

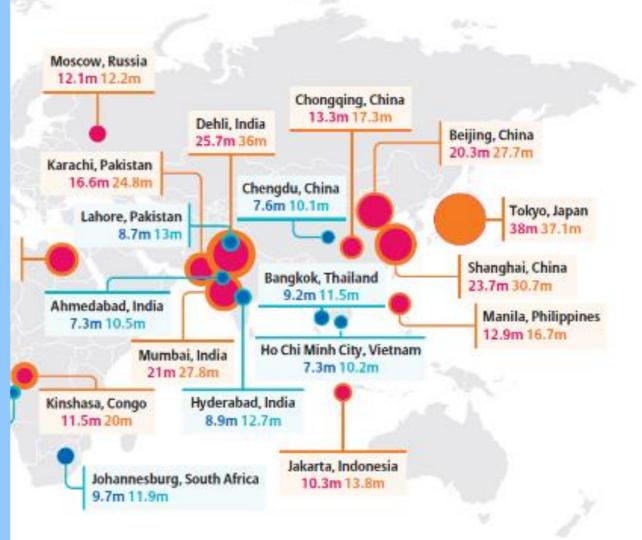
Ouantum CitiesTM Data-centric approaches for resilient, sustainable cities

Thomas Philipps, Head Geo, Swiss Re Alicia Montoya, Head Research Commercialisation, Swiss Re Institute

University of California Berkeley CDAR Seminar, 27 February 2024

Why cities

Urban development is a huge risk and opportunity


By 2050, ~70% of the world population will live in cities/urban areas

Today, there are **+35 megacities** with a population of more than **10 million**

The world's 600 largest cities account for **60% of global GDP**

80% of the world's megacities are in Asia, Latin America and Africa

The world will build an entire **New York City every** month for 40 years

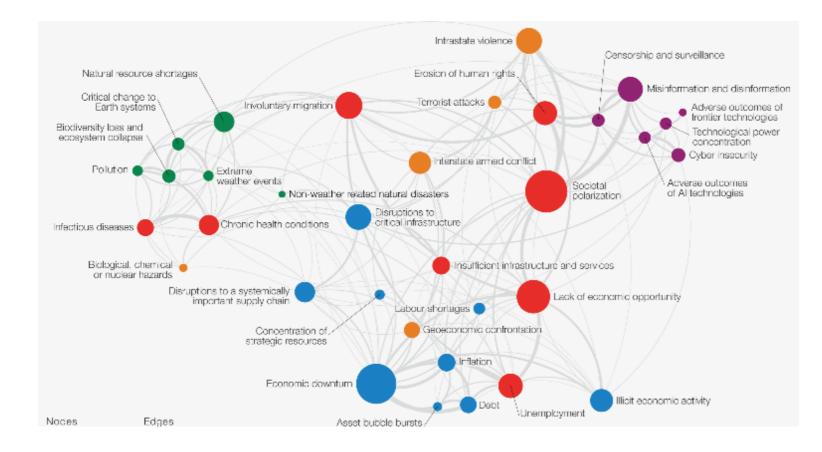
Sustainable Development Goal (SDG) 11: Sustainable cities and communities

To accommodate for our growing population, and for all of us to survive and prosper, we need intelligent urban planning and solutions that create safe, affordable, green, resilient, and sustainable cities.

By 2030, SDG 11 targets include:

- Provide access to adequate, safe and affordable housing and basic services.
- Provide access to safe, affordable, accessible and sustainable transport systems.
- Significantly reduce deaths / people affected and economic losses caused by disasters, including water-related disasters. Focus on protecting the poor and vulnerable people.
- Reduce the environmental impact of cities, including water, air, waste.
- Implement integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, resilience to disasters, and develop and implement, in line with the Sendai Framework for Disaster Risk Reduction, holistic disaster risk management at all levels.

And yet, a recent <u>U.N. special progress report</u> shows we're lagging (see right - infographic).

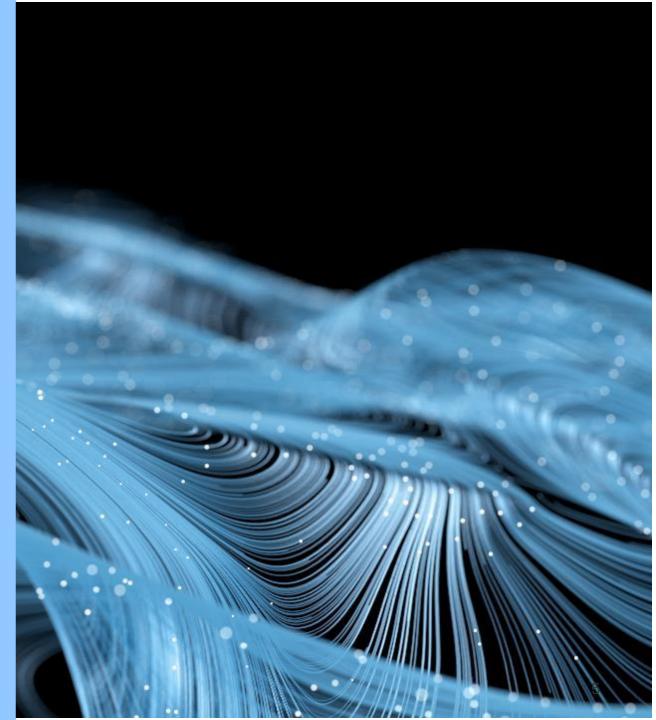

MAKE CITIES AND HUMAN SETTLEMENTS INCLUSIVE, SAFE, RESILIENT AND SUSTAINABLE

THE SUSTAINABLE DEVELOPMENT GOALS REPORT 2023; SPECIAL EDITION- UNSTATS.UN.ORG/SDGS/REPORT/2023/

Risks are global, interconnected, accumulating and propagating WEF 2024 GRR highlights growing technological, social, geopolitical & economic risks

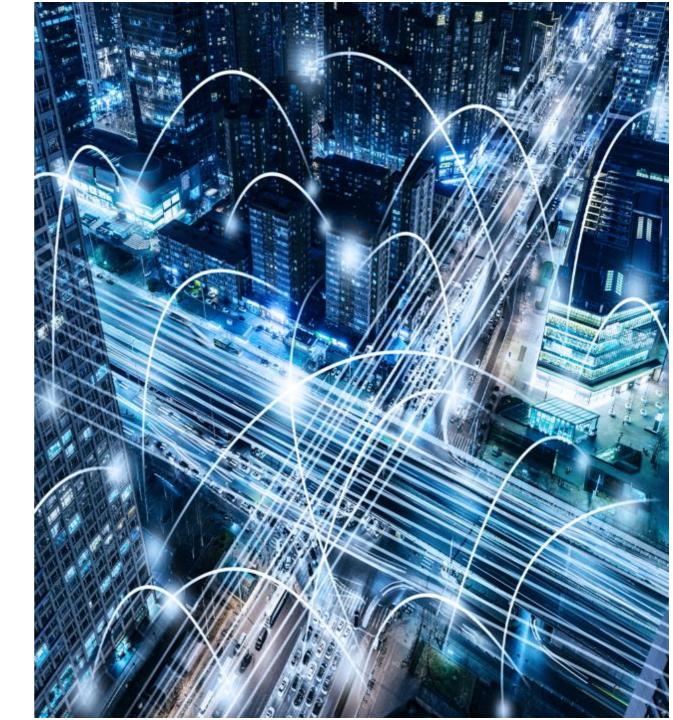
We need new approaches and tools. Data-driven, machine intelligenceenhanced approaches allow us to predict and prevent risks and deliver effective resilience offerings.

Source: Global Risks Report 2024 | World Economic Forum

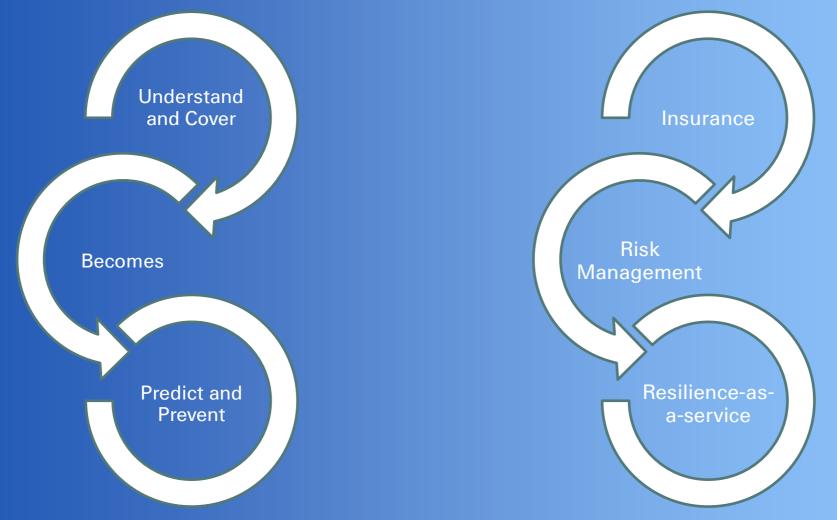

It all starts with (entangled) data

quantum entanglement noun

Swiss Re Institute


quan-tum en-tan-gle-ment <u>'kwän-</u> təm in-'taŋ-gəl-mənt

: a physical phenomenon that occurs when a group of entities (and their related data) are generated, interact, or share spatial proximity in a way such that the state of each entity of the group cannot be described independently of the state of the others, including when the entities are separated by a large distance.


Vision: Ensuring (and insuring) safe, resilient, sustainable cities

To develop modular, data-driven, endto-end, sustainable urban models, analytics and offerings that enable cities to grow sustainably, better manage their exposures, and for authorities to prevent, manage and quickly bounce back from risks and losses.

Shifts in the insurance industry: From protection to prevention

Quantum Cities[™]

Enabling sustainable growth and effective risk management

Logistics Supply chain / trade

Accumulation risk management of complex, interconnected risks

Ensuring supply chain continuity

Enabling seamless, interoperable trade across regions

Automated logistics and cyber

Environment / Natural catastrophes

Coastal city protection (sea level rise). **Urban floods.**

Green infrastructure (coral reefs, mangroves, forests)

Environmental impairment liability (EIL)

Mobility / Green industry

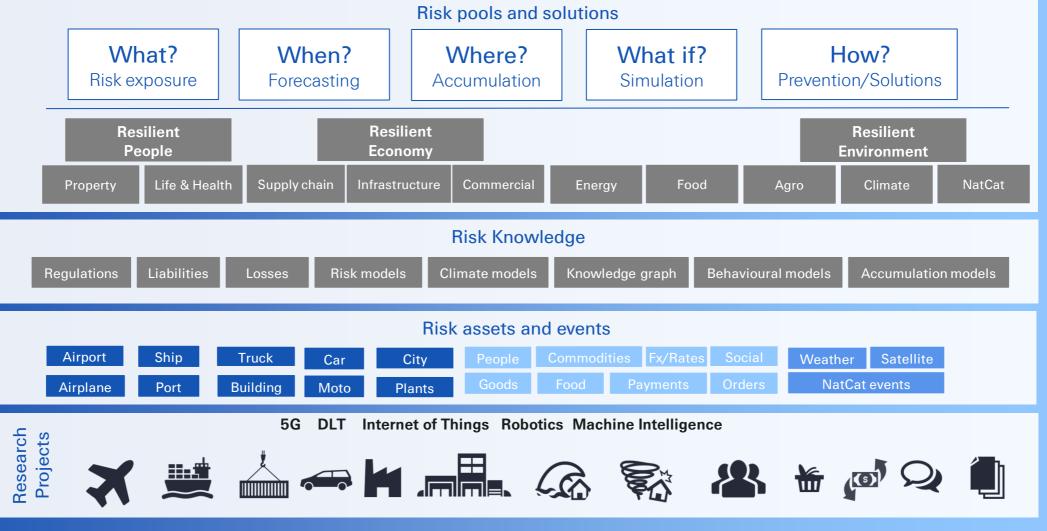
Multi-modal urban mobility Unmanned Vehicles (UV) New energy vehicles (NEVs) De-risking green infrastructure (renewable energy, roads, ports...) Societal resilience / Health

National Health Diabetes Pandemics Quantified-self

Quantum CitiesTM

Fundamental questions and answers

Governments	VVI		t?	When? W		/here?	iere? V		nat if?	How?		
Municipalities Enterprises Citizens		What happens when we introduce AVs in cities?		How are global trade flows impacted by climate change? When can tech ubiquity reduce risks systemically?		Where will climate change impact economic development? Where are new risks emerging?			impacted by? la How can we a		low can we best manag arge scale impacts? accelerate development?	
	Intelligence adoption?		What is the value at risk						How can I qualify the risk of machine intelligence methods?		How can we model urban floods?	
		new risks te to tech ty?	of natural resources?	When machines take decisions, who is liable for what?		Where are risks accumulating?			What is the role of insurance in machine intelligence adoption?		How can I make my supply chain more resilient?	
	Changes	×		5G DLT Intern	et of Thi	ings Robotics	Ma	ichine In	ntelligence	K 🖮 (



Quantum Cities[™]

Systems and solutions to address the growing complexity of risks and society

Swiss Re Institute

Quantum Cities[™] exploratory research can create re/insurance opportunities

The risk landscape of urban centers is changing. This changes current risks and coverage gaps. Re/insurers can tap into these new risks pools, offering targeted products and services to close protection gaps and build urban resilience.

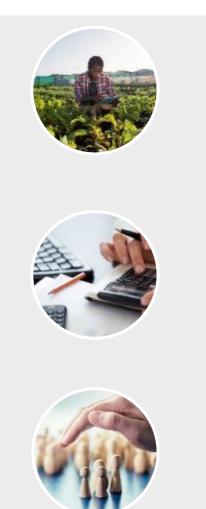
Quantum cities risk landscape: Traditional and new risk pools Traditional urban risks New Quantum Cities™ risks

Urban P&C risks Property and liability risks (of buildings, infrastructure...) due to natcat

Urban people risks L&H risks, climate change (higher injury/death from natcats, growing exposures due to heat/cold/pollution), epidemic risks Increase in interconnected systems and dependence on tech results in efficiencies but also greater exposures, e.g., supplychain business interruption risks and propagation Increase in AI-powered algorithms, connected devices, and digital health services results in better L&H offerings but also increased exposure to systemic risk like algorithmic, cyber risk, etc.

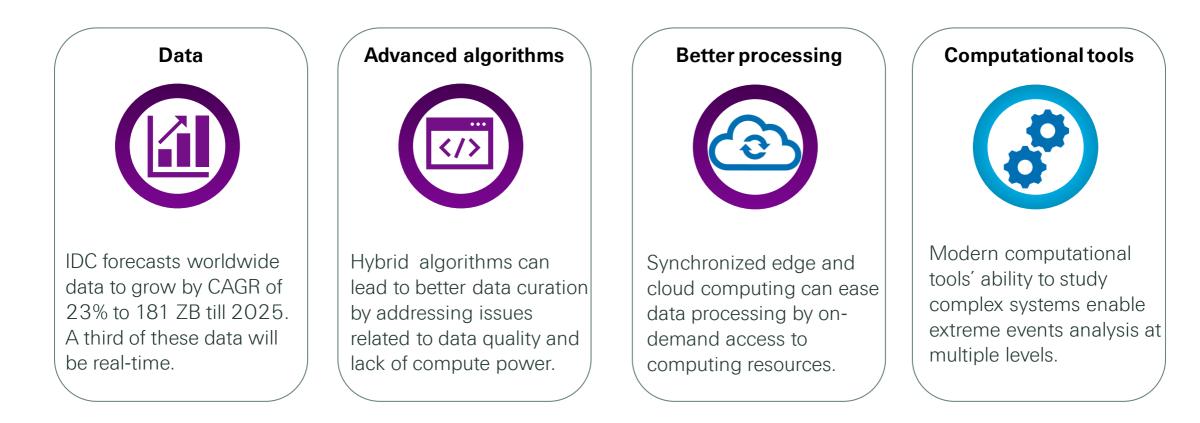
e.g., Connected trade

e.g., Connected services

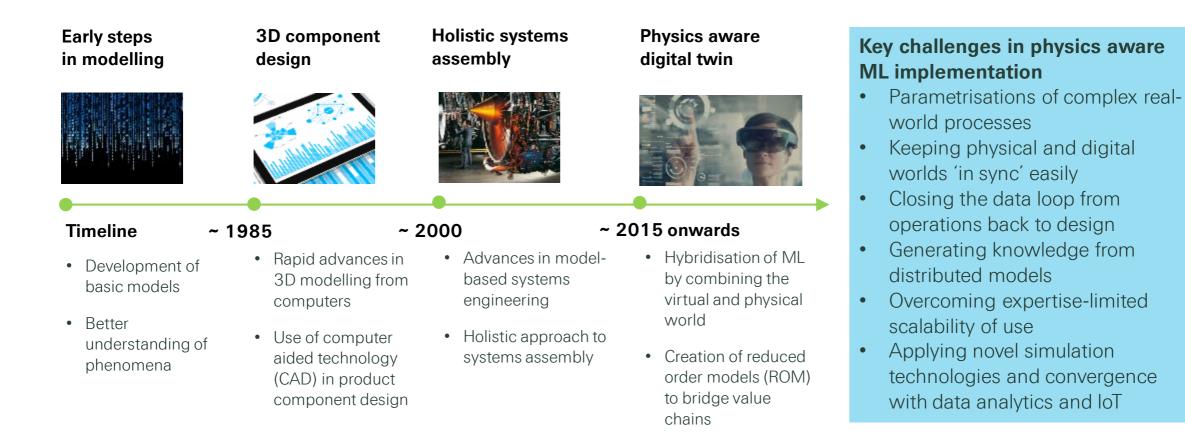


Resilience-as-a-Service: Potential data-driven offerings (examples)

- Risk products and services
 - Risk scores & indexes
 - Structuring risk transfer mechanisms
 - Data services
 - Solvency services
 - End-to-end risk platforms
 - Real-time supply chain track & trace services
- **Risk analytics**
 - Predictive risk analysis
 - Real-time NatCat monitoring / early warning systems
 - Risk management tools
 - Risk resilience analytics platforms
- **Risk studies**

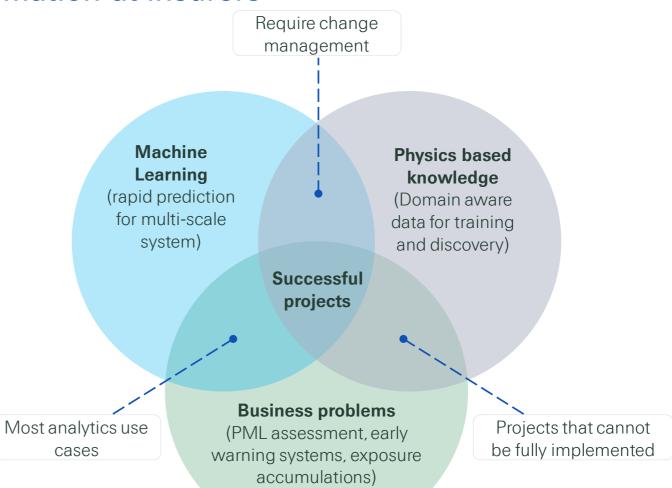

Swiss Re Institute

- Feasibility studies
- Economics of climate adaptation & climate impact studies
- Risk outlook and transition scenarios


Modeling cities: Challenges and opportunities

Data deluges, advanced algorithms, and powerful computational tools enable physical and natural system modeling like never before.

Simulating physical phenomena is evolving from component design to systems assembly to developing *digital twins* of physical assets


Source: 1) Connecting physics based and data driven models: The best of two worlds, Siemens AG, 2018

2) Swiss Re Institute

Swiss Re Institute

Careful selection of physics-based machine learning projects can enable productive enterprise scale transformation at insurers

- Physics-based reduced order models of complex assets and processes combined with machine learning can allow re/insurers to uncover hidden entanglements between insured assets and the external world.
- Solutions can be made available to clients via scalable SaaS platforms for better monetisation. Internally, these can be applied to synthesise exposure data, claims data and physical models to better quantify and monitor risks.
- Successful physics aware machine learning projects need substantial investment and crossindustry collaboration for alignment of interest between insurers, governments and other stakeholders.

Physics-based modelling of cities can allow insurers to use a systems approach to assess the impact of extreme events on each layer

Digital footprint of a city

Physical footprint of a city

Transit system data

Water system data

Utility system data

Critical infrastructure & hubs (CIH)

CIH dependencies

Asset footprint data

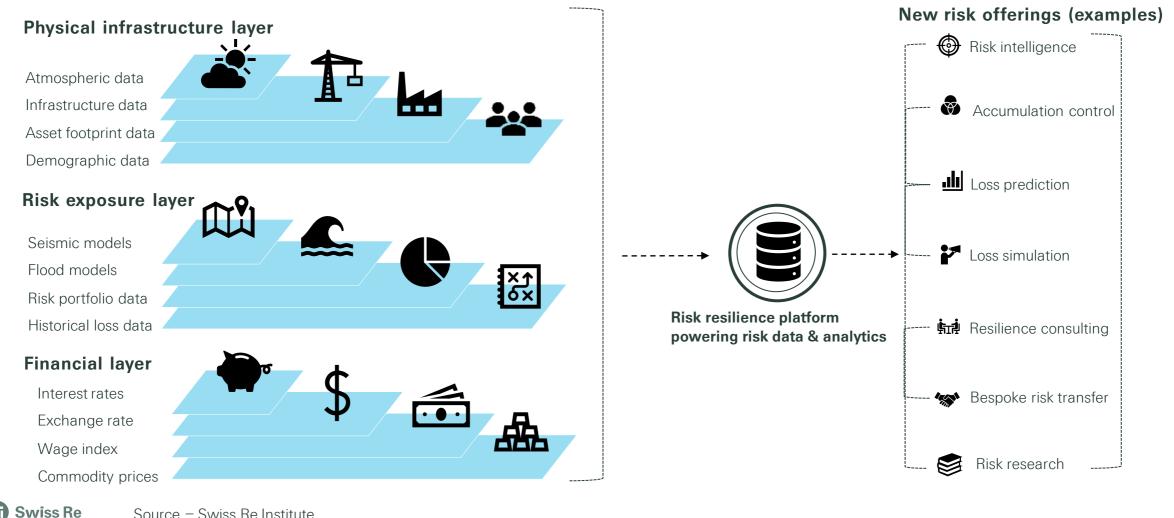
Natural environment data

Risk footprint of a city

Seismic impact analysis

Flood impact analysis

Wildfire Impact analysis



Supply chain vulnerability

Source – Swiss Re Institute

Physics-based resilience models can help insurers develop new risk offerings and improve their portfolio view for pricing, reserving and large event losses

Source – Swiss Re Institute

Institute

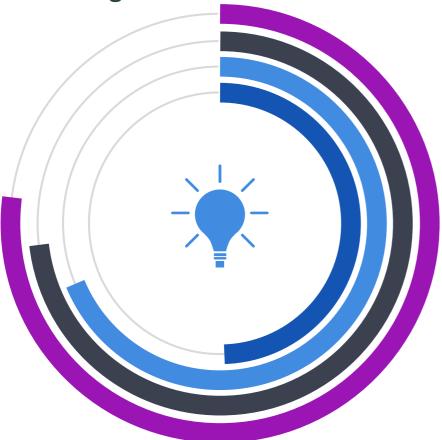
T Swiss Re

TP Con

and the

Urban floods

** *** ***


Urban Flood as an Antiselection Tool

Addressing localised pain points of underwriting business units

Projected Goals of urban flood as antiselection tool Inform and facilitate statistics for portfolio analysis and exposure for underwriting units.

A scalable local approach

that can be streamlined and transposed to other cities and eventually other perils

Natural factors

including several topographical, hydrographical and climatic aspects, including extreme patterns in rain due to climate change

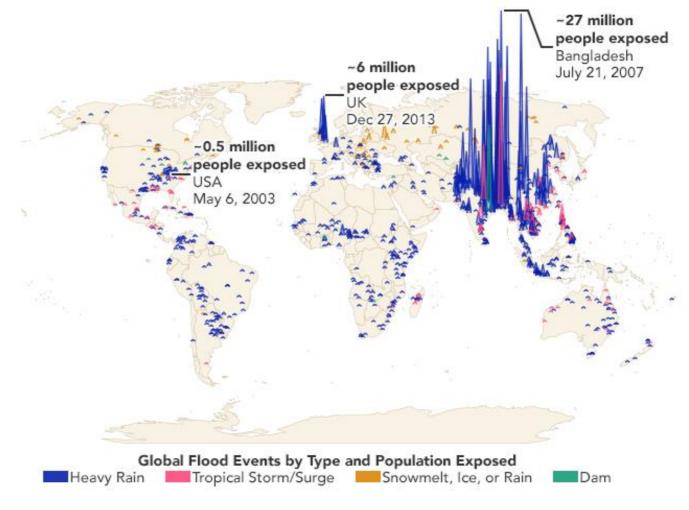
Human factors

affecting urban environments specifically, such as urban land use (urbanisation), vegetation index and road network

With a hazard index look up

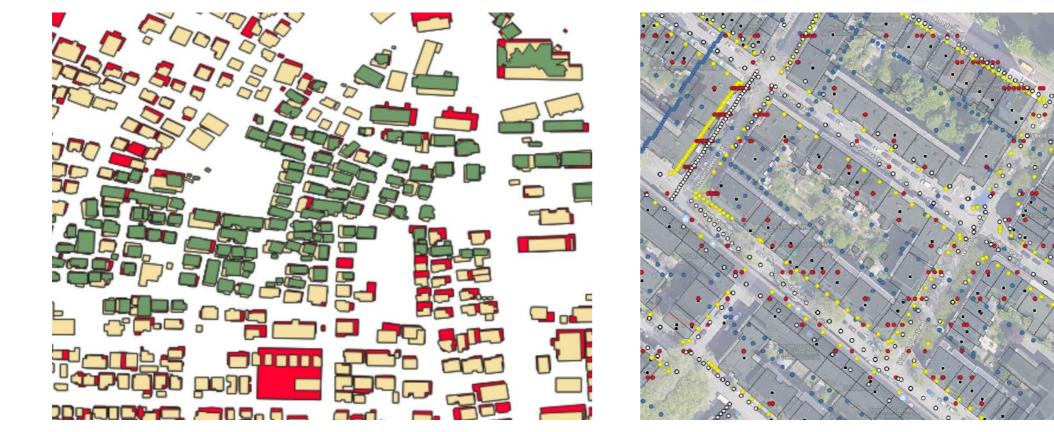
defined to the level of accuracy requested by the stakeholders, and on which anti-selection can be performed in an informed manner.

Flooding represents 20-25% of all secondary peril insured losses between 2011-2020.


Sigma report, Lucia Bevere, Dr Andreas Weigel

A drastically increasing proportion of urban areas will be exposed to flood

In a study published in Nature in August 2021, scientists found that the proportion of the world's population exposed to floods grew by 20 to 24 percent. Although researchers expected an increase in the number of people living in floodprone areas, the new estimates were ten times greater than what previous models predicted.


Map and chart imagery created by Benjamin Cooley, <u>Cloud</u> <u>to Street</u>, and provided courtesy of <u>Tellman, B., et al. (2021</u>). Story by Emily Fischer, NASA Earth Science News Team, with Michael Carlowicz.

Source: https://earthobservatory.nasa.gov/images/148866/research-shows-more-people-living-in-floodplains

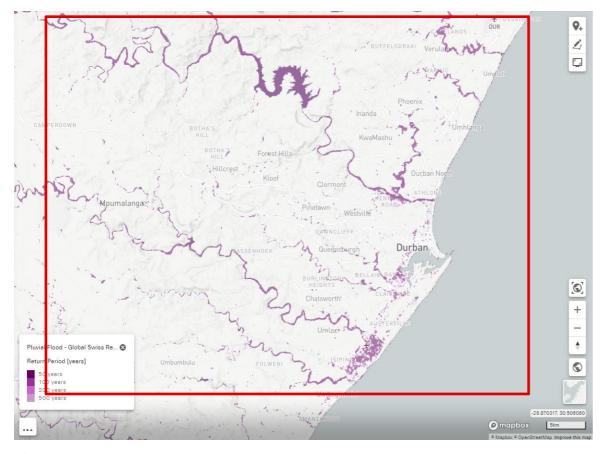
Accuracy issues

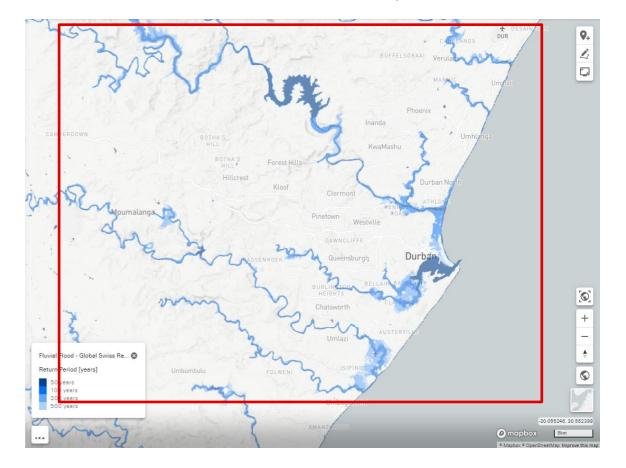
(left) three commercial building footprint providers. Each of them guarantees a 30cm accuracy.

(left) 5 different geocode providers. All describe the same objects, none of the geocodes are the same.

Current global fluvial and pluvial zones in Cairo (CNP)

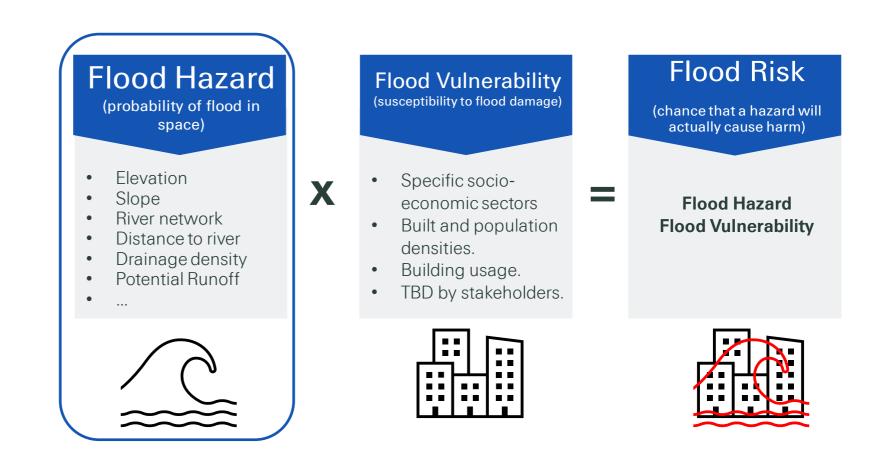
Global flood zones, are layers accepted by the insurance industry as reliable risk layers. They are used for risk estimation and insurance. They do not take loss into account. They are based on observations and physical modelling of natural processes. They do not take human impact into account.




Global Fluvial Flood Layer

Current fluvial and pluvial zones in Durban (CNP)

Global Pluvial Flood Layer

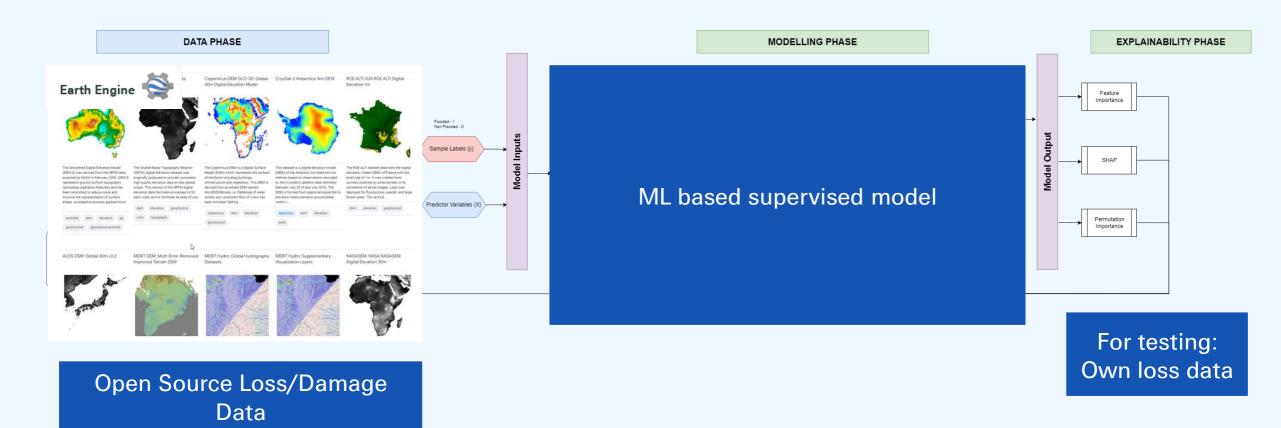

Global Fluvial Flood Layer

Methodology

- Flood risk is usually determined by the product of hazard (the statistical and physical aspects of the actual flood) and vulnerability (the exposure of people as well as assets to floods) [1,2].
- It can also be described as the coupling of possible damage and flood probability [3], or more specifically, as the product of hazard and vulnerability [4].

Sources:

1. Merz, B.; Kreibich, H.; Thieken, A.; Schmidtke, R. Estimation uncertainty of direct monetary flood damage to buildings. Nat. Hazards Earth Syst. Sci. 2004, 4, 153–163.


2. Apel, H.; Aronica, G.; Kreibich, H.; Thieken, A. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98.

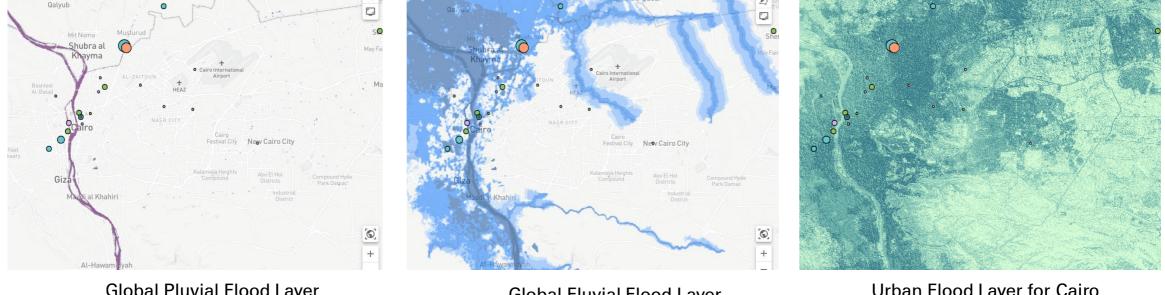
3. Förster, S.; Kuhlmann, B.; Lindenschmidt, K.-E.; Bronstert, A. Assessing Flood Risk for a Rural Detention Area. Available online: https://hal.archives-ouvertes.fr/hal-00299508/ (accessed on 9 January 2020).

4. Ologunorisa, T.E. A review of the eects of gas flaring on the niger delta environment. Int. J. Sustain. Dev. World Ecol. 2001, 8, 249–255.

Urban flood hazard: Complete pipeline

Where it all started: Urban flood anti-selection for Mexico City

Swiss Re


Institute

Ē

Global Fluvial Flood Layer

Thomas Phillips, Alicia Montoya | Feb 2024 | Swiss Re 30

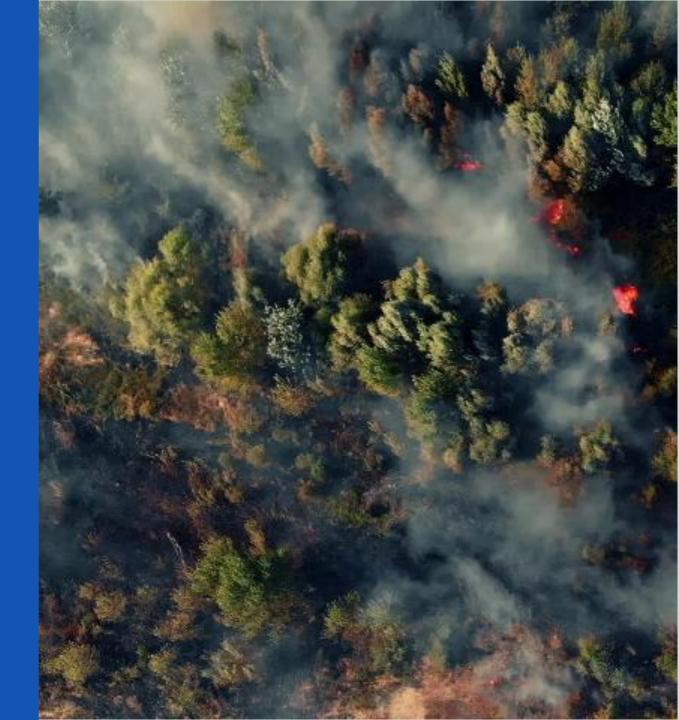
Urban flood is not a replacement for the Global Flood Zones: it complements them by addressing gaps in the coverage of flood hazard in cities, where modeling processes is hard due to complex situations.


Global Pluvial Flood Layer

Global Fluvial Flood Layer

Urban Flood Layer for Cairo

Urban flood is not a replacement for the Global Flood Zones: it complements them by addressing gaps in the coverage of flood hazard in cities, where modeling processes is hard due to complex situations.


Global Fluvial Flood Layer

Urban Flood Layer for Durban

Transposability to other cities and perils

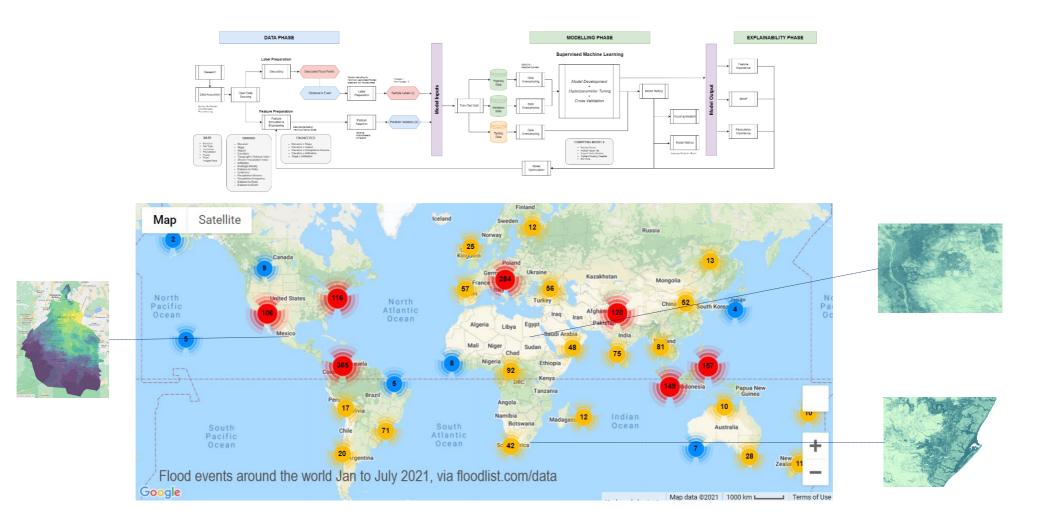
Bringing complementary insights where needed

Insured losses from secondary perils from sigma 1-2021

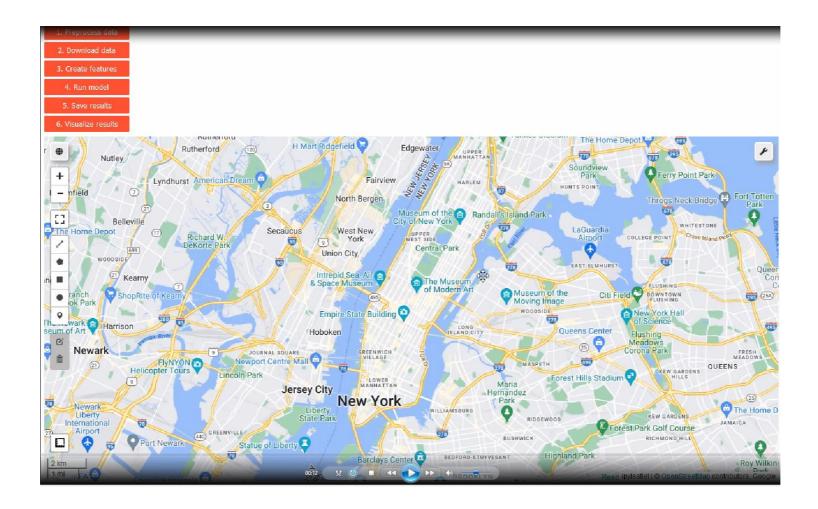
(Sigma 1/2021) Lucia Bevere Dr Andreas Weigel 80

Since the 1970s, **severe convective storms** (SCS) have been responsible for **more insurance damage** than any other secondary peril

Losses from **wildfire** have been **increasing faster** than any other peril, fuelled by an intricate interplay of man-made and natural factors. Climate change is likely an important driver

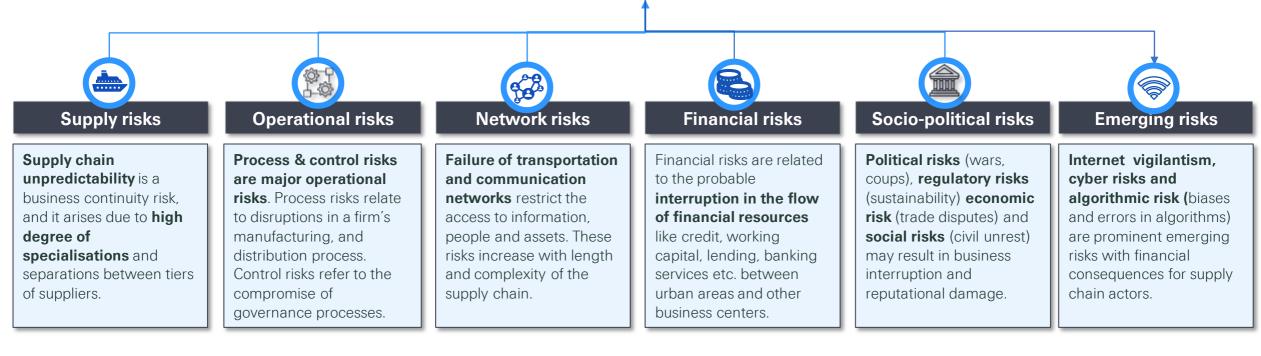


Floods from precipitation and storm surges make up a quarter of insured secondary peril losses 70 SCS 60 Floods 50 Wildfires 40 Other secondary 30 Sec. effects of 20 primary perils 10 2000 1970 1980 1985 1990 1995 2005 2010 2015 2020 1975



An agnostic model enabling a safe transfer to other contexts and datasets

Demo of urban flood model



Quantifying business interruption for supply chain resilience

Cerc

Global supply chain risk landscape is changing rapidly: Technological, political, social and environmental risk drivers are evolving and causing **risk accumulation**

Non-systemic risks

Systemic Risks

Supply chain resilience requires new data-driven approaches and network models

Supply chains are increasingly global, digital, and operating in an interconnected, volatile and climate-challenged world. These increased risks and interdependencies mean events can quickly propagate globally, driving large and sometimes catastrophic losses.

Supply chain disruptions cost organizations around an average of USD 184 million per year¹. Weather events, geopolitical instability, pandemics and climate change are examples of events that can severely disrupt corporates' business.

The average business interruption (BI) loss is more than one third higher than the average property loss². But costing BI/CBI can be extremely challenging due to lack of connected, reliable data. Often overestimated BI exposure assessments and loss costing can hamper underwriting performance and/or lead to coverage exclusions.

Supply chain resilience requires understanding of supply chain nodes, networks and interdependencies to calculate business interruption risks and the potential risk propagation and accumulation. Supply chain disruptions cost organisations USD 184 million/ year¹ on average

Supply chain BI/CBI quantification: Key questions to estimate financial losses

Which locations in a portfolio are dependent on others? Portfolios can contain sites of a company without their suppliers (BI) or include suppliers (CBI). The data source for location information is exposure (submission data) and for suppliers' locations and relationships can come from supply chain relationship or shipment datasets.

Which products (raw material/parts) are supplied to the dependent locations? Which companies supply those products? e.g., product description (e.g., HS code). Our main data source is the shipment dataset.

What is the relative scarcity or risk of those products/suppliers? Scarcity can be defined based on availability of materials in one or several regions/countries, number of suppliers, already established relationships with suppliers, and tier-n single sources of raw materials (e.g., silicon).

How can business interruption propagate? What is the probability and intensity of the propagation? Given an interruption at a location (either at an insured corporate company or their suppliers) how can it propagate to other connected locations? What are the metrics to use? If the products are not single source, how much time would it take to find alternative suppliers?

How can we estimate financial losses at a dependent location? How much is the interdependent CBI/BI exposure at each location? The total assigned exposure can be more than the initially estimated exposure due to the propagation effect.

Swiss Re Institute How can we develop a model for a parametric cover? For example, we can use business metrics such as business downtime (e.g., 2 days business interruption) as a trigger instead of a more classical approach using event intensity (e.g., hurricane strength x)

Risk aggregation in automotive supply chains

Automotive supply chain risks

Supplier aggregation

Bottleneck in typical multi-tier supply chain system

Ø

Geographic aggregation

Concentrated manufacturing Automotive industrial zones

Industry aggregation

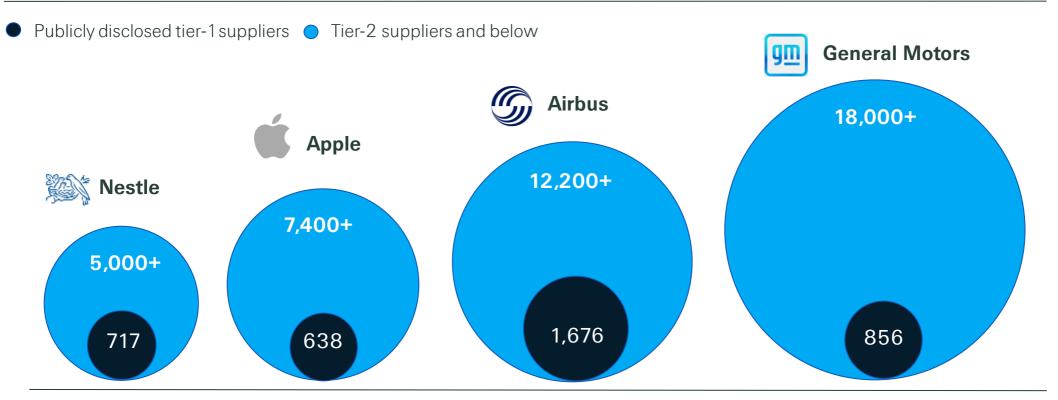
More overarching factors also bring in uncertainty to auto industry.

- Shipping
- Finance
- Manufacturing

Insurance accumulation losses

Physical loss

Property Loss under Property Policy**Vehicles loss** under Marine Policy

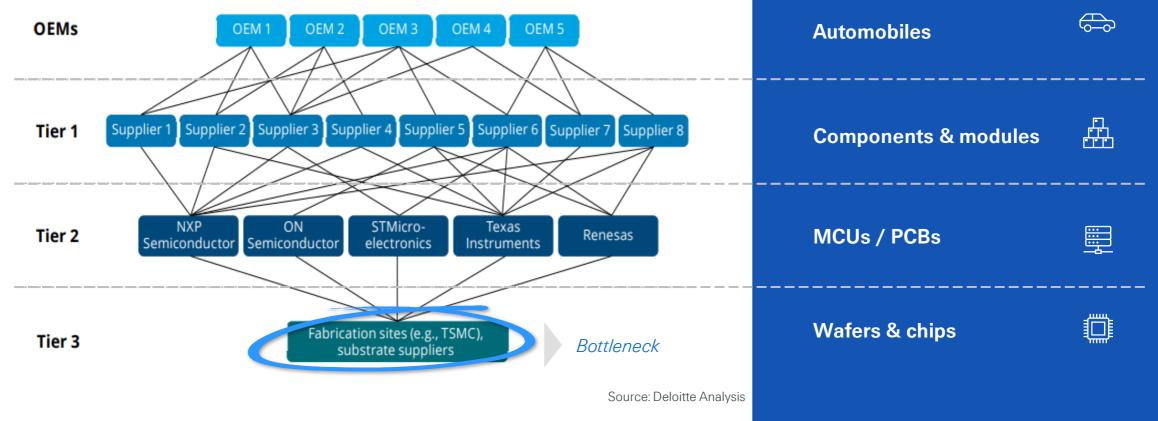


Loss of profit

Business Interruption (BI) Contingent Business Interruption (CBI) Non-Damage Business Interruption (NDBI)

Supplier aggregation: We can't avoid the risk we can't see

Beyond tier 1, manufacturers rely on a network of thousands of suppliers



Source: McKinsey

Bottlenecks in lower tiers can delay/suspend production

Illustrative automotive chips supply chain

Products

Supply chain risk propagation model (co-developed with CDAR) Overview

Data: We curated external datasets (containing import and export transactions data) and built a global supply chain digital twin that encompasses around 60% of global trade. The supply chain data contains company hierarchies, their manufacturing locations, and supply networks between locations. This provides information like product category, product value, weight and volume to enable tier-1 to tier-n supply chain analytics and the development of a BI/CBI risk propagation model.

Model: The new supply chain risk propagation model quantifies BI/CBI losses at each insured location, taking into account product dependencies, single source suppliers, and supply chain relationships for given interruption at the any location in the supply network. The input of the model is the interruption ratio and duration at the location(s) affected by event. The model is peril-agnostic and can estimate interdependent BI/CBI for any peril (man-made or natural catastrophes).

Potential extensions: The current model can be integrated into current natural catastrophe models and effectively applied to large portfolios for accumulation management. In addition, the model can be extended to take into account reserved stock at locations (redundancy), probability of finding alternative suppliers, and lead time to securing new supplies.

Supply chain risk propagation model (co-developed with CDAR) Enabling supply chain interdependency analytics to improve BI and CBI costing.

- Re/insurers have limited information about their clients' supply chains. This limits our ability to accurately quantify the risks stemming from interdependencies between insured locations.
- Actual BI losses can be 2.5 times more than modelled losses and half of total property losses.
- Swiss Re Institute's new BI/CBI risk propagation model¹ enables better **quantification of BI/CBI losses** by considering product dependencies and supply chain relationships for better risk selection and costing.
- The BI/CBI propagation model can be extended. Using global trade data we can model the **probability to find alternative suppliers and lead times for goods**.

¹ <u>2022-02 a propagation model to quantify business interruption losses in supply chain networks.pdf (berkeley.edu)</u>

The challenge

Automotive supply chain networks are global and complex. Companies lack full visibility. **Quantifying BI/CBI losses requires using new datasets and new risk models** that can help companies understand and quantify risk propagation across entities, taking into account supply chain interdependencies).

To quantify and assess BI/CBI risks in an automotive property portfolio, companies need to estimate the overall accumulation in different scenarios.

The R&D

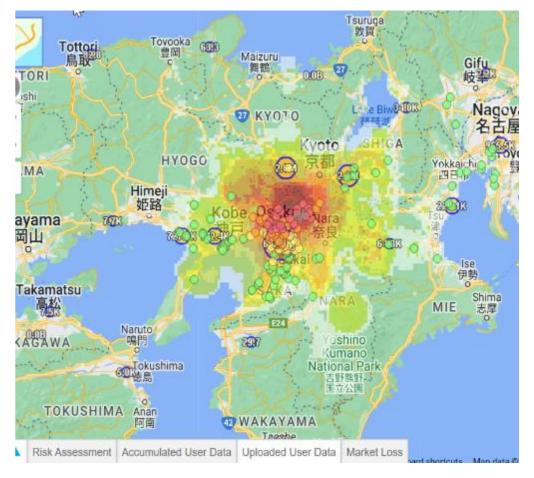
Data: Automotive manufacturers' location data extracted from curated supply chain datasets to understand supply chain network and dependencies.

Modeling: BI/CBI risk propagation model across entities, identifying interdependencies and critical nodes and risk drivers (e.g., product scarcity, geographic supplier concentration). Financial quantification of interruption by local entity and at Group level.

The results

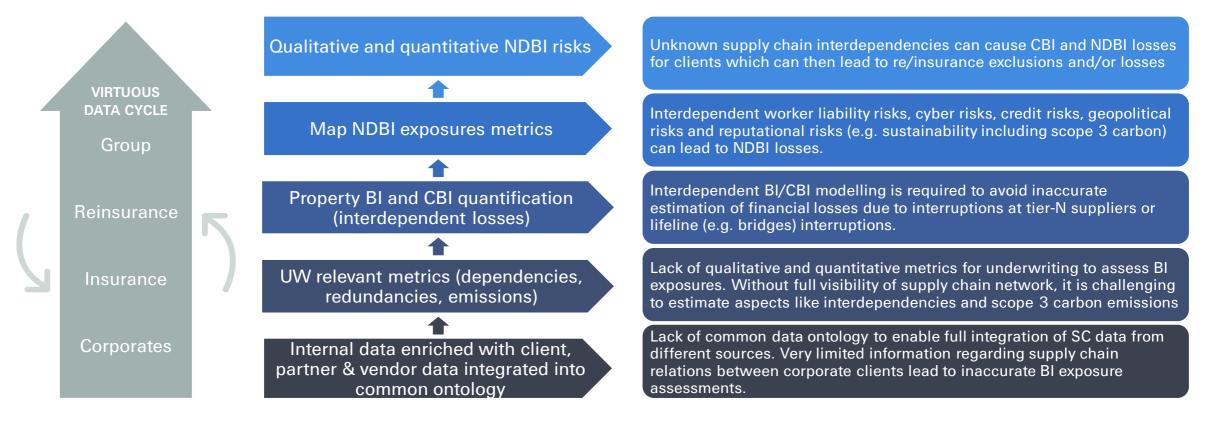
Out of 401 locations* in Japan, 58 were impacted by the Osaka 2018 earthquake, causing BI losses.

The 58 impacted locations in Japan caused interruptions at **9 other locations** across the automotive industry, causing an additional (CBI) loss of **approximately 11%.**


* Based on purchased shipment data

Modelled example: Risk propagation can cause an additional 11% CBI loss (synthetic data)

- Assumptions: Automotive locations data are extracted from purchased shipment data. The locations' insured value is assumed to be USD 60m per building, USD 40m per content and equipment, and USD 50m of annual gross profit (12 months indemnity period).
- Results: Out of 401 locations in Japan, Osaka EQ scenario impacted 58 locations. Swiss Re Nat Cat models estimate the BI loss at ~USD 118m. The interruption of impacted locations in Japan causes interruption to 9 other locations with an estimated additional ~USD 13m in losses, which is about 11% more than the BI estimated.


Japan 2018 Osaka EQ - scenario losses								
Model	Number of locations	Property (PD)	BI (Swiss Re Cat Model)	CBI (incl. Supply Chain)				
Insured values	401	40,100 mn	20,050 mn	+1 st -tier customers				
SRI Nat Cat Losses	58 (direct) + 9 SC indirect impact	136.8 mn	118.5 mn	13.4 mn				

Better data can help solve for underwriting performance pain points across a re/insurance company

Objectives: Achieve end-to-end supply chain visibility for improved supply chain risk quantification and management

Pain points to solve for within a re/insurance company

Integrating and enriching internal supply chain-relevant data with external data to power supply chain analytics

 Re/insurer data Property exposure data (insured values per address, occupancies etc.) Property claims and loss adjustor reports Risk engineering data (BI rating per location) Hazard maps etc Third-party data IHS vessel location data Marine Benchmark vessel emissions IHS vessel location data Marine Benchmark vessel emissions It was the services 			Re/insurance use cases (examples)	
 (insured values per address, occupancies etc.) Property claims and loss adjustor reports Risk engineering data (BI rating per location) Hazard maps etc Third-party data IHS vessel location data Marine Benchmark vessel emissions Surces, get access, control data quality and completeness, data quality and completeness, data validation, feature extraction, data structuring, building data ontologies Bazard maps IHS vessel location data Marine Benchmark vessel emissions 	1		Underwriting	Risk engineering
 Ship recycling Global shipping data (S&P Panjiva) Company Database (S&P Global) or Factset RIBICS Supply chain data (Factset) News feed (Factiva) 		•	interdependencies and more accurately quantify BI risks in portfolios.	 Perform detailed on-site risk assessments at high-risk locations based on risk dependencies. Enable improved estimation of exposed BI and loss estimates. Grow fee-based services Foster stronger client relationships through improved risk insights and mitigation plans Re/insurance covers Offer improved indirect BI loss estimates Enable development of NDBI parametric covers.

Institute

Bottom up, enhanced data enables better risk selection and costing at single risk level, steering of portfolios, and accumulation management at company level

Company-level: Identify accumulation drivers. Manage risks globally. Effectively allocate underwriting capital.

Portfolio level: Steer portfolios. Balance upside, downside, impact. Portfolio growth. Implement risk management strategies.

Single risk level: Improve costing and risk selection. Develop new products. Expand insurability.

Examples of personas who benefit from supply chain resilience offerings

Personas	Needs	Benefits
Risk / insurance manager Responsible for <u>managing risk</u> <u>and buying insurance covers</u> <u>and services</u>	 Key needs Identify / assess / quantify risk landscape and drivers Purchase insurance covers Lead risk mitigation strategy and investments Estimate Property and BI insured values in sites (BI allocation) 	 Key advantages Identify risk drivers and vulnerabilities / accumulation potential Structure insurance coverages for the actual risks considering vulnerabilities and redundancies. Manage risks at key locations with the highest financial impact Quantify the portion of revenue at risk at each location considering interdependencies.
Supply chain manager Responsible for <u>supply chain</u> <u>strategic planning & KPI</u> <u>management.</u>	 Key needs Understand company supply chain tier-1 to tier-n Manage supply chain risk mitigation measures Propose mitigation strategies supporting financial targets 	 Key advantages Interlinking supply chain risks and their network-effects to establish the basis for decision making Quantifying risk impact to identify best available options considering different KPIs.
Procurement manager Responsible for <u>managing</u> <u>supplier network</u> to ensure business continuity.	 Key needs Identify upstream single source products. Find reliable alternative suppliers Source goods at reduced costs Optimally manage stocks to ensure business continuity within financial targets 	 Key advantages Managing single source suppliers and find alternatives to reduce risks Identifying best available supplier considering different KPIs including risk impact and costs. Integrating risk insights capabilities to enable to anticipate adverse risk events & take action

Steps towards improving a company's supply chain risk resilience

- 1. Map company x tier-n supply chain
 - \rightarrow Company x insurance manager uses analytics tool for supply chain visibility to tier-n
- 2. Identify critical locations and natcat events

 \rightarrow Company x Tokyo location gets hit by typhoon. The production of base chemicals used for drug generation in company x India gets interrupted. This propagates to the supply of company x end products in Italy.

- 3. Quantify location loss and risk propagation across dependent locations
 - 1. Bl allocation (revenue at risk) per location (India, Italy)
 - 2. Post-event impact quantification: By production ratio (in%) and duration (and therefore production loss) of impact per location
- 4. Resilience analytics & products
 - 1. Supplier alternatives \rightarrow Company x selects alternative suppliers based on production volume, location, etc
 - Product uniqueness (single source supplier) → Company x reviews single source products to inform their supply chain and product development strategies.
 - 3. Storage (stock redundancy) options
 - 4. Offer BI / CBI / NDBI indeminity covers. Offer new products (e.g. parametric covers for fast payout, complementing indemnity covers).

Potential re/insurance offerings for supply chain resilience

360° capabilities	Potential products and analytics features
	• Digital twin : Visualise end-to-end supply chain mapping down to tier-n across all industries globally.
Visibility	• Risk insights : Explore supplier and product dependencies and overlay historical and live e.g., weather risk data.
	• Alternative suppliers: Find alternative suppliers (and customers) by country and products.
	Supplier risk hotspots: Identify suppliers risk hotspots and concentration.
	• Bl allocation of revenue at risk: Quantify the portion of revenue at risk at each site considering supply interdependencies.
Mitigation	• Resilience analytics (including revenue impacted) : Advanced supply network analytics and what-if scenarios e.g., simulate disruptive events and quantify loss of revenue across supply chain.
	• Risk mitigation insights: Effective risk mitigation investments on resilience measures by simulating impact of mitigations e.g., buffer of key material stocks for strategic products, investment on site protections.
Protection	• Insurance covers: Insurance covers including new products e.g., parametric BI covers based on business downtime.

Quantum Cities[™]

Takeaway

At the nexus of technology, economic and societal changes lie untapped opportunities. The breadth and depth of **challenges** require new **approaches** to sustainably accelerate **growth** and manage **new risks**

Swiss Re's Quantum Cities[™] is a strategic response enabling innovative risk approaches and offerings to increase resilience and close protection gaps

Working in strategic partnerships with research applied to large-scale transformational projects, re/insurers can support urban and national strategic visions that enable resilient, sustainable economies and societies

Legal notice

©2024 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial or consequential loss relating to this presentation.

