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Motivation: Publication Effect on Investment Strategies

Question: Does academic publication of a strategy affect this strategy’s return?

e Intuition: After publication traders exploit strategy and drive down profits

e lllustrative example (Banz 1981): Size strategy (small-minus-big portfolio)
Smaller companies have higher average returns (published in 1981)

e Investment performance measure: Mean return in excess of a market index
(alpha= outperformance relative to market)
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Motivation: Publication Effect on Investment Strategies

Question: Does academic publication of a strategy affect this strategy’s return?

e Intuition: After publication traders exploit strategy and drive down profits

e lllustrative example (Banz 1981): Size strategy (small-minus-big portfolio)
Smaller companies have higher average returns (published in 1981)

e Investment performance measure: Mean return in excess of a market index
(alpha= outperformance relative to market)

O.uunns
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This Paper: A Causal Inference Approach

estimate counterfactual

missing observations
Return without publication ( § )

Control Vv i ?
~—
alpha without
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Return with publication
Treated ?? \/
1963 1981 2010
e —
alpha with
publication

e Experiments have identical control and treatment groups

Fundamental problem here: Only observe treated or control outcomes
e Our approach: Model counterfactual as missing observations and impute
missing values

Counterfactual = mimicking average of untreated observations



This Paper: New Methodology

e Large-dimensional panel data: Many strategies’ returns over many periods.
e Complex treatment pattern: Strategies are published at different times

with different probabilities

v ?2?

vi?

vz
v

Strategy

Time
Observational pattern for the control panel

e No pre-specified model: Use general statistical factors to impute
counterfactual returns without a prior what makes strategies similar

e A general causal inference approach: Model counterfactual outcomes as
missing observations to obtain entry-wise control and test individual and

weighted effects



Motivating Example: Cumulative Return of Size Strategy
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e Our approach: Obtain the full time-series of counterfactual outcomes
e Advantage: Analyze more than simple mean effects



Contribution

Methodology

1. Easy-to-adopt method to impute missing observations on panel data with
general observation patterns

2. Inferential theory for estimated factor model and each imputed value
under various observation patterns

3. Tests for entry-wise and weighted treatment effects

4. Generalization of Principal Component Analysis (PCA) to incomplete
panels

Empirical results

1. Study the publication effect on strategies’ returns and alphas

2. 15% of strategies exhibit significant reduction, different from and fewer
than those from the naive before-after analysis



Broader Applications

Causal inference on panel data:

Example: Telehealth, pricing algorithms on demand

Problem: When and where is the intervention effective?

Our solution: Tests for entry-wise and weighted treatment effects

Importance: Goes beyond mean effects without assuming prespecified covariates
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Broader Applications

Causal inference on panel data:

Example: Telehealth, pricing algorithms on demand

Problem: When and where is the intervention effective?

Our solution: Tests for entry-wise and weighted treatment effects

Importance: Goes beyond mean effects without assuming prespecified covariates

Large-dimensional factor modeling

Example: Macroeconomic data, stock returns

Problem: How to estimate a factor model from incomplete data?
Our solution: Estimator for the factor model with confidence interval
Importance: Input for other applications, for example risk factors

Missing data imputation

Example: Financial data, users’ ratings at Amazon, mixed frequency data
Problem: Whether to use imputed value?
Our solution: Estimator for each entry with confidence interval

Importance: Include observations with incomplete data instead of leaving them out for

analysis which can lead to bias and efficiency loss



Related Literature (Incomplete)

Causal inference on panel data

e Difference in differences: Card 90, Bertrand et al. 04, Athey and Imbens
18, Arkhangelsky 18

e Synthetic control methods:
Abadie et al. 10, Haiao et al. 12, Abadie et al. 15, Doudchenko and
Imbens 16, Li and Bell 17, Li 17, Masini and Medeiros 18, Arkhangelsky 18

Matrix completion

e Independently sampling: Candes and Recht 09, Candes and Plan 10,
Mazumder et al 10, Negahban and Wainright 12, Klopp 14

e Dependently sampling: Athey et al. 18

e Independently sampling with inferential theory: Chen et al. 19

Factor modeling

e Full observations with inferential theory: Bai and Ng 02, Bai 03, Fan et al.
16, Kelly et al. 18, Pelger and Xiong 20a+b, Lettau and Pelger 20a+b

e Partial observations without inferential theory: Stock and Watson 02,
Banbura and Modugno 14

e Partial observations with inferential theory: Jin et al 20, Bai and Ng 19



Theory: Model and Estimation



Model Setup: Approximate Latent Factor Model

Approximate factor model: Observe Y for N units over T time periods

=

Ye= N F: +ei

~
Ixk kx1

In matrix notation:

AN FT +
~— ==

{o

e N and T large

Factors F; explain common time-series movements

Loadings /\; capture correlation between units

Factors and loadings are latent and estimated from the data

e Common component C; = A/ F;

Idiosyncratic errors E[e;:] = 0

e Number of factors k fixed



General Observational Pattern

) . 1 observed
Observation matrix W = [W;| : Wi =
0 missing

1] { .lia-'

SRR

e Staggered treatment adoption
e Missing uniformly at random P(Wi =1) = pjz
P(Wi=1)=p Once missing stays missing:

e Cross-section missing at random Wis =0fors >t

P(Wi =1) = p; e Mixed-frequency observations
e Time-series missing at random P(Wi = 1) = pir
P(Wi = 1) = pi Equivalent to staggered design
after reshuffling



Estimation of the Factor Model

Step 1 Estimate sample covariance matrix 3 of Y using only observed entries
Qjj = {t: Wi =1 and W = 1} are times where both units are observed

viz
v

?
?
v ? A 7|2

- 00 W >

Step 2 Estimate loadings /A (standard):
Apply principal component analysis (PCA) to Y= ﬁ/N\ﬁ/N\T
Step 3 Estimate factors F with regression on loadings for observed entries:

N = N
F - <Z W,-j\,-/”\?> (Z vv,-f/”\,-v,-f>
i=1 i=1

Step 4 Estimate common components/missing entries Ce = /~\,-T F.



lllustration of Distribution Theory: A Toy Example

One factor model X;; = A\;F;: + e;; with ;(;
Fe " N(0,1) v?
' v
A ST N(0,1) v

Inferential theory for A, fori = 1,---, No,

To To T
. T 1 1 1
VT (Ai=N) =y/=—=D Feir +VT | =D FF — =Y FRF | Ai+op(1),
( ) ToVTo & o= "t T& p(1);

< N (o, ?oe) % N (0,2-=-212)
0 To
conventional term variance correction term

e Conventional term:
Asymptotic distribution of standard regression coefficients

e Variance correction term:
Estimation uncertainty from using different number of observations



Assumptions: Approximate Factor Model

Assumption 1: Approximate Factor Model

1. Systematic factor structure: > and >, full rank
1 T L
=N " RF' A% =N AN BT
= ; iF: FooN ZI: A

2. Weak dependence of errors: bounded eigenvalues of correlation and
autocorrelation matrix for errors
Simplification for presentation: e ~ (0,02), E[e}] < oo

3. Factors F; and errors e;; independent

4. Uniqueness of factor rotation: Eigenvalues of >, > r distinct

5. Bounded moments: E[|| ‘] < oof_E[H/\,-HA] < oo
Simplification for presentation: £, '“* (0,5 /), A " (0,%,)

e Standard assumptions on large dimensional approximate factor model
e Largest singular values estimate loadings and factors consistently up to
rotation (in the case of no missing values)
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Assumptions: Observation Pattern

Assumption 2: Observational Pattern

1. W independent of F and e (but can depend on A)

2. “Sufficiently many"” cross-sectional observed entries

N
1
o Z/\,-/\,-T Wie & ¥r:  full rank for all ¢

3. “Sufficiently many” time-series observed entries

N
72 o

Z FtF P full rank matrix for all j
teQj

4. "Not too many” missing entries: g; = lim7,. |Q;|/T > g > 0 and

T QiNQul . s s 1 N N i
qij kI = |IrT1T*>X s I|m|ts Of N2 21;1 2,71 aja;’

1 N N N, I N N N N g ]
W8 2aim1 21 Dak=1 q,/,-/qz and gz D0 Dt 2t Dk q/l,’qk:j exist.
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Asymptotic Results




Inferential Theory

Theorem 1: Loadings
Under Assumptions 1 and 2, it holds for N, T — oo and ﬁ/N — 0:

VT(HTR; = Ay) £ N (0,5 - £ + (wy — DER)

e H is a rotation matrix

= i 1 N N Gl P
o wj = liMy—oo 77 2oig 2o/t apey i > 1 (full observations: wj; = 1)

° ry\bs = ZFl 2 conventional covariance matrix
° ):/TL?S = Z; ):; (/\jT ® ZA)EF(/\J- ® ):/\)):X Z;l variance correction term
=F = E[vec(FtF," )vec(F:F, )]

Fundamental expansion:

VT(HTIA; = A)) = (%FTF)i1 (%/\7/\> -

< 1 ‘QU %‘Qu t; tejt)
S RFT - fFTF)>/\j

‘J‘ teQy

+ op(1)

1 N
+ (N ;/\,/\Tﬁ(

= Convergence rate is \/ T.
14



Inferential Theory

Theorem 2: Factors

Under Assumptions 1 and 2, it holds for N, T — oo and \W/T — 0:

VE(HTF:— F) S N (o, Nzobw L =) piz)

e §=min(N, T)

o w=Ilimy_ o ﬁ 25\1:1 Z;\’Zl Z,N:1 E'kv 1 g{”qk: (full observations/missing
uniformly at random: w = 1)

zobs =55

1
A, t(7'2 conventional covariance matrix

variance correction term

Fundamental expansion:

N
- 1
VO(HTF: — F) :<N > \A/,t/\,/\,.T)
i=1

-1

( 5 1 EN:WA )
—— it/\i €jt
N VN =

Ve & oy
4 (W ; Wie (™A = A) /\,-TFt>
= Convergence rate is min (\/ T,V N).

+ op(1)

T = Tt (r@ (R EZE I3 ) (A ®ZA)ZF(En,e OT2) (h O (E7 ' 27 T F)) Tt
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Inferential Theory

Theorem 3: Common Components
Under Assumptions 1 and 2, it holds for N, T — oo:

V(G — Cir) & N(o — [F (wyj - TR + (wj — 1) - TR®) Fe + (w — AT ZETA;

)
. 2(Wj . 1)FTz/n\mstchv/\ + NATzObS/\ )
o wi=limy_ o % vazl Z;V:l 221:1 (E]’I'/_":é (full observations/missing uniformly at

random: w = 1)
o INES =TI A @ TA)ZF(TA: ® (k@ (2&12;15))2;}
covariance between variance correction terms of £ and A

Fundamental expansion:

Ve (C,—t - C,-t) =5 (H’lf\, - /\,-)T Fi + VoA (HTI—:t - Ft) + op(1)
= Convergence rate is min (ﬁ \/N)

e Factor covariance matrix Z‘;bst neglected for T /N — 0.

e Plug-in estimator for covariance matrices.
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Propensity-Weighted Estimator

Assumption 3: Conditional Observational Pattern
Assume observations depend on observed, time-invariant covariates S € RV <X
1. The probability of W, = 1 depends on S; and P(W;; = 1|5;) > 0.
2. Conditional cross-sectional independence: |/ independent of A conditional on S.

3. Wi is independent of W conditional on S;, S;.

e Conditional on S;, W;; is i.i.d.
e S; can actually include A;

e Motivates “propensity score” estimator: Re-weight entries to obtain
“missing-at-random”

Alternative estimator for loadings and common components:

N -1, N
- W, o W, .
FP=|> ————ANAT > ——— Vil
‘ < P(Wie =1]5) " ) ( P(Wie =1[5) "

i=1 i=1

e FS = F for cross-section missing at random: P(W;; = 1|S;) is the same for all /

17



Inferential Theory for Propensity-Weighted Estimator

Theorem 4: Propensity-Weighted Factors
Under Assumptions 1 and 3 it holds for N, T — oo:

- ~ d yrfn O cobs,s , O iss,S
VO(HTES — F) L N (o, NI S - DEET )

obs,S
Zl':.i’

Yp st = limy_oo % Z,,-Vzl WE[A,—/\,I |Si] (conditional weighted second

=il —il
=2\ "TAS,c 2, Ug, where

moment)
s
e TP =
SVFTERTEN @ 1) (Ba @ BA) ZF (S © Tp) (51 EF T F) @ 1) 5
variance correction term (independent of S)

e Propensity-weighted estimator uses more information.
e If S is independent of A, £ is less efficient than F (concavity of
P =TS))-
e In one-factor case, for any S, F* is less efficient than F
(ZA‘S_t/(ZA)Z > 1/% ).+ always holds from Cauchy-Schwartz Inequality).
e In the presence of omitted factors, £° can be more efficient.
18



Inferential Theory for Propensity-Weighted Estimator

Theorem 5: Propensity-Weighted Common Components
Under Assumptions 1 and 3 it holds for N, T — co:

. A . _
VB(CR — Gr) SN (0, = {F? (w5 - 3+ (wy — 1) - TRV Fi o+ (w — 1) - AT ER==SA

. )
T b S T bs,S
—2(wj — 1)F, Zx,l?.jf COV/\j:| + N/\j Zi_i /\j>

O Z/TISFSJSz = ZFlz/\ YA ® 1) (ZA® A)=F((Z4 1ZF1Ft) R IpN)Z, ! covariance

between variance correction terms of £° and A (independent of 5)

e The estimated probability weight can lead to additional correction terms in
the asymptotic variance.
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Examples of Feasible Estimators of the Probability Weight

Description P(W; = 1|S;) Estimator Asymptotic distribution Variance
of Bir — pir correction

Missing at random P = ﬁ it Wi Op (#) no

Cross-section missing at random  p; Pt = % LN:V(U‘ pe(1 — pt)) no

Time-series missing at random p(Si) logit on full panel W/ Op (ﬁ) no

(parametric)

Time-series missing at random p(Si) kernel on full panel W O, ( /ilTh) yes/no

(non-parametric)

Cross-section and time-series pe(Si) logit on Wy Op (ﬁ) yes

dependency (parametric)

Cross-section and time-series pe(s) pe(s) = % ﬁk’ (0, pt(s)(L — pe(s))) yes

dependency (discrete S) )

Staggered treatment adoption Pt pr = % %A" (0, pe(1 — pt)) no

without S N

Staggered treatment adoption pe(Si) hazard rate model Op (ﬁ) yes

with S (parametric)

Mixed frequencies Pt Pt = ‘OT“ (0, pt(1 — pt)) no

20



Tests for Causal Effects

Treatment effect for staggered design with Ty ; control and T; ; treated

w T 1 treated (missin
Y = A FO L0 g ( g)

i

~—— 0 control (observed)

()
Crt

We consider two different effects:

1. Individual treatment effect: 7;; = C,.(tl) — C/.(to)

2. Weighted average treatment effect: 75, = (ZTZ)’lzTT,-T(TO_”_H).T

Inferential theory of C;: provides the test statistics.
Two sets of results: treatment changes only loadings or changes factor and
loadings.

In empirical applications, we test o : 75, > 0 vs H1 : 75, < 0.

21



Simulation




Simulation Design

Comparison between the four methods that provide inferential theory

. XPsi: Our simple method €

. XPconp Our propensity-weighted method C°

. JMS (Jin, Miao and Su (2020)): Assuming missing at random
. BN (Bai and Ng (2020)): Combined block PCA

AW N =

We compare the relative MSE Zi.r((-:if - Ge)’/ >, Ch

e The data generating process is Xi = A/ F; + eir
e 2 factors
o A N(0,b), Fe "% N(0, k) and e < N(0,1)
= Our method allows for the most general observation pattern

= Out method provides the most efficient estimation

22



Simulation NV = 100, T = 150

Observation Pattern | Wi ‘ XPsii  XPconn  JMS BN
Random obs 0.03 0.03 0.05 21531
miss | 0.03 0.03 0.04 22414
all 0.03 0.03 0.05  217.46
Simultancous obs 0.03 0.03 0.14 0.03
miss | 0.04 0.04 0.20 0.04
all 0.03 0.03 0.16 0.03
Staggered obs 0.03 0.03 0.39 0.15
miss | 0.08 0.08 0.33 0.19
all 0.05 0.05 0.37 0.17
Random obs 0.04 0.04 0.09  1714.10
W depends on S miss | 0.04 0.04 0.10  1538.62
all 0.04 0.04 0.09  1650.06
Simultancous obs 0.04 0.04 0.63 0.09
W depends on S miss 0.11 (.14 0.41 0.13
all 0.07 0.09 0.53 0.11

= XP is the most precise
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Simulation Omitted Factor and N = 1000, T = 50

Ohservation Pattern | Wy, | XPgny  XPeoxp  JMS BN

Random obs 0.028 0.028 0.046  215.305
miss | 0.031 0.031 0.044  224.141
all 0.029 0.029 0.045  217.456

Simultaneous obs 0.025 0.025 0.143 0.026
miss | 0.043 0.043 0.200  0.038
all 0.030 0.030 0.158  0.029

Staggered obs 0.033 0.033 (.388 0.152
miss | 0.084 0.084 0.333 0.188
all 0.053 0.053 0.367 0.166

Random obs 0.035 0.035 0.089  1714.098
W depends on § miss | 0.043 0.044 0.095 1538.617
all 0.038 0.038 0.0091  1650.059
Simultaneous obs 0.038 0.045 0.629 0.090
W depends on § miss | 0.111 0.144 0.413 0.129
all 0.071 0.090 0.532 0.108
Simultaneous obs 0.259 0.288 0.777 0.476
W depends on § miss | 0.558 0.422 0.673 0.606
(Omitted one factor) | all 0.390 0.346  0.730  0.532
Random obs 0.035 0.035 0.068 0.987
W depends on § miss | 0.050 0.049 0.072 1.000
N=T all 0.040 0.039 0.069 0.991

=XPconp can be the most precise for omitted factor, N > T and W
depending on S



Empirical Results




Data Set and Observation Pattern

Data (Chen and Zimmermann, 2018): monthly returns of investment strategies
from July 1963 to December 2013

Test publication effect on 100 strategies

Anomaly

Time

Light: before publication; dark: after publication

Use 10-factor model as benchmark: Result robust to number of factors
25



Testing the Publication Effect

Assumptions:

1. Underlying (latent) risk factors are not affected by publication.
2. Exposure to (latent) risk factors can be affected by publication.
G =T E,

it i

Questions:

1. Does publication reduce average returns of anomalies?
Ho: CM —C9 >0
where C,(e) is the mean of C,.(ty) after publication
2. Does publication decrease the market pricing errors (alphas)?
Ho : a® — a0 > 0,

where C,(te) = a4 B9 (R — R) + cf.f), Rmt is the market return and Rr
is the risk-free rate

= Test statistics for both questions use CLT for weighted treatment effect

26



t-value of Publication Effect on Mean Returns

—— mean effect

N
0

N
o

1.65

t-statistics
|
©c o o = B
w o w o w

|
by
o

0 20 40 60 80 100
Anomaly

e 15% of strategies exhibit significant reduction at 95% confidence level

e Multiple hypothesis testing issue: 15% is an upper bound.
Bonferroni correction is too conservative!
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t-value of Publication Effect on Alphas (Outperformance of Market)

—— mean effect
25 alpha effect
2.0 X
15 1.65
. b
O
% 1.0
£
& 05
o
0.0
-0.5
-1.0
0 20 40 60 80 100
Anomaly

e Almost identical results as with mean returns

e Long-short anomaly portfolios are constructed to be “market neutral.”
Most of their mean returns should not be explained by a market portfolio
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ison wi

Compar

mean effect

naive mean effect

< m o~ —

sonsnels-y

100

80
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40

20

Anomaly

Different results with simple before-after analysis

= Time effects and correct estimation uncertainties are important!
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t-values of Selected Anomalies

EarningsSurprise

AdExp

PriceDelay

NO,

Anomaly

OperProf _

Investment -

Mom12m -

size [l

Significant:

Earning Surprise

Advertising Expense (AdExp)
Price Delay

Net Operating Assets (NOA)
Insignificant:

Book to Market (BM)
Operating Profits (OperProf)
Investment

Momentum (Mon12m)

Size

e Most well-known strategies have statistical insignificant publication effect

e These anomalies represent systematic risk with constant exposure to the

risk factors
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Economic Magnitude of Effect for Selected Anomalies

Mean Return
- N w =y

o

EarningsSurprise

AdExp

PriceDelay

NOA o

mmm without publication
mmm with publication

BM

Anomaly

OperProf

Investment

Mom12m

Size

Significant:

Earning Surprise

Advertising Expense (AdExp)
Price Delay

Net Operating Assets (NOA)
Insignificant:

Book to Market (BM)
Operating Profits (OperProf)
Investment

Momentum (Mon12m)

Size

e An economically large difference does not imply statistical significance

e Estimation uncertainty matters!
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Cumulative Returns

Significance also depends on variance of returns

c —— without publication
é 1500 with publication
o«
.g 1000
=]
S
2 500
€
3

0

1970 1980 1990 2000 2010
Year
Earning Surprise: Significant
£ 600 —— without publication
é —— with publication
& 400
%
2
®
< 200
€
3
© o0
1970 1980 1990 2000 2010
Year

Size: Insignificant
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Conclusion




Conclusion

Methodology

e Easy-to-adopt method to impute missing observations that is broadly
applicable

e Confidence interval for each estimated entry under general and nonuniform

observation patterns
e General tests for entry-wise and weighted treatment effects

e Generalizes conventional causal inference techniques to large panels and
without assumptions on covariates

Empirical results
e 15% of strategies exhibit statistical significant reduction in average returns
and outperformance of market
e Weaker publication effect than naive before-after analysis
e Well-known strategies have no significant publication effect = consistent

with compensation for systematic risk
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How Many Latent Factors? Variance Explained

Variance explained

6.0 2.5 5.0 7.5 10.0 12.5 15.0
Number of factors

e Variance explained for different number of latent factors

e Benchmark: 10-factor model. Results are robust to using 5 to 10 factors
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Max Sharpe Ratio

1.50-
1.25-
& 1.001
s
€0.75
0.501

0.251

0.00-
0 2 4 6 8 10 12 14 16

Number of factors

Marginal increase in Sharpe ratio is small from 7 factors.
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Some Strategies’ t-value (Different Number of Factors)

3 )
mm 3
s 9
2
= s 10
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5
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9] [=% > < S +
& X & 3 3 2 G £ B
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(o] o [
£ -
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©
w

Anomaly

Results are generally robust to the choice of number of factors
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