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Section 1

Stein’s Paradox in High Dimensions

Youhong Lee (UCSB) High-Dimensional Regularization April 11, 2023 3 / 46



Charles M. Stein

The “Einstein of the Statistics Department” was also the first Stanford
professor arrested for protesting apartheid. Although he rarely published
his work, Stein leaves behind a distinctive, intriguing life story.

https://news.stanford.edu/2016/12/01/charles-m-stein-extraordinary-
statistician-anti-war-activist-dies-96
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Statistical Decision Theory (1930+)

Decision based on data.

In estimation, our decision is an estimator for a population quantity.
The natural estimator of the population mean is the sample mean.

Neymann, Pearson, Pitman, and Wald.
Wald claims the sample mean is “admissible” (i.e., no estimator has
uniformly lower risk) (1939).

Peisakoff discovers a mistake in Wald’s proof (1950).

Stein (1956) proves admissibility fails in dimension 3 and higher.

Stein’s result ended an era of the search for the ideal estimator.

Youhong Lee (UCSB) High-Dimensional Regularization April 11, 2023 5 / 46



Stein (1956): Model

Let Y1, · · · , Yn ∈ Rp be i.i.d. draws from N(θ, ν2I), where
θ = (θ1, · · · , θp) ∈ Rp is the population mean,
ν is the standard deviation.

Our goal is to estimate the population mean θ ∈ Rp.
One approach is the maximum likelihood estimator (MLE).

The maximizer of the Gaussian likelihood function is the sample
mean, η ∈ Rp,

η = 1
n

n∑
j=1

Yj .
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Stein (1956): Inadmissibility of the Sample Mean

Let Y1, · · · , Yn ∈ Rp be i.i.d. draws from N(θ, ν2I) with the sample mean
η ∈ Rp,

η = 1
n

n∑
j=1

Yj .

Theorem (Stein 1956)
There exists an estimator η∗ such that for p > 2,

E
[
|η∗ − θ|2

]
< E

[
|η − θ|2

]
= ν2(p/n) ,

where the loss function is |v |2 = ∑p
i=1 v2

j for v ∈ Rp (squared error loss,
SEL).
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Stein (1956): Inadmissibility of the Sample Mean

Theorem (Stein 1956)
There exists an estimator η∗ such that for p > 2,

E
[
|η∗ − θ|2

]
< E

[
|η − θ|2

]
= ν2(p/n) ,

under squared error loss (SEL).

The sample mean is inadmissible in dimension 3 and higher.
Admissible for essentially arbitrary symmetric loss p ≤ 2.

With a finite sample size n, the risk of the sample mean grows in p.
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Bayesian Solution

A Bayesian derivation is quite elegant (Efron & Morris 1975).

Let η ∼ N(θ, ν2I) with a Gaussian prior on θ ∈ Rp.

The posterior mean (as a Bayes estimator) is given by the conditional
expectation

E [θ | η] = E[θ] +
(

1 − ν2

Var(η)

)
(η − E[θ]).

This motivates the “shrinkage” formula (for some prior mean
m ∈ Rp),

η(c) = m + c(η − m), c ∈ [0, 1].
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The James-Stein Estimator

Fix any m ∈ R and take ηJS = m + cJS(η − m) with the parameter,

cJS = 1 − ν2

|η − m|2/(p − 2) .

Theorem (James & Stein 1961)
For each p > 2,

E
[
|ηJS − θ|2

]
< E

[
|η − θ|2

]
.

James & Stein (1961) considered m at the origin.

Plug-in estimates of m and ν may be used (p > 3).
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The James-Stein Estimator in a High Dimension
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Section 2

Regularized Estimators of the Covariance Matrix
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Estimation of the Population Covariance Matrix

We consider the problem of estimating a p × p matrix,

Σ = θθ⊤ + ν2I (population covariance).

We are no longer interested in the mean (zero w.l.o.g.).

Our goal is to estimate θ ∈ Rp that correlates the variables.
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Estimation of the Population Covariance Matrix

Let Y1, · · · , Yn ∈ Rp be i.i.d. draws from N(0p, Σ) with
Σ = θθ⊤ + ν2I.

Y =



... ... ... ...

... ... ... ...
Y1 Y2

... Yn
... ... ... ...
... ... ... ...


(p × n data matrix).

Our goal is to estimate θ ∈ Rp that correlates the variables.
As for the population mean, we try the MLE.
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The Maximum Likelihood Estimator of θ

Let Y1, · · · , Yn ∈ Rp be i.i.d. draws from N(0p, Σ) with
Σ = θθ⊤ + ν2I.

The Gaussian likelihood L(Y|θ) given the parameter θ has

L(Y|θ) ∝ exp
(
t⟨u, YY⊤u⟩

)
where t = t(|θ|) = |θ|2n/(2ν2)

|θ|2+ν2 and u = θ/|θ| is the direction of θ on
the unit sphere (Tipping & Bishop (1999)).

Maximizing the Gaussian likelihood L(Y|θ) is equivalent to solving

max
|v |=1

⟨v , YY⊤v⟩.
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The Maximum Likelihood Estimator of θ

Maximizing the Gaussian likelihood L(Y|θ) is equivalent to solving

s2 = max
|v |=1

⟨v , Sv⟩.

where S = 1
nYY⊤ is the sample covariance matrix.

We recognize the maximizer as the first principal component.
The maximizer v is the direction of maximum variance s2 in the data.

Notation:
The (scaled) sample principal component is η = sv .
The (scaled) population principal component is θ.
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Principal Component Analysis

https://en.wikipedia.org/wiki/Principal_component_analysis
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A Bayesian Solution for the First PC

Following Efron & Morris (1975) we impose a Gaussian prior on the
unknown θ ∈ Rp and project it to the unit sphere Sp−1.

The prior for the population principal component u = θ/|θ| is

g(x) ∝ exp(κ⟨x , q⟩), x ∈ Sp−1,

where κ ∈ (0, ∞) is a concentration about the mean q ∈ Sp−1.

The von Mises-Fisher distribution (Mardia, Jupp & Mardia 2000).
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The von Mises-Fisher Distribution

Straub (2017)
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A Bayesian Solution for the First PC

Following Efron & Morris (1975), we impose a von Mises-Fisher prior
on u ∈ Sp−1.

The posterior for the population principal component u = θ/|θ| is

f (v |Y) ∝ exp(t⟨v , Sv⟩ + κ⟨v , q⟩), v ∈ Sp−1,

which is known as the Fisher-Bingham distribution.

We proceed to maximize this density over v (maximum a posteriori
(MAP) estimator).
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A Bayesian Solution for the First PC

Let S be the p × p sample covariance matrix for i.i.d. draws from
N(0p, Σ) with Σ = θθ⊤ + ν2I.

Our Bayesian argument motivates solving the penalized problem

max
|v |=1

⟨v , Sv⟩ + κ⟨v , q⟩ .

The solution is given in terms of the resolvent of S, i.e.,

v(z) ∝ (S − zI)−1q

for a parameter z ∈ (s2, ∞) that is a function of κ.
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A Bayesian Solution for the First PC

Let S be the p × p sample covariance matrix for i.i.d. draws from
N(0p, Σ) with Σ = θθ⊤ + ν2I.

For a q ∈ Sp−1, we propose analyzing the Bayesian estimator,

v(z) ∝ (S − zI)−1q, z > s2.

As z ↓ s2 we recover the sample principal component v ,

s2 = max
|v |=1

⟨v , Sv⟩ .

As z ↑ ∞ the solution v(z) approaches q.

Youhong Lee (UCSB) High-Dimensional Regularization April 11, 2023 22 / 46



Assumptions for High-Dimensional Analysis

1 The sample covariance matrix S is composed of n i.i.d. draws from
N(0p, Σ) with Σ = θθ⊤ + ν2I.

2 Suppose p/n → ∞ as n → ∞, and the following holds,

⟨θ, θ⟩(n/p) converges in (0, ∞).

3 q is a sequence of nonrandom vectors on Sp−1 as p grows.
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Inadmissibility of PCA

Theorem (Lee & Shkolnik 2023)
There exists z∗ computable from Y such that an estimator η∗ = sv(z∗)
satisfies

|η∗ − θ| ∼
√

c|η − θ|

for some random variable c ∈ (0, 1) almost surely.

Notation: fp ∼ gp if fp/gp → 1 as p → ∞.
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Inadmissibility of PCA

Our loss function: ℓ(y |u) = |y − u|2/2 = 1 − ⟨y , u⟩.
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A James-Stein Solution for the First PC

The statement that PCA is not inadmissible is not new.
Goldberg, Papanicalaou & Shkolnik (2022), Gurdogan & Kercheval
(2022), Shkolnik (2022), Shkolnik (2023), Goldberg & Kercheval
(2023).
Thought to be impossibe to show previously (Wang & Fan 2017).

These works propose variants of the James-Stein estimator,

vJS ∝ m + c(v − m), c = 1 − ν2

|v − m|2

where m = ⟨v , q⟩q for any vector q ∈ Sp−1.
These formulas a borrowed from the original JS estimator.
The variance ν2 may be estimated using the eigenvalues of S.
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A James-Stein Solution for the First PC

The JS family occupies the geodesic between v and q.

Youhong Lee (UCSB) High-Dimensional Regularization April 11, 2023 27 / 46



Comparison between the Bayesian and James-Stein
Solutions

The sample principal component v is the MLE. The estimator

v(z) ∝ (S − zI)−1q

was derived via Bayesian arguments of Efron & Morris (1975).

Is v(z) related to the vJS estimator?

What is the interpretation of v(z) geometrically?

How do v , vJS and v(z) perform?
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Comparison between the Bayesian and James-Stein
Solutions

The sample principal component v is the MLE. The estimator

v(z) ∝ (S − zI)−1q

was derived via Bayesian arguments of Efron & Morris (1975).

Lemma (Lee & Shkolnik 2023)
v(z) is the solution v(γ) of the regularized PCA problem,

max
|v |=1

⟨v , Sv⟩ s.t. ⟨v , q⟩ ≥ γ

for a parameter γ ∈ [0, 1] that is a function of z .
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Comparison between the Bayesian and James-Stein
Solutions
The estimator v(γ) has more degrees of freedom than vJS.
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Comparison between the Bayesian and James-Stein
Solutions

Visualization of the asymptotic loss |v(γ) − u|2/2
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Comparison between the Bayesian and James-Stein
Solutions

The Neumann expansion of the resolvent (S − zI)−1 yields,

v(z) ∝ m + c1(z)(v − m) +
∑
j≥2

cj(z)vj

where vj is the jth sample principal component and m = ⟨v , q⟩q.

The constant c1(z) ̸= c of vJS at the optimal z .
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Comparison between the Bayesian and James-Stein
Solutions

Our loss function: ℓ(y |u) = |y − u|2/2 = 1 − ⟨y , u⟩.
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Section 3

Main Theorems and Simulations
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Assumptions for High-Dimensional Analysis

1 The sample covariance matrix S is composed of n i.i.d. draws from
N(0p, Σ) with Σ = θθ⊤ + ν2I.

2 Suppose p/n → ∞ as n → ∞, and the following holds,

⟨θ, θ⟩(n/p) converges in (0, ∞).

3 q is a sequence of nonrandom vectors on Sp−1 as p grows.

4 The Gaussian distributional assumption may be removed entirely at
the expense of a more abstract set of conditions.
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Inadmissibility of PCA

Theorem (Lee & Shkolnik 2023)
There exists z∗ computable from Y such that an estimator η∗ = sv(z∗)
satisfies

|η∗ − θ| ∼
√

c|η − θ|

for some random variable c ∈ (0, 1) almost surely.

Notation: fp ∼ gp if fp/gp → 1 as p → ∞

The random variable c is that of the James-Stein estimator vJS.
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Theorem 1: Performance of v(z) over v and q

Theorem 1a (Lee & Shkolnik 2023)
There is a univariate (random) function f on [0, 1] computable from S
which has a unique minimum ζ∗ that yields z∗´and v∗ = v(z∗) with

sin (α(v∗, u)) ∼ sin (α(u, q))
sin (α(v , q)) sin (α(v , u))

and sin(α(u,q))
sin(α(v ,q)) ∈ (0, 1) provided ⟨u, q⟩ ≠ 0 eventually.

v∗ outperforms u asymptotically provided q contains “information”.

Note: sin fp ∼ gp if fp/gp → 1 as p → ∞, sin(α) = α + O(α3).
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Theorem 1: Performance of v(z) over v and q

Theorem 1b (Lee & Shkolnik 2023)
There is a univariate (random) function f on [0, 1] computable from S
which has a unique minimum ζ∗ that yields z∗´and v∗ = v(z∗) with

sin (α(v∗, u)) ∼ sin (α(u, v))
sin (α(v , q)) sin (α(u, q))

and sin(α(u,v))
sin(α(v ,q)) ∈ (0, 1) provided ⟨u, q⟩ ≠ 0 eventually.

v∗ outperforms q asymptotically provided q contains “information”.

Note: sin fp ∼ gp if fp/gp → 1 as p → ∞, sin(α) = α + O(α3).
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Theorem 2: Performance of v(z) over v JS

Theorem 2 (Lee & Shkolnik 2023)
There is a univariate (random) function f on [0, 1] computable from S
which has a unique minimum ζ∗ that yields z∗´and v∗ = v(z∗) with

sin
(
α(vJS, u)

)
− sin (α(v∗, u)) ≥ ξp + o(n/p)

for a random variable ξp ≥ 0 w.h.p., and ξp → 0 almost surely.

A key random variable that distinguishes v∗ from vJS is

|qN |2 =
n∑

j=1
⟨vj , q⟩2

which is a proxy for the information |uN |2 = ∑n
j=1⟨vj , u⟩2.
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Simulation Study

We numerically test a Gaussian model parametrized by

τ2 = ⟨θ, θ⟩(n/p) (signal strength)

We test v , vJS, and v(z∗) on the loss function,

ℓ(y |u) = |y − u|2/2 = 1 − ⟨y , u⟩ .
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Simulation: Weak Signal

τ2 ≈ 0.15
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Simulation: Moderate Signal

τ2 ≈ 0.20
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Simulation: Strong Signal

τ2 ≈ 0.60
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Section 4

Summary
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Summary

1 The James-Stein estimator shows the inadmissability of the MLE (the
sample mean).

2 As the JS estimator has an elegant Bayesian derivation, we propose a
regularized estimator for the first population principal component,

v(z) ∝ (S − zI)−1q .

3 We show that the MLE of the population principal component is
inadmissible.

4 We explain its relationship to JSE of the first principal component.
Theory and numerical results suggest JSE is inadmissible.
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Thank You!
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