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Outline

 Portfolio Optimization with Noisy Covariance Matrices

 The “curse of dimensionality”

 Poor behavior of optimized portfolios

 Correlation Shrinkage

 Naïve shrinkage (toward zero): beneficial for optimization, but detrimental for risk forecasting

 Advances in Estimating Covariance Matrices

 Avoiding the pitfalls of the sample correlation and naïve shrinkage

 Applications to MAC risk models
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Portfolio Optimization with 

Noisy Covariance Matrices



The Curse-of-Dimensionality Problem

 Covariance matrices can be very large

 Russell 3000 (N = 3000 stocks)

 Bloomberg MAC3 Model (K = 2000+ factors)

 Portfolio construction demands a robust covariance (correlation) matrix

 Risk model should not identify spurious hedges that fail out-of-sample 

 If the number of time periods is less than the number of variables, the sample correlation 

matrix contains “zero eigenvalues”

 Leads to spurious prediction of “riskless” portfolios

 This feature makes the sample correlation matrix unsuitable for portfolio construction

 However, the sample correlation is essentially optimal for risk forecasting

 Dual objectives of building a sound risk model: 

 Deviate minimally from the sample correlation to ensure accurate risk forecasts

 Build a well-conditioned covariance matrix that is reliable for portfolio construction
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Perils of Noise in the Sample Correlation
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 Bias statistic represents ratio of realized risk to 

forecast risk

 Biases and out-of-sample volatilities increase 

dramatically as the covariance matrix becomes 

more ill-conditioned (noisier)

Minimum-volatility fully 

invested portfolio
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B-stat and Volatility

 Take the largest 100 US equities as of 31-Mar-2016, with complete daily return history to 

13-Jan-1999

 Estimate family of asset covariance matrices using EWMA with a variable HL parameter 

 Half-life provides a convenient “knob” to control noise level

 Each day, construct the min-vol fully invested portfolio:

Out-of-sample test period:                  

27-Dec-2000 to 31-Mar-2016



Portfolio Optimization (Ex Ante)
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 Decompose optimal portfolio into alpha and hedge portfolios:
1
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 Hedge Portfolio is uncorrelated with the optimal portfolio

0hΩw (Property 1)

 Hedge Portfolio has zero alpha

0h α (Property 2)

 Hedge Portfolio is negatively correlated with the alpha portfolio

0hΩα (Property 3)
Hedge portfolio reduces portfolio risk

without changing the expected return

Optimal portfolio



Geometry of Optimization (Ex Ante)
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 Hedge portfolio is uncorrelated with optimal portfolio

2 2 2
    P h Portfolio Variance

 Let rh denote the predicted correlation between alpha and hedge portfolios

 The magnitude of the correlation determines the quality of the hedge

   r
h h

Volatility of hedge 

portfolio (optimal)



Potential Pitfalls of Optimization
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 Optimization always leads to superior ex ante performance

 There is no guarantee of improvement ex post

 Estimation error within the covariance matrix represents a potential pitfall in 

portfolio optimization

 Estimation error in the volatility:

 Risk models may underestimate the volatility of the hedge portfolio

 Estimation error in the correlation:

 Risk models may “paint an overly rosy picture” of the correlation between the alpha and the 

hedge portfolios

 Estimation error gives rise to several detrimental effects:

 Underestimation of risk of optimized portfolios

 Higher out-of-sample volatility of optimized portfolios

 Positive realized correlation between optimized and hedge portfolios



Estimation Error in the Volatility
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 Suppose we correctly estimate the correlation between hedge/alpha portfolios, 

but we under-estimate volatility of hedge portfolio

 Side effects:

 Under-estimation of risk of optimal portfolio

 Inefficient allocation of risk budget (hedge portfolio adds risk but no return)

 Increased out-of-sample volatility of optimal portfolio



Estimation Error in the Correlation

10

 Now suppose that we correctly estimate 

the volatility of the hedge portfolio

 However, suppose that we over-estimate 

magnitude of correlation

 Side effects

 Under-estimation of portfolio risk

 Inefficient allocation of risk budget

 Increased out-of-sample volatility

 We think we hold Portfolio C

 In reality, we hold Portfolio D

 Portfolio E is true optimal portfolio



Empirical Study
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 Take the largest 100 US equities as of 31-Mar-2016, with complete daily return history back 

to 13-Jan-1999

 Estimate a family of asset covariance matrices using EWMA with variable HL parameter 

 Each day, construct the minimum-volatility portfolio with unit weight in a particular stock:

 We have a family of 100 portfolios for each HL parameter

 Each portfolio is 100 percent long a particular stock, and hedges the risk by shorting the 

other 99 stocks

 Decompose 100 portfolios into alpha and hedge portfolios

 Noise may induce biases in predicted volatilities and correlations
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Menchero, Jose and Lei Ji. Portfolio Optimization with Noisy 

Covariance Matrices, Journal of Investment Management (2019)



Biases in Portfolio Volatility
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Biases in correlations must be 

responsible for under-forecasting 

the volatility of optimal portfolio
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 Compute mean bias statistics for each of 100 alpha, hedge, and optimal portfolios

 Alpha portfolio is fully invested in a single stock

 Alpha portfolio is independent of the covariance matrix

 Covariance matrix makes unbiased forecasts for alpha portfolio

 Hedge/optimal portfolios depend on covariance matrix

 Hedge portfolio risk is largely unbiased, 

except for very short HL

 Optimal portfolio is significantly under-forecast 

across the full range of HL parameters

Bias Statistics



Biases in Correlations
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 Compute mean portfolio correlations both 

ex ante and ex post

 Optimal/hedge correlation:

 Ex ante, the correlation is exactly zero

 Ex post, it is positive, indicating inefficient 

allocation of the risk budget

 Problem is exacerbated for short HL

 Alpha/hedge correlation:

 The hedge always appears better ex ante

than it turns out to be ex post

 Gap between ex ante and ex post grows 

larger for short HL parameters
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The noisier the correlations, the better 

the optimal portfolio appears ex ante, 

but the worse it becomes in reality



Alpha/Hedge Portfolios and the Efficient Frontier

Risk (%)
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Efficient Frontier

 Form the minimum-volatility fully invested portfolio with 

fixed expected return

 Universe is largest 100 stocks with covariance matrix 

using 150-day HL on 31-Mar-2016

 Red line is the efficient frontier assuming CAPM:
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 Blue line is the efficient frontier with alphas (dn):

 d      n n nME r E R

 C is the min-vol fully invested portfolio

 Y/Z are the zero-beta portfolios (relative to P/M)

 P/M are the efficient portfolios using respective 

return assumptions

  is the alpha portfolio (177% long)

 H is the hedge portfolio (77% short)
Note: exceptional returns (dn ) are drawn 
from a standard normal of width 30 bps



Constructing the Efficient Frontier

 Portfolio optimization with equality constraints:
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wΩwMinimize: Subject to: Aw b

 Solution obtained using Lagrange multipliers:
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 Target return and full-investment constraints:
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 Terminology: alphas here represent expected stock returns

The dn represent exceptional returns, 

commonly referred to as “alphas”

Optimal Portfolio
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Correlation Shrinkage



Shrinking Correlations Toward Zero
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 Factorize the sample covariance matrix into product of a diagonal volatility matrix     and a 

correlation matrix 

 Typically estimate volatilities with short HL parameter (responsiveness)

 Typically estimate correlations with relatively long HL parameter

 Shrinking the sample correlation toward zero

Ĉ

V̂

ˆ ˆˆ ˆΩ VCV Sample Covariance Matrix

  ˆ ˆ ˆ1       C C I Ω VC V Shrunk Covariance Matrix

 Benefits of shrinking

 Reduced sampling error 

 May be beneficial for portfolio construction

 Pitfalls of shrinking

 May produce biased forecasts



Shrinkage and Portfolio Optimization
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 Construct minimum-volatility fully invested portfolio four different ways:

 1/N portfolio (equal weighted, no optimization)

 Zero correlation (=1.0)

 Sample correlation (=0)

 Partial shrinkage (=0.2)

 1/N portfolio performed worst, except 

for very short HL

 Zero correlation amounts to inverse 

variance weights

 Sample correlation performed worst for 

very short HL (due to noise)

 Shrinkage of 20% had lowest volatility 

for any value of HL parameter
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Pitfalls of Naïve Shrinkage
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 Consider two-asset portfolios

 Suppose assets have equal volatility ( =1) and correlation r

 Portfolio variance is estimated over  periods

 Error depends on three parameters: (1) number of periods , (2) true correlation r, 
and (3) shrinkage intensity 

1 2 PR f f (Go long Asset 1, short Asset 2)

 2 2 1 r P True portfolio variance

2 2 2
1 2 1 2

ˆˆ ˆ ˆ ˆ ˆ2    r    P Estimated variance ˆ ˆ1r  r  
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Sample Correlation is Nearly Optimal
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 Plot RMS error versus shrinkage intensity

 Consider three values for true correlation (0.30, 0.50, 0.70)

 Consider a 252-day look-back window for estimation

 Zero shrinkage appears optimal

 Actually, finite shrinkage always reduces RMS error 

 Optimal shrinkage intensity is very close to zero

 The error reduction is so miniscule that it is not visible to 

the naked eye

 Shrinkage may induce large errors in risk forecasts

 Forecasting error is exacerbated as the correlation 

and/or shrinkage intensity increase

 Effectively, the sample correlation is optimal for 

predicting risk (for non-optimized portfolios)

Menchero, Jose and Peng Li. Correlation Shrinkage: Implications 

for Risk Forecasting, Journal of Investment Management (2020)
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Advances in Estimating 

Factor Correlations



Estimating Factor Correlation Matrices
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 Sample correlation matrix

 Based on “textbook” definition (i.e., intuitive and transparent)

 Produces accurate risk forecasts (except for optimized portfolios)

 Possesses “Achilles heel” (not reliable for portfolio construction)

 Principal Component Analysis (PCA)

 Statistical technique to extract global factors from the data

 Assume a small number of global factors (principal components) fully capture correlations of 

local factors (i.e., uncorrelated residuals)

 Time-series Approach

 Specify “global” factor returns to explain “local” factor correlations

 Estimate loadings (exposures) of local factors by time-series regression

 Local correlations derived from loadings and global covariance matrix

 May result in biased correlations if important global factors are omitted

 Correlations can deviate greatly from the sample correlation



Blended Correlation Matrices
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 Ledoit and Wolf (2003) showed that blending the sample covariance matrix with a 

covariance matrix from a one-factor model produced optimized fully invested 

portfolios with lower out-of-sample volatility than either model individually

 Blend sample correlation (using weight w) with PCA correlation using J principal 

components derived from K local factors

 Specify number of PCA factors by parameter , where J=K

 Two-parameter model for correlation matrix:

 Optimal blending parameters are determined empirically

 Technique represents the MAC3 Bloomberg methodology

     0, 1   B Pw w wC C C Blended Matrix

Ledoit and Wolf. Improved Estimation of the 

Covariance matrix of Stock Returns, Journal of 

Empirical Finance, December 2003, pp. 603-621

Menchero, Jose and Lei Ji. Advances in 

Estimating Covariance Matrices, Journal of 

Investment Management (to appear)



Benefits of Blending (Stock Example)
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 Form minimum-volatility fully invested portfolio of 100 stocks

 Compute sample correlation matrix (using 25d and 200d HL)

 Compute PCA model with one factor (25d and 200d HL)

 Blend the two covariance matrices

 Volatility is minimized at some intermediate 

blending weight

 Blended 25d HL model performs nearly as 

well as model with 200d HL

 Model with 25d HL assigns less weight to 

sample (0.4)

 Model with 200d HL assigns more weight to 

sample (0.7)
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Top 100 US stocks. Daily rebalance.       

Sample period: 27-Dec-2000 to 31-Mar-2016.



Across Asset Classes (Equities vs Commodities)
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 Consider the correlation between the US energy factor (equity) and the crude-oil 

commodity factor (Brent shift)

 Plot predicted and realized correlations (52w HL) versus time

 Blended approach never deviates far from 

the realized (sample) correlation

 This makes the blended approach more 

accurate for making risk forecasts

 Time-series method systematically under-

predicts correlation

 Result is typical and representative of 

other asset classes

 Suggests the time-series approach is 

incapable of fully capturing correlations

Year

2005 2007 2009 2011 2013 2015

C
o

rr
e

la
ti

o
n

0.0

0.2

0.4

0.6

0.8

1.0

Realized
Time Series
Blended

Correlation versus Time



Correlation Scatterplots
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 Goal: obtain well-conditioned correlation matrix (reliable for optimization) while 

deviating minimally from the sample correlation matrix (accurate risk forecasts)

 Conventional approach uses the “time-series method”

 Tries to identify “global” factor returns to explain “local” correlations 

 Time-series method tends to systematically underforecast r

 Example: correlation between equity factors and fixed-income factors Slope versus Time

21-Mar-2018



More Cross-Asset Results
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 Report slope coefficients for correlation scatterplots across asset classes

 Includes 387 equity factors, 431 fixed income factors, and 222 commodity factors

 Time-series method

 Large biases within each asset class

 Biases are exacerbated across asset classes

 Effective 71% shrinkage intensity between equities and fixed income

 Blended method

 Near perfect slope coefficients within and across asset classes

 Reliable correlation estimates for risk forecasting

Full set of factors within each asset class

Asset Class Equities Fixed Comm Equities Fixed Comm

Equities 0.75 0.29 0.29 1.00 0.97 0.91

Fixed Income 0.29 0.62 0.21 0.97 1.01 0.94

Commodities 0.29 0.21 0.31 0.91 0.94 0.95

Time Series Method PCA Shrinkage

21-Mar-2018

Empirical 

slope 

coefficients



Summary
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 Sample Correlation

 Great for making risk forecasts (except for optimized portfolios)

 Not reliable for portfolio optimization

 Shrinking Correlations to Identity Matrix

 Well-conditioned matrix (more robust for portfolio optimization)

 Leads to biases in risk forecasts

 Blended Correlations

 Blend sample with the PCA correlation matrix

 Closely mimics sample correlation (good for risk forecasts)

 Well-conditioned matrix (suitable for portfolio optimization)

 Time Series Method

 Tends to systematically underforecast correlations

 Not well suited for predicting portfolio volatility


