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Section 1

Stein’s Paradox in High Dimensions
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Charles M. Stein

The “Einstein of the Statistics Department” was also the first Stanford
professor arrested for protesting apartheid. Although he rarely published
his work, Stein leaves behind a distinctive, intriguing life story.

https://news.stanford.edu/2016/12/01 /charles-m-stein-extraordinary-
statistician-anti-war-activist-dies-96
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Statistical Decision Theory (1930+)

@ Decision based on data.

@ In estimation, our decision is an estimator for a population quantity.

o The natural estimator of the population mean is the sample mean.

@ Neymann, Pearson, Pitman, and Wald.

o Wald claims the sample mean is “admissible” (i.e., no estimator has
uniformly lower risk) (1939).

o Peisakoff discovers a mistake in Wald's proof (1950).

o Stein (1956) proves admissibility fails in dimension 3 and higher.

@ Stein’s result ended an era of the search for the ideal estimator.
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Stein (1956): Model

o Let Y1,---,Y, € RP bei.id. draws from N(6,2I), where
o 0= (01, --,60,) € RP is the population mean,
e v is the standard deviation.

@ Our goal is to estimate the population mean 6 € RP.

o One approach is the maximum likelihood estimator (MLE).

@ The maximizer of the Gaussian likelihood function is the sample
mean, n € RP,

1 n
n=o2 Y
njzl
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Stein (1956): Inadmissibility of the Sample Mean

Let Y1,---,Y, € RP be i.id. draws from N(6,°I) with the sample mean
n € RP,
1 n
n=-> Y
n “
j=1

Theorem (Stein 1956)

There exists an estimator n* such that for p > 2,

E (In* = 07| < E [In— 0P| = v*(p/n),

p
=

where the loss function is |v|?> =
SEL).

1 Vj2 for v € RP (squared error loss,
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Stein (1956): Inadmissibility of the Sample Mean

Theorem (Stein 1956)

There exists an estimator n* such that for p > 2,

E [|n* = 01%] < E [In— 01| = v3(p/n),

under squared error loss (SEL).

@ The sample mean is inadmissible in dimension 3 and higher.

o Admissible for essentially arbitrary symmetric loss p < 2.

@ With a finite sample size n, the risk of the sample mean grows in p.
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Bayesian Solution

@ A Bayesian derivation is quite elegant (Efron & Morris 1975).
e Let  ~ N(6,v2I) with a Gaussian prior on 6 € RP.

@ The posterior mean (as a Bayes estimator) is given by the conditional
expectation

2

E[9]n] = E[6] + (1 - von) (n — El6]).

@ This motivates the “shrinkage” formula (for some prior mean
m € RP),

n(c)=m+c(n—m), cel0,1].
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The James-Stein Estimator

Fix any m € R and take 7’8 = m + ¢’5(n — m) with the parameter,

2
JS:1 v

Cn=mP/(p-2)°

Theorem (James & Stein 1961)

For each p > 2,
B[S - 0P) <B[jn—0P] .

@ James & Stein (1961) considered m at the origin.

@ Plug-in estimates of m and v may be used (p > 3).
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The James-Stein Estimator in a High Dimension

0

Cl)

angle
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Section 2

Regularized Estimators of the Covariance Matrix
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Estimation of the Population Covariance Matrix

@ We consider the problem of estimating a p X p matrix,

Y=00" + 171 (population covariance).

@ We are no longer interested in the mean (zero w.l.o.g.).

@ Our goal is to estimate € € RP that correlates the variables.
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Estimation of the Population Covariance Matrix

o Let Yq,---,Y, € RP bei.id. draws from N(0p, X) with
Y =00" +°L

Y=y, v, 'Y, (p x n data matrix).

@ Our goal is to estimate € € RP that correlates the variables.

o As for the population mean, we try the MLE.
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The Maximum Likelihood Estimator of ¢

@ Let Yq,---, Y, € RP beiid. draws from N(0,, X) with
=00" + 121

@ The Gaussian likelihood L(Y|#) given the parameter 6 has
L(Y10) x exp (t(u,YYTu>)

where t = t(|0|) = % and u = 6/|6] is the direction of 6 on

the unit sphere (Tipping & Bishop (1999)).

@ Maximizing the Gaussian likelihood L(Y|6) is equivalent to solving

max (v, YY " v).
lv|=1
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The Maximum Likelihood Estimator of ¢

@ Maximizing the Gaussian likelihood L(Y|€) is equivalent to solving

s% = max (v, Sv).
[v|=1

where S = %YYT is the sample covariance matrix.

@ We recognize the maximizer as the first principal component.

o The maximizer v is the direction of maximum variance s2 in the data.

@ Notation:

o The (scaled) sample principal component is 7 = sv.
o The (scaled) population principal component is 6.
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Principal Component Analysis

https://en.wikipedia.org/wiki/Principal_component_analysis
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A Bayesian Solution for the First PC

o Following Efron & Morris (1975) we impose a Gaussian prior on the
unknown # € RP and project it to the unit sphere SP~1.

@ The prior for the population principal component u = 6/|6| is
g(x) xexp(k(x,q)), x €SP,
where x € (0,00) is a concentration about the mean g € SP~1.

e The von Mises-Fisher distribution (Mardia, Jupp & Mardia 2000).
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The von Mises-Fisher Distribution

Straub (2017)
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A Bayesian Solution for the First PC

@ Following Efron & Morris (1975), we impose a von Mises-Fisher prior
on u € SPL.
@ The posterior for the population principal component u = 60/(6] is
FVIY) o exp(t(v, Sv) + k{v,q)), v eSPL,

which is known as the Fisher-Bingham distribution.

@ We proceed to maximize this density over v (maximum a posteriori
(MAP) estimator).
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A Bayesian Solution for the First PC

@ Let S be the p x p sample covariance matrix for i.i.d. draws from
N(0p, X) with £ =007 + 1.
@ Our Bayesian argument motivates solving the penalized problem

m3>;<v,SV> + r{v,q).

@ The solution is given in terms of the resolvent of S, i.e.,
v(z) o (S — zI)"1q

for a parameter z € (52, 00) that is a function of .
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A Bayesian Solution for the First PC

@ Let S be the p x p sample covariance matrix for i.i.d. draws from
N(0,,X) with & = 007 + 1.

@ For a g € SP~1, we propose analyzing the Bayesian estimator,

v(z) o (S — zI) g, z > 5%

o As z | s? we recover the sample principal component v,

s? = max (v,Sv).
lvl=1

e As z 1 oo the solution v(z) approaches g.
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Assumptions for High-Dimensional Analysis

© The sample covariance matrix S is composed of n i.i.d. draws from
N(0p, ) with ¥ = 00T + 1.

@ Suppose p/n — oo as n — oo, and the following holds,

(0,6)(n/p) converges in (0, 0).

@ g is a sequence of nonrandom vectors on SP~! as p grows.
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Inadmissibility of PCA

Theorem (Lee & Shkolnik 2023)

There exists z* computable from Y such that an estimator n* = sv(z*)
satisfies

In* — 6] ~c|n— 6

for some random variable ¢ € (0, 1) almost surely.

e Notation: f, ~ g, if f/gp — 1 as p — oc.
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Inadmissibility of PCA

@ Our loss function: £(y|u) = |y — ul?/2 =1 — (y, u).

BN Raw first PC
B Regularized PC

Density
OO - [~] w S w =) -~ %

.4 0.5 0.6 0.7 0.8 0.9 1.0
Loss
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A James-Stein Solution for the First PC

@ The statement that PCA is not inadmissible is not new.

o Goldberg, Papanicalaou & Shkolnik (2022), Gurdogan & Kercheval
(2022), Shkolnik (2022), Shkolnik (2023), Goldberg & Kercheval
(2023).

e Thought to be impossibe to show previously (Wang & Fan 2017).

@ These works propose variants of the James-Stein estimator,

2
vIS oc m+ c(v — m), czl—m

where m = (v, q)q for any vector g € SP~1.

o These formulas a borrowed from the original JS estimator.
e The variance v? may be estimated using the eigenvalues of S.
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A James-Stein Solution for the First PC

The JS family occupies the geodesic between v and gq.
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Comparison between the Bayesian and James-Stein
Solutions

@ The sample principal component v is the MLE. The estimator
v(z) o (S — zI)1q
was derived via Bayesian arguments of Efron & Morris (1975).

o Is v(z) related to the v'5 estimator?

o What is the interpretation of v(z) geometrically?

e How do v, v’S and v(z) perform?
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Comparison between the Bayesian and James-Stein
Solutions

@ The sample principal component v is the MLE. The estimator
v(z) x (S — zI)1q

was derived via Bayesian arguments of Efron & Morris (1975).

Lemma (Lee & Shkolnik 2023)
v(z) is the solution v() of the regularized PCA problem,

|m|a>i (v,Sv) s.t. (v,q) >~
v|i=

for a parameter «y € [0, 1] that is a function of z.
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Comparison between the Bayesian and James-Stein
Solutions

The estimator v(y) has more degrees of freedom than v’5.
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Comparison between the Bayesian and James-Stein
Solutions

Visualization of the asymptotic loss |v(7y) — u|?/2
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Comparison between the Bayesian and James-Stein
Solutions

@ The Neumann expansion of the resolvent (S — zI)~! yields,

v(z) x m+a(z)(v—m)+> c(z)y
j>2

where v; is the jth sample principal component and m = (v, g)q.

o The constant ¢;(z) # c of v’S at the optimal z.
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Comparison between the Bayesian and James-Stein
Solutions

@ Our loss function: ¢(y|u) = |y — ul?/2 =1 — (y, u).

B Raw first PC
James-Stein
B Regularized PC

.4 0.5 0.6 0.7 0.8 0.9 1.0
Loss
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Section 3

Main Theorems and Simulations
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Assumptions for High-Dimensional Analysis

© The sample covariance matrix S is composed of n i.i.d. draws from
N(0,,¥) with & =007 + 1.

@ Suppose p/n — 0o as n — 0o, and the following holds,
(0,8)(n/p) converges in (0, c0).
@ g is a sequence of nonrandom vectors on SP~! as p grows.

© The Gaussian distributional assumption may be removed entirely at
the expense of a more abstract set of conditions.
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Inadmissibility of PCA

Theorem (Lee & Shkolnik 2023)

There exists z* computable from Y such that an estimator n* = sv(z*)
satisfies

|n* — 0] ~ c|n— 0|

for some random variable ¢ € (0, 1) almost surely.

o Notation: f, ~ g, if f,/g, = 1 as p = o0

@ The random variable ¢ is that of the James-Stein estimator v7/5
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Theorem 1: Performance of v(z) over v and g

Theorem 1la (Lee & Shkolnik 2023)

There is a univariate (random) function f on [0, 1] computable from S
which has a unique minimum ¢* that yields z*“and v* = v(z*) with

sin (a(v*, u)) ~ sl (e &)

sin(a(v, q)) sin (a(v, u))

and % € (0,1) provided (u, q) # 0 eventually.

@ v* outperforms u asymptotically provided g contains “information”.

e Note: sin f, ~ g, if f,/g, — 1 as p — o0, sin(a) = a + O(a?).
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Theorem 1: Performance of v(z) over v and g

Theorem 1b (Lee & Shkolnik 2023)

There is a univariate (random) function f on [0, 1] computable from S
which has a unique minimum ¢* that yields z*“and v* = v(z*) with

i . sin (a(u, v)) .
sin (a(v™, u)) ~ sin(a(v.q)) sin (a(u, q))

and % € (0,1) provided (u, q) # 0 eventually.

@ v* outperforms g asymptotically provided g contains “information”.

e Note: sin f, ~ g, if f,/g, — 1 as p — o0, sin(a) = a + O(a?).
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Theorem 2: Performance of v(z) over v'°

Theorem 2 (Lee & Shkolnik 2023)

There is a univariate (random) function f on [0, 1] computable from S
which has a unique minimum ¢* that yields z*“and v* = v(z*) with

sin (a(v’S, u)) = sin (a(v", 1)) > & + o(n/p)

for a random variable £, > 0 w.h.p., and £, — 0 almost surely.

o A key random variable that distinguishes v* from v75 is

n

lan> = (v, q)?

Jj=1

which is a proxy for the information |uy|? = Y7_; (v}, u)?
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Simulation Study

@ We numerically test a Gaussian model parametrized by

7% = (0,6)(n/p) (signal strength)

@ We test v, vI5, and v(z*) on the loss function,

Uylu) =y —ul?/2=1~(y,u).
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Simulation: Weak Signal

e 72~ 0.15

3-
BN Raw first PC

James-Stein
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Simulation: Moderate Signal

|
7- i I Raw first PC
|
6- i James-Stein
5. i B Regularized PC
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Simulation: Strong Signal

e 72~ 0.60

8- I Raw first PC
7- James-Stein
6- WM Regularized PC
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Section 4

Summary
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Summary

© The James-Stein estimator shows the inadmissability of the MLE (the
sample mean).

@ As the JS estimator has an elegant Bayesian derivation, we propose a
regularized estimator for the first population principal component,

v(z) x (S — zI)71g.

© We show that the MLE of the population principal component is
inadmissible.

@ We explain its relationship to JSE of the first principal component.
Theory and numerical results suggest JSE is inadmissible.
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Thank You!
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