Portfolio Optimization in an Uncertain World

CDAR Risk Seminar, Berkeley, 14th Mar 2023 Marielle DE JONG PhD Associate Professor

CI CCI GRENOBLE

In this talk

- I point at a flaw in Modern Portfolio Theory (MPT).
- I propose a remedy.
- I connect with many studies that do so.

Modern Portfolio Theory

Mean-variance optimization*

Maximize the Utility of portfolio x:

$$\boldsymbol{U}_{\boldsymbol{x}} = \boldsymbol{x}^T \boldsymbol{\mu} - \boldsymbol{\lambda} \cdot \boldsymbol{x}^T \boldsymbol{V} \boldsymbol{x}$$

Hypothesis:

expected returns μ and covariance matrix V are known with <u>certainty</u>.

I.e., we assume that the investor does (and should) act as if he had probability beliefs concerning these variables.

$$\Box$$
 I focus on the uncertainty around *V*.

Flaw in MPT

Taking matrix V for certain creates an imaginative world where

- prices obey to predefined laws
- there are no unforeseen price shocks

Such a world doesn't exist.

The more-often heard critic

"Markowitz optimization is vulnerable to estimation error"

is misleading, for it suggests there to be a true V.

The <u>flaw</u> is not to do with estimation error, it is the <u>assertion of certainty</u>.

Is there a world of certainty?

Babylonian times

limited means of communicationno Central Banks

High entropy

Post-war Singapore

- planned economy
- efficient governance

Low entropy

Degrees of uncertainty

utter darkness

today's world

MPT

- uniform distribution
- unforeseeable price shocks
- Maximise diversification

- Gaussian distribution
- foreseeable shocks
- Minimise variance

0 entropy

Investment example

The equity-bond split $\sigma_{EQ} = 15\%$ $\sigma_{BO} = 5\%$ $corr(_{EQ}, BO) = 0$

Utter darkness	Today's world	MPT
X _{EQ} = 50%	50% > X _{EQ} > 10%	X _{EQ} = 10%
$X_{BO} = 50\%$	50% < X _{BO} < 90%	$A_{BO} = 90\%$

Maximize diversification
mathematical endocements

Minimize variance**0 entropy**

Remedy: relax the certainty hypothesis

Introduce a parameter for entropy heta

Generalise the problem objective

protect against unforeseeable shocks minimise foreseeable shocks

Maximise diversification

Minimise variance

min $X^T X$ + $\theta \cdot X^T V X$

Generalized MPT

Diversification-variance efficient frontier

Specify diversification

stake, footprint, span, exposure, ...

Measures for diversification

Rao's (1982) squared entropy Shannon (information theory) Roncalli (2013)

 $-x^{T}x$ $-x^{T}ln(x)$ $-e^{T}ln(x)$

Measures depending on risk estimates odd

Choueifaty & Coignard (2008) Meucci (2009)

sum of asset-specific risks eigenvectors of covariance matrix

Coherent optimization methods

- 1. Covariance shrinkage
- 2. Risk parity
- 3. Bayesian optimization
- 4. Entropy-based optimization
- 5. Portfolio regularization

1. Covariance shrinkage*

Rao's measure

Augment the variance levels in the covariance matrix

Min. $x^T V x + \theta \cdot x^T x \quad \leftrightarrow \quad \text{Min. } x^T (V + \theta \cdot I) x$

* Ledoit, O., and M. Wolf. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection.

Journal of Empirical Finance 10(5)

2. Risk parity

Roncalli's measure

Optimal variance/diversification ratio*

* Maillard, Roncalli, and Teiletche. 2010. The properties of equally weighted risk contribution portfolios. Journal of Portfolio Management 36(4)

3. Bayesian optimization

MIN. $x^T V_B x$

Prior $R_0 \sim U(0,1)$ uniformPosterior $R_B \sim n(\mu, V_B)$ Gaussian

 V_B is estimated such that the loss is minimized due to sub-optimality that would arise if the estimates turn out to be wrong.

Brown (1976) "Optimal portfolio choice under uncertainty" PhD thesis

G

4. Entropy-based optimization Shannon's measure

The Kullback and Leibler (1951) measure

 $x^{T}ln(x/q)$

is equivalent to Shannon's,

if
$$q = (1/N, ..., 1/N)$$
.

Bera, A., and S. Park. 2008. Optimal portfolio diversification using maximum entropy principle. Econometric Reviews 27(4).

5. Portfolio regularization

Rao's measure

Add a weight constraint

Min. $x^T V x + \theta \cdot x^T x$

LASSO, Ridge, elastic net

Bruder, Gaussel, Richard, Roncalli. 2013. Regularization of Portfolio Allocation.

Yet other coherent methods

- 1. Top-down approach* (not full optimisation).
- 2. Bridgewater® All Weather Funds.
- 3. Resampling by Michaud (1998)
- 4. Robust optimisation by Tutuncu and Koenig (2004)
- 5. Stability-adjusted optimisation by Kritzman (2016)

Odd specifications of diversification

Diversification ratio

$$x^T \sigma / \sigma_p$$

Sum of specific risks on total risk.

In case of unforeseen shocks, diversification protection goes to pot.

Investment example revisited The equity-bond split σ_{EQ} = 15% $\sigma_{BO} = 5\%$ $\operatorname{corr}(_{\mathsf{EQ}},_{\mathsf{BO}}) = \mathbf{0}$ correlation parameter highly uncertain **Utter darkness Risk parity** MPT $X_{EQ} = 50\%$ X_{EQ} = 25% $X_{EQ} = 10\%$ $X_{BO} = 50\%$ $X_{BO} = 75\%$ X_{BO} = 90%

Maximize diversification
entropy

- Minimize variance

0 entropy

The entropy parameter

Interpretations

$$\boldsymbol{U}_{\boldsymbol{x}} = \boldsymbol{x}^T \boldsymbol{\mu} \ -\boldsymbol{\lambda} \cdot \boldsymbol{x}^T \boldsymbol{V} \ \boldsymbol{x} - \boldsymbol{\theta} \cdot \boldsymbol{x}^T \boldsymbol{x}$$

Risk aversion λ is a <u>subjective</u> parameter Entropy θ is to a certain extent an <u>objective</u> parameter

Objective: degree of order in the economy Subjective: degree of conviction

G

THANK YOU FOR YOUR ATTENTION

