Σ̂⟩ (11)

where the inner product ⟨𝑋1, 𝑋2⟩ = trace(𝑋⊤
1 𝑋2) . The maximizer of (11) (the ML

estimate) is the sample concentration matrix Σ̂−1 and consequently the Gaussian penalty
pushes the objective function (10) into the neighborhood of this matrix.

It is important to observe that solving the aforementioned PCP problem and program
(10) decompose two entirely different matrices. PCP decomposes the covariance ma-
trix Σ (with an implied assumption that this matrix is known), while (10) decomposes
the concentration matrix Σ−1 by relying only on knowledge of the sample covariance
Σ̂. The conversion between these two decompositions in (6) and (7) is addressed by
Lemma 3.1. Neither decomposition is perfect for our aims since PCP relies on knowl-
edge of Σ and (10) assumes the observations are i.i.d. Gaussian. In this article, we
pursue the latter with the algorithm described in Appendix B.

5 Measuring the accuracy of SLR decompositions

We evaluate SLR decompositions in terms of the accuracy of their portfolio return
variance forecasts.

3There are other difficulties. For instance while it is easy to show that PCP preserves symmetry, it
does not ensure (semi)positive definiteness of the two variables.

4In the literature it is more common to treat the term 𝒫 as the penalty, and that provides an alternative
interpretation for this convex program.
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5.1 Forecasting Portfolio Return Variance

We identify a portfolio with its vector of weights 𝑤. If security returns follow factor
model (3), then the security return covariance matrix Σ admits a low rank plus sparse
decomposition (6) and the variance of returns to portfolio 𝑤 can be decomposed into
low rank and sparse components,

𝐕𝐚𝐫Σ (𝑤) = 𝑤⊤Σ𝑤 (12)

We identify an instance of convex program (10) with a parameter 𝜃 = (𝜆, 𝛾 ) . The
output of convex program 𝜃 is the pair of matrices (𝜃) and  (𝜃) . By Lemma 3.1,
we form the estimators 𝑆 (𝜃) =  (𝜃)−1 and 𝐿(𝜃) =  (𝜃)−1(𝜃) ( (𝜃) − (𝜃) )−1.
Then,

Σ(𝜃) = 𝐿(𝜃) + 𝑆(𝜃) (13)

is an estimator of Σ. Thus, each convex program (10) can be used to forecast return
variance for portfolio 𝑤 as

𝐕𝐚𝐫Σ(𝜃) (𝑤) = 𝐕𝐚𝐫𝐿(𝜃) (𝑤) + 𝐕𝐚𝐫𝑆(𝜃) (𝑤) . (14)

5.2 Measuring Forecast Accuracy

We assess the accuracy of variance forecasts (14) with performance measures devel-
oped in Bianchi, Goldberg & Rosenberg (2016). The portfolio variance forecasting
ratio ℛΣ for portfolio 𝑤 is the quotient of the 𝜃-forecast of variance by true variance,

ℛΣ (𝑤 |𝜃) = 𝐕𝐚𝐫Σ(𝜃)(𝑤)
𝐕𝐚𝐫Σ(𝑤)

. (15)

Since our covariance matrix estimates are based on the decomposition (6), we measure
accuracy on components 𝐿 and 𝑆 separately. The broad variance forecasting ratio, ℛ𝐿,
is the quotient of the 𝜃-forecast of variance due to broad factors by true variance,

ℛ𝐿 (𝑤 |𝜃) = 𝐕𝐚𝐫𝐿(𝜃)(𝑤)
𝐕𝐚𝐫𝐿(𝑤)

. (16)

Similarly, the sparse variance forecast ratio, ℛ𝑆 , is the quotient of the 𝜃-forecast of
variance due to narrow factors and specific return by true variance,

ℛ𝑆 (𝑤 |𝜃) = 𝐕𝐚𝐫𝑆(𝜃)(𝑤)
𝐕𝐚𝐫𝑆(𝑤)

. (17)
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For all of these ratios, a value greater than 1 means that estimate 𝜃 overforecast variance
for 𝑤 and a value less than 1 means that estimate 𝜃 underforecast variance for 𝑤.

An additional performance measure is the recovered rank𝒦 , the rank of𝐿(𝜃), or equiv-
alently, the estimated number of broad factors. As we illustrate below, however, the
ranks of 𝐿 and 𝐿(𝜃) need not be close necessary in order for the measures ℛΣ, ℛ𝐿 and
ℛ𝑆 to be close to 1.

6 Simulation experiments

We use the performance measures developed in Section 5.2 to evaluate the accuracy of
SLR variance forecasts for equally weighted portfolios of simulated securities.

We assume that security returns follow generating process (3), so that the time 𝑡 obser-
vation for security return 𝑅𝑡 is given by

𝑅𝑡 = 𝑌 𝜓𝑡 +𝑋𝜙𝑡 + 𝜖𝑡, (18)

where (𝜓𝑡, 𝜙𝑡, 𝜖𝑡) are the time 𝑡 factor returns and specific returns. We assume returns
are time independent. The broad and narrow factor exposures are constants. It follows
that the security covariance matrix Σ admits a low rank plus sparse decomposition (6),
and we investigate how accurately convex program (10) can recover the decomposition
from a sample covariance matrix Σ̂ estimated from simulated data.

To make the experiment precise, we need to calibrate the return generating process
(18), and to specify the number of securities 𝑁 and the number of observations 𝑇 . Our
choices take account of empirically observed properties of financial return data. We
also need to specify the number of simulation paths 𝜌, and to identify the parameters 𝜃 =
(𝜆, 𝛾 ) of convex program (10). Since we are still developing criteria and algorithms for
the selection of these parameters, we examine several candidates.

6.1 Calibrating the Return Generating Process

Return generating process (18) is fully specified by

• the number of broad factors, 𝐾 , and the number of narrow factors, 𝜅,

• the 𝐾 ×𝑁 matrix 𝑌 of exposures of securities to broad factors,

• the 𝜅 ×𝑁 matrix 𝑋 of exposures of securities to narrow factors,
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• distributions of the 𝐾-vector of broad factor returns, 𝜓 , the 𝜅-vector of narrow
factor returns, 𝜙, and the 𝑁-vector of specific returns, 𝜖. The returns 𝜓 , 𝜙 and 𝜖
are independent.

We assume broad factor returns, narrow factor returns and specific returns are jointly
Gaussian, which is consistent with convex program (10).

• Factor 1 is market-like, meaning that most factors have positive exposure and the
factor has an annualized volatility of 16%.

• Factor 2 is long/short and value-like, with an annualized volatility of 4%.

In other words, the factor covariance matrix 𝐹 in (4) is given by

𝐹 = 1
250

(
0.16 0
0 0.04

)2

. (19)

The average exposure of security to the market-like factor is 1, while the value expo-
sures average to zero. So we calibrate our model by drawing the rows of the broad
factor exposure matrix 𝑌 from a normal distribution with mean (1, 0)⊤ and covariance
matrix (

0.25 0
0 0.75

)
.

Factor exposures (unlike factor returns) are not random in our model. Here, we are
using the normal distribution as a convenient means of constructing exposures of se-
curities to factors.

Narrow factors are indicators of sector or country. In our simulations, the number of
narrow factors 𝜅 depends on the number of securities 𝑁 in the estimation universe,
𝜅 = ⌊𝑁∕ log𝑁⌋. Each of the 𝑁 securities has exposure of 1 to a single narrow factor
and an exposure of 0 to all other narrow factors. Each narrow factor supports five
non-zero exposures. Narrow factors have annualized volatilities drawn uniformly from
(10%, 25%) . The specific covariance matrix Δ is diagonal, and annualized specific
volatilities are drawn uniformly from (20%, 50%) .

6.2 Experimental design

For a universe of 𝑁 = 125 securities, we use return generating process (18) to simu-
late a year’s worth of daily returns, 𝑇 = 250 observations. We use this simulated data
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to generate a sample covariance matrix Σ̂, which we submit to an instance of convex
program (10) specified by parameters 𝜃 = (𝜆, 𝛾). For each Σ̂, we try several different
parameter specifications. The parameter 𝛾 is set to 1∕

√
𝑁 as recommended in Can-

dès et al. (2011), and the values of 𝜆 are chosen by trial and error. We use recovered
covariance matrices Σ(𝜃) = 𝐿(𝜃) + 𝑆(𝜃) to forecast variance for the equally weighted
portfolio.

For each 𝜃 = (𝜆, 𝛾), we run 𝜌 = 400 simulation paths,5 and we report the average and
standard deviation of the performance accuracy measures ℛΣ, ℛ𝐿, ℛ𝑆 and 𝒦 .

We benchmark our results in two ways. First, we run a noiseless base case where convex
program (10) is given the true covariance matrix Σ. In effect, we have set the number
of observations 𝑇 to ∞. By construction, Σ has an exact SLR decomposition, and we
are asking how effectively convex program (10) can recover it.6

Second, we compare SLR forecasts to those generated by a principal component anal-
ysis estimator, PCA. The dominant eigenvectors of the sample covariance matrix are
the broad factors that generate the low rank component. We endow PCA with the cor-
rect number of broad factors. There are no narrow factors, and the sparse matrix is a
diagonal populated by variances of the residuals of security returns to broad factors.
Stretching notation, we allow the symbol 𝜃 to refer to PCA.

6.3 Results

Accuracy statistics for the noiseless base case are reported in Table 1. Columns 1–3
report accuracy results for SLR variance forecasts with three different values of the
calibration parameter 𝜆, which controls fidelity to the SLR decomposition of the con-
centration matrix (7). There are four rows in Table 1. The first three rows report the
accuracy measures ℛΣ, ℛ𝐿 and ℛ𝑆 . The fourth row reports the recovered rank 𝒦 ,
which is the estimated number of broad factors. In all cases, 𝒦 = 2. The ratios ℛΣ
and ℛ𝐿 indicate near perfect forecasting of overall variance and variance due to broad
factors. The sparse variance forecasting ratio, ℛ𝑆 , indicates underforecasting. The re-
sults tend to worsen as 𝜆 increases. Table 1 column 4 reports the performance of PCA.
On both the low rank and sparse components of variance, PCA is less accurate than any
of the SLR models, ostensibly because PCA neglects narrow factors. This is true even

5With 𝜌 = 400 simulation paths, 97% Monte-Carlo confidence intervals on the reported forecast
ratios implied by the Central Limit Theorem are obtained by dividing the standard deviation by 10.

6This benchmarking exercise conflicts with the theoretical basis of (10), which expects a noisy input.
The results are interesting nevertheless.
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though we endow PCA with knowledge of the true number of broad factors.7 Column
5 of Table 1 reports the true annualized volatility of the equally weighted portfolio.
Columns 6 and 7 report the true numbers of broad and narrow factors.

𝑁 Metric SLR: (𝜆 × 104) PCA Ground Truth

1.0 2.0 4.0 Ann. Vol. 𝐾 𝜅

125

ℛΣ 1.00 1.00 0.99 1.04 0.17
(stdev) (0.00) (0.00) (0.00) (0.00)
ℛ𝐿 1.00 1.00 1.00 1.08 0.16

(stdev) (0.00) (0.00) (0.00) (0.00)
ℛ𝑆 0.98 0.96 0.92 0.53 0.05

(stdev) (0.00) (0.00) (0.00) (0.00)
𝒦 2.00 2.00 2.00 2.00 2 25

(stdev) (0.00) (0.00) (0.00) (0.00)

Table 1: Accuracy of SLR and PCA decompositions of the true covariance matrix. We
report portfolio variance forecasting ratios for an equally weighted portfolio as well
as the number of broad factors recovered. Since there is no sample noise, we run a
single path for each decomposition. The last three columns report the true annualized
volatility of the equally weighted portfolio along with the true number of broad and
narrow factors that generate security returns.

Results of simulation experiments are in Table 2, whose layout is identical to that of
Table 1. For each 𝜃 = (𝜆, 𝛾) and PCA, we report the average and standard deviation of
the performance measures over 𝜌 = 400 simulation paths. To improve performance,
values of 𝜆 are greater in Table 2 than in Table 1.

7In experiments not reported in this note, we found the performance of PCA degraded when we
extracted different numbers of broad factors.
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𝑁 Metric SLR: (𝜆 × 104) PCA Ground Truth

6.0 8.0 10.0 Ann. Vol. 𝐾 𝜅

125

ℛΣ 1.00 0.99 0.98 1.06 0.17
(stdev) (0.09) (0.09) (0.09) (0.09)
ℛ𝐿 1.01 1.00 0.99 1.11 0.16

(stdev) (0.10) (0.10) (0.10) (0.10)
ℛ𝑆 0.82 0.81 0.80 0.52 0.05

(stdev) (0.03) (0.02) (0.02) (0.00)
𝒦 12.25 8.48 5.59 2.00 2 25

(stdev) (0.64) (0.64) (0.71) (0.00)

Table 2: Accuracy of SLR and PCA decompositions of sample covariance matrices.
We report portfolio variance forecasting ratios for an equally weighted portfolio as well
as the number of broad factors recovered. Averages and standard deviations are esti-
mated from 𝜌 = 400 simulated paths. The last three columns report the true annualized
volatility of the equally weighted portfolio along with the true number of broad and nar-
row factors that generate security returns.

While the accuracy of the portfolio variance forecasts and broad factor variance fore-
casts persists, noise in Σ̂ exacerbates the underforecasting of narrow and specific vari-
ance. For the range of parameters considered, accuracy ratios are relatively consistent
although the number of broad factors estimated, 𝒦, varies materially. A deeper inves-
tigation indicates that higher rank solutions erroneously identify noise as broad factors
will small eigenvalues. As in the noiseless base case, PCA is less accurate than any of
the SLR models, even though we endow PCA with the knowledge of the true number
of broad factors.

In Figures 1–4, we show the largest eigenvalues of sample covariance matrices as well
as the true and recovered covariance matrices and their decompositions for a universe
of 𝑁 = 125 securities. We illustrate both SLR and PCA decompositions, and both
noiseless benchmarks and simulations.

Figure 1 shows eigenvalues of the true, sample and recovered covariance matrices, Σ,
Σ̂ and Σ(𝜃). In the noiseless examples shown in the top two panels, the true and sample
covariance matrices are identical. SLR (top left panel) replicates the largest eigenvalues
of Σ better than PCA (top right panel), which overestimates the top two eigenvalues.
This overestimate points to an intrinsic bias in basic PCA estimators. According to
the first Horn inequality, the largest eigenvalue Σ is bounded above by the sum of the
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Figure 1: Eigenvalues of true, sample and recovered covariance matrices for 𝑁 = 125
securities. Top panels correspond to the noiseless base case, where the true and sample
covariance matrices coincide. Bottom panels correspond to 𝜌 = 400 simulations, each
with 𝑇 = 250 daily observations. Left panels correspond to SLR (top: 𝜃 = (𝜆, 𝛾) =
(0.0002, 0.089), Table 1 column 2; bottom: 𝜃 = (𝜆, 𝛾) = (0.0008, 0.089), Table 2
column 2). Right panels correspond to PCA (top: Table 1 column 4; bottom: Table 2
column 4).
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largest eigenvalues of 𝐿 and 𝑆.8 By construction, however, the largest eigenvalue of
the PCA estimate of Σ is bounded below by the largest eigenvalue of Σ̂.

Figure 2 extends the investigation in Figure 1 by showing true and recovered eigenval-
ues of the low rank and sparse components of Σ. The top right panel of Figure 2 shows
that the overestimation of the top two eigenvalues of Σ by PCA can be traced to the
low rank component. The top left panel of Figure 2 shows that the overall agreement
of recovered and true eigenvalues of the covariance matrix for SLR extends to the low
rank and sparse components.

The bottom two panels of Figures 1 and 2 show results for simulations, where the true
covariance matrix Σ is not observable, so matrix decomposition is based on the sample
covariance matrix Σ̂. For sample and recovered quantities, we show the median and
interquartile range. For the SLR example (Figure 1, bottom left panel), the median top
recovered eigenvalue is closer to the truth than to the median sample, even though the
truth is not observable. For PCA(2) (Figure 1, bottom right panel), both the true and
median sample top eigenvalues are outside the interquartile range of the recovered top
eigenvalue.

In Figure 3, we show the eigenvalues of Σ and its low rank and sparse components on
the same plot. The image suggests how the eigenvalues of the components combine to
generate the eigenvalues of the sum.9

8More information about Horn’s inequalities is in Knutson & Tao (2001).
9More information about eigenvalue sums is in Knutson & Tao (2001).
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Figure 2: Eigenvalues of low rank and sparse components of true and recovered co-
variance matrices for 𝑁 = 125 securities. Top panels correspond to the noiseless base
case, where the true and sample covariance matrices coincide. Bottom panels corre-
spond to 𝜌 = 400 simulations, each with 𝑇 = 250 daily observations. Left panels
correspond to SLR (top: 𝜃 = (𝜆, 𝛾) = (0.0002, 0.089), Table 1 column 2; bottom:
𝜃 = (𝜆, 𝛾) = (0.0008, 0.089), Table 2 column 2). Right panels correspond to PCA
(top: Table 1 column 4; bottom: Table 2 column 4).
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Figure 3: Eigenvalues of the true covariance matrix for 𝑁 = 125 securities along with
those for its low rank and sparse components.
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Figure 4: Eigenvalues of recovered covariance matrices for 𝑁 = 125 securities along
with their low rank and sparse components. Top panels correspond to the noiseless
base case, where the true and sample covariance matrices coincide. Bottom panels
correspond to 𝜌 = 400 simulations, each with 𝑇 = 250 daily observations. Left panels
correspond to SLR (top: 𝜃 = (𝜆, 𝛾) = (0.0002, 0.089), Table 1 column 2; bottom:
𝜃 = (𝜆, 𝛾) = (0.0008, 0.089), Table 2 column 2). Right panels correspond to PCA
(top: Table 1 column 4; bottom: Table 2 column 4).

Analogous plots for the four examples are in Figure 4. Visually, the eigenvalue sums for
the SLR noiseless base case (top left panel) and simulation (bottom left panel) resemble
the true eigenvalue sum more faithfully than do the PCA noiseless base case (top right
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panel) and simulation (bottom right panel).

Figure 5: Sample covariance matrix, 𝑁 = 125 securities, 𝑇 = 250 daily observations.

To conclude the analysis of our simulations, we look at heat maps of the input and
output correlations matrices of a single run of SLR.10 Figure 5 shows a sample corre-
lation matrix estimated from 𝑇 = 250 simulated observations of 𝑁 = 125 securities.
Apart from the ones along the diagonal, the most striking feature is the block diagonal
structure, which corresponds to the 25 narrow factors. Figure 6 shows the true and
recovered low rank correlation matrices, which are structurally similar to the eye. Both
the true and recovered sparse components, shown in Figure 7, feature a block diagonal
structure.

10The SLR paramaters are 𝜃 = (𝜆, 𝛾) = (0.0008, 0.089), and the results correspond to the bottom left
panels of Figures 1, 2 and 4, and to Table 2 column 3.
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Figure 6: Low rank covariance matrices, 𝑁 = 125 securities, 𝑇 = 250 daily ob-
servations. Left panel: True. Right panel: Recovered, SLR with 𝜃 = (𝜆, 𝛾) =
(0.0008, 0.089).

Figure 7: Sparse components of the covariance matrix, 𝑁 = 125 securities, 𝑇 = 250
daily observations. Left panel: True. Right panel: Recovered, SLR with 𝜃 = (𝜆, 𝛾) =
(0.0008, 0.089).
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7 Empirical experiments

In this exploratory section, we illustrate the performance of SLR on empirical data with
heat maps of low rank and sparse return correlation matrices recovered from an empir-
ical covariance matrix, Σ̂, estimated from 𝑇 = 250 daily returns to 𝑁 = 125 global
equities. The sample period ended 31 October 2015. We randomly selected securities
from 𝜅 = 25 countries. The block diagonal structure of the input correlation matrix
shown in Figure 8 indicates that country effects contribute to empirical correlations.

Figure 8: Empirical correlation matrix for Σ̂. Data source: State Street GX Labs.

Figure 9 shows heat maps of the low rank (left panel) and sparse (right panel) correla-
tion matrices of 𝐿(𝜃) and 𝑆 (𝜃) recovered by SLR with 𝜃 = (𝜆, 𝛾) = (0.001, 0.089). In
this recovery, there are 15 broad factors, and the block diagonal structure is visible in
the sparse component. Figure 10, illustrates the eigenvalues of 𝐿(𝜃) and 𝑆 (𝜃) recov-
ered by the SLR decomposition. Unlike PCA, the positive eigenvalues of the low rank
(broad factor) component can be interspersed with the eigenvalues of the sparse com-
ponent. This key feature distinguishes SLR methods from PCA as the latter assumes
the broad factors are necessarily variance maximizing latent variables, while the latter
does not. Section 6, Figure 2 (top right panel) illustrates this distinction in a simulation
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where the eigenvalues of the low rank and sparse components of the true covariance
matrix are interspersed. This intertwining is correctly captured by the SLR estimate,
but it is not (and cannot be) captured by PCA.

Figure 9: Low rank and sparse correlation matrices recovered from Σ̂ by SLR with
𝜃 = (𝜆, 𝛾) = (0.001, 0.089). The low rank component is based on two broad factors.
Data source: State Street GX Labs.

Figure 10: Low rank and sparse eigenvalues for SLR with 𝜃 = (𝜆, 𝛾) = (0.001, 0.089).
Data source: State Street GX Labs.
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8 Conclusion

The use of convex optimization to identify the risk factors that drive returns to finan-
cial securities is a recent innovation. In this article, we begin to explore the efficacy
of a particular convex program that decomposes a sample concentration matrix into
low rank component that includes broad factors affecting most securities, and a sparse
component that includes both narrow factors such as industries and countries as well
as specific return. On a theoretical basis, there are advantages to convex optimization
over traditional approaches based on principal component analysis. For example, con-
vex optimization does not rely on spectral analysis to identify factors, and it is less
sensitive to outliers than classical principal component analysis.

To illustrate the efficacy of convex optimization, we measure the variance forecasting
accuracy of a SLR covariance matrix estimate on an equally weighted portfolio of 125
securities simulated from a model with two broad factors and 25 narrow factors. Our
accuracy measures indicate a tendency to underforecast variance due to narrow factors
and idiosyncratic effects, but not as severely as classical PCA. Further, the way in which
the spectra of SLR recovered low rank and sparse components combine is closer to the
true combination that classical PCA.

Our analysis highlights the fact that SLR avoids an intrinsic bias present in classical
PCA. According to the simplest Horn inequality, the largest eigenvalue of a true low
rank plus sparse covariance matrix Σ is bounded above by the sum of the largest eigen-
values of the summands. By construction, however, the largest eigenvalue of a PCA
estimate of the covariance matrix is bounded below by the largest eigenvalue of the
sample covariance matrix.

In a final experiment, we illustrate a SLR decomposition of an empirical covariance
matrix of 125 equities drawn from 25 countries. The block diagonal structure associ-
ated with country effects is clearly visible in the sparse component.

The analysis in this article is just a small indication of the possibilities that convex
optimization holds for the identification of financial risk factors, which, to date, has
been largely the province of fundamental analysts.
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A Gaussian latent graphical model

We justify the application of convex problem (10) of Chandrasekaran et al. (2012) to
decompose the inverse of Σ in (6). The mathematical setting of Chandrasekaran et al.
(2012) concerns observed and latent variables that jointly Gaussian. To this end, con-
sider (𝑅, 𝜓 ) ordered as a zero-mean Gaussian random vector inℝ𝑁+𝐾 with a symmetic,
positive definite covariance block matrix[

Σ 𝑌 𝐹
𝐹𝑌 ⊤ 𝐹

]
. (20)

In particular, there are 𝑁 observed variables 𝑅 and 𝐾 latent (or hidden) variables 𝜓 .
It is well known that in this setting (for example see Anderson (2003)) the marginal
covariance matrix Σ of the observed variables 𝑅 has the following representation.

Σ = 𝑌 𝐹𝑌 ⊤ + 𝐕𝐚𝐫 (𝑅 |𝜓 ) (21)

Here, 𝐕𝐚𝐫 (𝑅 |𝜓 ) is the conditional (on the latent variables) covariance matrix of the
observed variables. Due to the Gaussian assumption, it does not depend on the realiza-
tion of the latent variables 𝜓 . Setting 𝑆 = 𝐕𝐚𝐫 (𝑅 |𝜓 ) in (5), the model

𝑅 = 𝑌 𝜓 + 𝛿 (22)

serves as a representation for (𝑅,𝜓 ) with covariance matrix in (20). The broad factors
in (1) are the latent variables and the residuals are the conditional (on the latent vari-
ables) returns. In our Gaussian setting, entries of 𝑆 depict the pairwise covariances
of the security returns 𝛿 = 𝑋𝜙 + 𝜖 (see (3)) conditional on the broad factor returns.
Indeed, 𝐄(𝛿𝛿⊤) = 𝑆.

B Algorithm

We summarize the “Alternating Direction Method of Multipliers” suggested by Stephen
Boyd and developed by Ma, Xue & Zou (2013). Setting aside the derivation we detail
Algorithm 2 of the latter. This algorithm solves the convex program (10) to decompose
the concentration matrix of the security returns as in (7).

Define variables 𝑄𝑘,𝑘,𝑘,𝑀𝑘 ∈ ℝ𝑁×𝑁 . The superscript 𝑘 indicates the iterate. The
matrix Σ̂ denotes the input sample covariance matrix. Constants 𝜏 ∈ (0, 0.5) and 𝜇 > 0
are the step size and the augmented Lagrangian parameter. The range of 𝜏 guaran-
tees global convergence (Ma et al. 2013). Define the shrinkage operator (extending it
to matrices by application entrywise) ℋ𝑧 (𝑥) = sgn(𝑥) max{|𝑥 − 𝑧|, 0} . With some0,0, 𝑄0,𝑀0, for 𝑘 = 1, 2,… until convergence, we perform the steps:
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1. Compute the SVD of the matrix𝜇Σ̂−𝑘+𝑘−𝜇𝑀𝑘 and denote it by𝑈diag(𝜎)𝑈⊤.
Set the next iterate for 𝑄 as

𝑄𝑘+1 = 𝑈diag(𝛾 )𝑈⊤ ; 𝛾𝑖 =
1
2
(
−𝜎𝑖 +

√
𝜎2
𝑖 + 4𝜇

)
. (23)

2. Set 𝐷 = 𝑄𝑘 − 𝑘 + 𝑘 − 𝜇𝑀𝑘 and apply the shrinkage operator

𝑆𝑘+1 = ℋ𝛾𝜇𝜆𝜏 (𝑘 + 𝜏𝐷) . (24)

3. Compute the SVD of 𝑘 − 𝜏𝐷 and denote it by 𝑈diag(𝜎)𝑈⊤, and

𝑘+1 = 𝑈diag(𝛾 )𝑈⊤ ; 𝛾𝑖 = max
{
𝜎𝑖 − 𝜇𝜆, 0

}
. (25)

4. Update the Lagrange multipliers 𝑀𝑘+1 = 𝑀𝑘 − (1∕𝜇) (𝑄𝑘 − 𝑘 + 𝑘) .

It is recommended to “symmetrize” each of the iterates after each step, e.g., to apply the
map 𝑋 → 1

2
(𝑋 +𝑋⊤) to 𝑄𝑘,𝑘,𝑘 and 𝑀𝑘. Initialization depends on our best guess

of the solution. In the absence of such a guess, we set 0 = 0 = 𝑄0 = 𝑀0 = 0𝑁×𝑁 .
Stopping criteria are subjective. Ma et al. (2013) propose to stop either when

𝛿𝑍𝑘 < 10−4; 𝛿𝑍𝑘 ≜ ‖𝑄𝑘 − 𝑘 + 𝑘‖𝐹
max{1, ‖𝑄𝑘‖𝐹 , ‖𝑘‖𝐹 , ‖𝑘‖𝐹 } (26)

or when the difference in the objective function values in two successive steps is less
than 10−6. Here, ‖ ⋅ ‖𝐹 is the Frobenius norm. The objective function is computed as

𝑂 (𝑄,, ) = −𝓁 (𝑄 ; Σ̂) + 𝜆
( 𝑁∑

𝑖=1
𝜎𝑖 + 𝛾

𝑁∑
𝑖=1

𝑁∑
𝑗=1

|𝑖𝑗|)
where {𝜎𝑖} are the singular (eigenvalues) of 𝐿. Define, the difference

𝛿𝑂𝑘 = |𝑂 (𝑄𝑘+1,𝑘+1,𝑘+1) − 𝑂 (𝑄𝑘,𝑘,𝑘)| (27)

and so the above condition says 𝛿𝐹𝑘 < 10−6. Ma et al. (2013) suggest taking 𝜇 = 10 and
𝜏 = 0.6 to improve convergence rates. We are more interested in accuracy and select
𝜏 = 0.1 and 𝜇 = 10 × ‖Σ̂‖𝐹∕𝑁 .
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