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Abstract

For a covariance matrix coming from a factor model of returns, we investigate the
relationship between the long-only global minimum variance portfolio and the asset
exposures to the factors. In the case of a 1-factor model, we provide a rigorous and
explicit description of the long-only solution in terms of the parameters of the covari-
ance matrix. For q > 1 factors, we provide a description of the long-only portfolio in
geometric terms. The results are illustrated with empirical daily returns of US stocks.

1 Long-only minimum variance

1.1 Introduction There is a long-standing interest in equity portfolios optimized to have
the lowest possible variance. The optimal such portfolio depends on the covariances between
pairs of assets, and on the particular constraints of interest.

If there are p assets available for investment, we denote by w = (w1, . . . , wp)
⊤ ∈ Rp the

p-dimensional vector of asset weights defining the portfolio. The global minimum variance
portfolio wLS denotes the long-short portfolio solving the simplest problem

min
w∈Rp

w⊤Σw

w⊤1p = 1,
(1)

where Σ denotes the positive definite covariance matrix of asset returns; 1p denotes the
vector of dimension p whose every entry is 1; and w⊤1p = 1 is the full investment condition
setting the sum of the weights equal to 1. For the long-short portfolio, some of the weights
may be negative.
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Our focus is the long-only minimum variance (LOMV) problem

min
w∈Rp

w⊤Σw

w⊤1p = 1

wi ≥ 0 for all i = 1, 2, ..., p.

(2)

The long-only constraints wi ≥ 0 are often required for real investment portfolios due to the
complications and costs of short positions.

The solution w = wL of (2) represents the long-only fully invested global minimum risk
portfolio, and can be contrasted with the solution wLS of the long-short problem. The
portfolio wLS solving problem (1) is given by the simple formula

wLS =
Σ−11p

1⊤
p Σ

−11p

. (3)

The long-only problem (2) is less straightforward.
As we show in this article, the main difficulty in problem (2) is determining which are the

active (positive weight) assets in the optimal portfolio, or, equivalently, which are the assets
for which the long-only constraints are binding. Denote by K = {i ≤ p : wL

i > 0} the set of
active assets in the long-only optimal portfolio, and let k ≤ p denote the number of elements
of K . Once we have determined K, Theorem 1 solves the problem: if we denote by ΣK the
k × k matrix obtained from Σ by deleting all the rows and columns not in K, then the k
positive weights of wL are given by the corresponding entries of the k-dimensional vector

wK =
(ΣK)−11k

1⊤
k (Σ

K)−11k

. (4)

In short, the active long-only minimum risk portfolio holdings are those of the long-short
minimum risk portfolio corresponding to a reduced set of available assets. This is intuitively
reasonable1 because the long-only constraints are not binding on the positive holdings of wL.

This leaves the problem of determining K, the set of active assets of wL, which is normally
much smaller than the set of positive-weight assets in the long-short portfolio wLS (e.g.
Figure (2)). In this article we analyze that problem when the covariance matrix comes
from a factor model. In the case of a single-factor model, we provide an essentially explicit
description of K below in Theorem 2. There, one factor explains covariance between assets,
and the covariance matrix takes the form

Σ = σ2ββ⊤ +∆, (5)

where σ2 > 0 is the factor return variance, β is a p-vector of exposures to the factor, and ∆
is a diagonal matrix of specific variances.

In the case of a multiple factor model with q > 1 factors, the p × p covariance matrix
takes the form

Σ = BΩB⊤ +∆, (6)
1Geometrically, if, for example, the active LOMV assets are the first k in the list, then the corresponding

k-vector minimizes k-dimensional variance in the interior of the positive k-orthant.
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where B is a p × q matrix whose columns are the asset exposures to each of q factors, and
Ω is a q × q invertible matrix of factor variances, diagonal in the case when the columns of
B are principal components. When q > 1, we know of no direct way to compute the set
K of active assets that is similar to Theorem 2. However, Theorem 3 gives us a necessary
condition satisfied by K, as follows. Let Bi ∈ Rq denote the ith row of B. Then there is
a (q − 1)-dimensional hyperplane H in Rq such that the elements i of K are all those such
that Bi lies on the same side of H as the origin.

The single factor case was previously studied in Clarke et al. [2011], where they assume
the single factor is the market return, and provide an implicit solution to the long-only
problem that is equivalent to the one here when our vector beta of exposures to the single
factor is taken to be the market beta. Their article inspired our work, and we discuss the
relationship between their results and ours further below.

1.2 Main Results We state the results outlined above in more detail in this section. The
proofs of the following theorems appear in Section 3.

Assumption for Theorem 1. Suppose that the covariance matrix Σ of returns for a
universe of p assets is an arbitrary p× p symmetric positive definite matrix.

Theorem 1. Denote by wL the solution of problem (2) and let K denote the set of active
assets in wL:

K = {i ≤ p : wL
i > 0}, (7)

and k = |K| ≤ p, the number of active assets. Let ΣK,0 be the modified matrix obtained from
Σ by setting to zero the rows and columns not belonging to K.

Then

wL =
(ΣK,0)+1p

1⊤
p (Σ

K,0)+1p

(8)

where + denotes the Moore-Penrose inverse.2

Equivalently, if we denote by wK the k-vector obtained by deleting all the zero entries
of the p-vector wL, and ΣK denotes the k × k matrix obtained from Σ by deleting the rows
and columns not belonging to K, then

wK =
(ΣK)−11k

1⊤
k (Σ

K)−11k

. (9)

This is the unique solution of the k-dimensional long-short problem (1) with Σ replaced by
ΣK , and wL can be recovered from wK by adding back zero entries for the deleted assets.

Theorem 1 allows us to determine the long-only minimum risk portfolio as soon as we
know the set K of active assets. It remains only to determine K, and for the single-index
case q = 1 this can be accomplished by an explicit method described next in Theorem 2.

2For a symmetric matrix S with singular value decomposition S = UDU⊤ for orthogonal U and diagonal
D, the Moore-Penrose inverse is defined by S+ = UD+U⊤, where the diagonal matrix D+ is obtained by
replacing each nonzero element by its inverse.
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Assumptions for Theorem 2. Assume now a single-factor returns model which gives
the covariance matrix Σ the form

Σ = σ2ββ⊤ +∆, (10)

where σ2 > 0 is the factor return variance, β is a p-vector of factor exposures, and ∆ =
diag(δ21, δ

2
2, ..., δ

2
p) is a diagonal matrix of non-zero idiosyncratic asset return variances δ2i > 0.

We permit the entries βi of β to be positive, negative, or zero, but assume the generic
condition

p∑
i=1

βi

δ2i
̸= 0. (11)

Notice that the vector β may be replaced by −β without changing Σ, so without loss of
generality we choose the sign so that

p∑
i=1

βi

δ2i
> 0, (12)

as would be the case if all the betas were positive.
In addition, by re-ordering the assets if necessary, for convenience we further assume

without loss of generality that the betas are arranged in increasing order:

β1 ≤ β2 ≤ · · · ≤ βp. (13)

With these assumptions, our main result is

Theorem 2. (Explicit Solution to the long-only constrained problem under a 1-
factor model) Assume the betas βi are arranged in increasing order.

1. Let R1 =
1
σ2 , and for 2 ≤ i ≤ p, let

Ri =
1

σ2
+

i−1∑
j=1

βj

δ2j
(βj − βi).

Then there exists s ≤ p such that the initially positive sequence {Ri} is monotonically
increasing until i = s, then monotonically decreasing for i > s. That is,

0 < R1 ≤ R2 ≤ · · · ≤ Rs ≥ Rs+1 ≥ · · · ≥ Rp. (14)

In particular, the sequence {Ri} crosses zero at most once.

2. Let wL denote the solution of problem (2), K = {i ≤ p : wL
i > 0}, and k = |K|.

Then
k = max

{
i ≤ p : Ri > 0

}
and K = {1, 2, . . . , k}. (15)

Applying Theorem 1, we may conclude the following. Let ΣK,0 be the block-diagonal
matrix obtained from Σ by replacing all but the first k rows and columns with zeros.
Then the solution wL is given by

wL =
(ΣK,0)+1p

1⊤
p (Σ

K,0)+1p

(16)

where + denotes the Moore-Penrose inverse.
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For an equivalent formulation in terms of ordinary matrix inverse, let ΣK be the k × k
submatrix of Σ consisting of the first k rows and columns. Denote by wK ,

wK =
(ΣK)−11k

1⊤
k (Σ

K)−11k

, (17)

the long-short fully invested minimum variance solution for the first k assets.
Then the solution wL = (wL

1 , . . . , w
L
p )

⊤ of (2) is given by

wL
i = wK

i for i = 1, ..., k

wL
i = 0 for i = k + 1, . . . , p.

(18)

We note that k = p if the long-short fully invested minimum variance portfolio happens
to be long-only already. Otherwise, k < p, Rp < 0, and the sequence {Ri} crosses zero
exactly once. In this situation, k has the property

Rk > 0 and Rk+1 = Rk + (βk − βk+1)
k∑

j=1

βj

δ2j
≤ 0. (19)

This means that the threshold index k and the solution w are not influenced by the values
of δj for j > k, nor by the values of βj for βj > βk+1.

The proof of Theorem 2 also establishes, via Lemma 4 below, the following

Corollary 1. Under the assumptions above, if w is the solution of problem (2), then

wi > 0 if and only if βi <

1
σ2 +

∑k
j=1

β2
j

δ2j∑k
j=1

βj

δ2j

. (20)

The solution of problem (2) in semi-explicit form was previously described by R. Clarke,
H. de Silva, and S. Thorley in Clarke et al. [2011]. They give the following condition, which
is closely related to Corollary 1:

wi > 0 if and only if βi < τ, (21)

where τ is the solution of the equation

τ =

1
σ2 +

∑
βi<τ

β2
j

δ2j∑
βi<τ

βj

δ2j

. (22)

The solution described in Clarke et al. [2011] is equivalent to (17) and (20). Both solutions
require the assumption (12), as a simple argument shows: In the absence of any hypotheses
about the signs of the betas, replacing β by −β leaves the covariance matrix Σ, and hence
the solution w, unchanged. But in that case the long positions of w would correspond to
betas above a threshold, not below it, contradicting the threshold condition.
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The need for assumption (12) is easily overlooked because it likely always holds for betas
actually observed in the market. In our one-factor world, if the betas are defined relative to
a benchmark portfolio wB that belongs to our investable universe of p assets, i.e.

wB ∈ Rp and β =
ΣwB

σ2
B

, (23)

then a calculation similar to the ones in Section 3 shows that (12) holds if and only if the
benchmark wB is net long, w⊤

B1p > 0. This will be the case for any reasonable benchmark.
The closed form solution (17) depends on first determining k from (15). From the mono-

tonicity properties of {Ri}, this may be quickly accomplished, for example, by the bisection
method in O(log p) steps.

The multifactor case. When there are q > 1 factors, there is no simple way to order the
betas or immediately use them directly to identify the active assets in the long-only portfolio.
The next theorem tells us that we do know something about them: their corresponding betas
are exactly those that lie in a particular half-space in Rq.

Assumptions for Theorem 3. We assume asset returns follow a q-factor model, so
that the covariance matrix of asset returns takes the form of the p× p matrix

Σ = BΩB⊤ +∆, (24)

where B is a p×q matrix whose columns are the asset exposures to the q factors, Ω is a q×q
diagonal matrix of positive factor variances, and ∆ is a p × p diagonal matrix of positive
asset specific variances.

As before, for any subset K of the indices {1, 2, . . . , p}, if k = |K|, we denote by ΣK,0

the p× p matrix obtained from Σ by setting all the rows and columns not in K to zero, ΣK

the k× k principal submatrix obtained by deleting the rows and columns not in K, and BK

the k × q matrix obtained by deleting the rows of B not in K.

Theorem 3 (Hyperplane separation for q-factor models). Suppose that wL is the
solution of problem (2) for the covariance matrix (24). Let

K = {i ≤ p : wL
i > 0} (25)

and k = |K| the cardinality of K.
Define the q-dimensional column vector hK by

hK = Ω(BK)⊤(ΣK)−11k = ΩB⊤(ΣK,0)+1p. (26)

Then
wL

i > 0 if and only if Bih
K < 1, (27)

where Bi the q-dimensional ith row of B.

Geometrically, the condition of Theorem 3 can be described in terms of the hyperplane
H of Rq defined by

H = {x ∈ Rq : x⊤hK = 1}. (28)
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It says that the assets included in the long-only optimal portfolio are those whose factor
exposure vectors Bi in Rq lie on the same side of H as the origin. See Figure 5 for an
illustration when q = 2.

The next corollary gives alternative hyperplane formulation that is sometimes useful.

Corollary 2. With the same assumptions and notation of Theorem 3, let

hL =
(
Ω−1 + (BK)⊤(∆K)−1BK

)−1
(BK)⊤(∆K)−11k (29)

=
(
Ω−1 +B⊤(∆K,0)+B

)−1
B⊤(∆K,0)+1p. (30)

Then BKhL = BKhK, and hence wL
i > 0 if and only if Bih

L < 1.

We note that in the typical case where BK has full rank q < k, BKhL = BKhK implies
hL = hK , so the the formulations of Theorem 3 and Corollary 2 are equivalent.

Unlike Theorem 2, Theorem 3 does not provide a direct computational method for deter-
mining wL. Instead, it provides a necessary condition satisfied by the active assets in terms
of their q-vectors Bi, i = 1, . . . , p, as a generalization of the 1-factor setting: the included Bi

are the ones below a certain threshold, where the threshold in q dimensions is determined
by a (q − 1)-dimensional hyperplane H.

In typical applications, such as in the illustration below in section 2.3, p is much greater
than the number n of samples. In this case, when the factor exposures are bounded and
have a positive variance across assets, we expect that BK(∆K)−1BK will dominate Ω−1 by
a factor proportional to p. In the limiting case where Ω−1 is set to zero, hL in equation (29)
can be viewed as a vector of coefficients of a weighted least squares regression of 1 onto the
columns of BK with weight matrix ∆−1.3

In the one-factor case q = 1, the condition of Theorem 3 reduces to (20): in this case, B
is a single column vector corresponding to β in the single index model, and Ω is a scalar σ2.
A computation using the Woodbury identity for the inverse of ΣK ,

(ΣK)−1 = (∆K)−1{I −BK

[
1

σ2
+ (BK)⊤(∆K)−1BK

]−1

(BK)⊤(∆K)−1}, (31)

shows that the scalar hK = σ2(BK)⊤(ΣK)−11k is given by

hK =

∑
j∈K

Bj

δ2j

1
σ2 +

∑
j∈K

B2
j

δ2j

(32)

and the condition Bih
K < 1 is equivalent to (20).

2 Numerical Examples

2.1 Single factor exposure estimation Given observed excess returns of p assets over
n observation periods, we may form the p × n data matrix Y and the resulting sample
covariance matrix S = 1

n
Y Y ⊤.

3We thank Lisa Goldberg for this observation.
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In the likely event that p > n, the matrix S will be rank deficient, so we need a model
for estimating an invertible covariance matrix for use in portfolio optimization.

A standard approach is to use factor models to accomplish this. In this section we
consider a one-factor model of returns,

r = βf + ϵ (33)

where β is an unknown vector of factor exposures, f is a random variable with mean zero
and variance σ2 representing the factor return, and ϵ is a random vector whose entries are
mutually independent and independent of f , with mean zero and covariance ∆. The columns
of Y are then assumed to be n independent realizations of r. The covariance matrix of r is
given by (10):

Σ = σ2ββ⊤ +∆.

Setting ζ2 = |β|2σ2 and b = β/|β|, the one-factor covariance model may be written

Σ = ζ2bb⊤ +∆, (34)

where recall ∆ = diag(δ21, . . . , δ
2
p). Only Y and the corresponding sample covariance matrix

S are observed. Estimating Σ requires estimating the scalar ζ2, the unit vector b, and the
vector (δ21, . . . , δ

2
p) of idiosyncratic variances.

For the purpose of computing a minimum variance portfolio, we will consider three dif-
ferent data-driven estimators of (34): ΣJSE,ΣMJSE, and ΣMS, defined as follows.

The estimator ΣJSE is a Bayesian-style James-Stein shrinkage estimator with the advan-
tage that the shrinkage takes place entirely inside the class of single-factor models:

ΣJSE = η2hJSE(hJSE)⊤ +∆JSE, (35)

where η2, hJSE,∆JSE are estimators of ζ2, b,∆ described further in Section 4. The JSE es-
timators are designed for large p >> n and correct for high-dimensional statistical bias in
the sample eigenvectors. Suitable parameters are p = 1000, n = 126 as in the empirical
illustrations in the next section. This is a single-factor model where the normalized factor
loadings hJSE are asymptotically good estimates of the unknown population factor exposure
unit vector b = β/|β| responsible for generating the observed returns via (33).

The remaining two estimators ΣMJSE,ΣMS are single-index market models in the manner
of Sharpe [1963] and as used by Clarke et al. [2011].

Given any data-driven estimator Σ̂ of Σ, and cap-weighted market portfolio wM , we may
define the estimated market variance and market beta by

σ2
M = w⊤

M Σ̂wM (36)

and

βM =
Σ̂wM

σ2
M

. (37)

From these, we form a single index market covariance matrix ΣM,Σ̂ depending on wM and
Σ̂:

ΣM,Σ̂ = σ2
MβM(βM)⊤ +∆M , (38)
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where
∆M = diag((δMi )2), (δMi )2 = Sii − (βM

i )2σ2
M , (39)

or, equivalently,
ΣM,Σ̂ = ζ2MbM(bM)⊤ +∆M (40)

where
ζ2M = σ2

M |βM |2, bM = βM/|βM |. (41)

We examine the choices Σ̂ = ΣJSE and Σ̂ = S, and define

ΣMJSE = ΣM,ΣJSE

(42)
ΣMS = ΣM,S. (43)

It can be shown that ΣMJSE and ΣJSE as asymptotically consistent (as p → ∞) in a sense
described in Section 4.2 below.

2.2 Empirical example for a single index model In this section we apply our results
in an empirical illustration using daily returns of the top p = 1000 US stocks by market
capitalization for the period January 3, 2022 to July 1, 2022.4

From the market capitalizations mc(i), i = 1, . . . , p, at the beginning of the period, we
determine the market portfolio wM by

wM(i) =
mc(i)∑p
i=1mc(i)

. (44)

We then use the formulas of section 2.1 to determine three choices5 of the data-driven
covariance estimator for computing the LOMV portfolio: ΣJSE, ΣMJSE, and ΣMS.

The outcomes for the resulting long only portfolio size, market factor variance, and
estimated betas are summarized in Table 1. For ΣJSE = η2hJSEhJSE⊤

+ ∆JSE, the market
quantities σ2

M and βM are undefined and hJSE is scaled as a unit vector by convention.

estimator k σ2
M(%) mean(βM)

ΣMJSE 65 5.8 1.08
ΣMS 51 6.2 1.13
ΣJSE 66 * *

Table 1: Outcomes for each of three choices of covariance estimator. The value k is the
number of active assets in the long-only minimum variance portfolio (out of 1000). σ2

M and
βM are the derived parameters according to equations (36) and (37) but does not apply to
the last row.

4Returns were gathered from the WRDS database, then cleaned and centered before use. We removed
one smaller stock of a firm with artificially low volatility due to an imminent merger, and added the next
largest asset to keep the total at 1,000.

5Clarke et al. [2011] use a different choice of single-index market covariance matrix by taking Σ̂ to be a
Ledoit-Wolf shrinkage estimator, see Ledoit and Wolf [2004]. The empirical outcomes are similar to the ones
reported here.
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Table 2 shows that the three methods mostly agree on which active assets should be
included in the long-only minimum variance portfolio.

portfolio MJSE MS JSE MJSE ∩ MS MJSE ∩ JSE JSE ∩ MS
# assets 65 51 66 49 65 49

Table 2: The number of assets that each of the three estimated minimum variance portfolios
have in common, out of 1000 total assets considered.

Figures 1a and 1b show scatterplots demonstrating that the portfolios for the market
model ΣMJSE and the statistical factor model ΣJSE are almost the same in this experiment,
but the ΣMS portfolio noticeably differs.

(a) Weights of MJSE vs JSE portfolios. (b) Weights of MS vs MJSE portfolios.

Figure 1: Comparison of portfolio asset weights for the three portfolios MJSE, JSE, and MS,
plotted in percent.

Figures 2, 3, and 4 below illustrate the relationships between estimated market beta,
portfolio weight, and idiosyncratic risk for the MSJE portfolio. (Plots look similar for the
other portfolios.)

The betas range between −0.05 and 3.62 with the only negative beta being approximately
−0.059. The maximum beta in the long-only portfolio is 0.281. The idiosyncratic risk ranges
from 0 to 46%. Figures 2 and 3 show the 1000 individual asset weights under the single-factor
model for both the long-short (blue dots) and the long-only (black dots) minimum-variance
portfolio plotted against market beta and delta. The weights of the active assets in the
long-only portfolio had a maximum value of 5.81%.

Of interest is the fact that only 65 of the 1000 securities were active in the long-only
portfolio. In addition to having lower beta, assets with low idiosyncratic risk are more likely
to be active in the long-only portfolio. We also see that assets with lower idiosyncratic risk
tend to have higher absolute value weights in the long-short portfolio.
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Figure 2: MJSE portfolio weights against market beta for the top 1000 US stocks, estimated
for daily returns in the first half of 2022.

Figure 3: MJSE portfolio weights against specific risk for the top 1000 US stocks, from daily
returns in the first half of 2022.
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Figure 4: MJSE market beta against specific risk for the top 1000 US stocks in the first half
of 2022.

2.3 Empirical example for a two-factor model To illustrate the hyperplane sepa-
ration of factor loadings described in Theorem 3, we fit a two-factor model (q = 2) to the
same daily returns of the 1,000 stocks used in Section 2.2. Starting from the leading two
eigenvalue-eigenvector pairs of the sample covariance matrix, as described further in Section
5, we apply the James-Stein-Markowitz (JSM) multifactor shrinkage method of Shkolnik
et al. [2024] to obtain the covariance estimate

ΣJSM = BΩB⊤ +∆, (45)

where B is a 2× p matrix with orthogonal columns, obtained via shrinkage from the leading
two sample eigenvectors; ∆ is a diagonal matrix of specific variances; and Ω is a 2 × 2
diagonal matrix. The row Bi of asset i is that asset’s exposure vector to the two factors.
The resulting long-only minimum variance portfolio is computed by means of the open source
convex optimization package cvxpy (www.cvxpy.org).

The results are displayed in the left hand plot of Figure 5 below, in which the horizontal
axis shows the exposure to the leading (market) factor (the first component of Bi), and the
vertical axis to the second factor. Orange indicates assets included in the LOMV portfolio
based on the model, and blue indicates excluded assets. The solid red line is the hyperplane
of Theorem 3 separating the active and inactive assets in the LOMV portfolio, while the
dotted red line indicates the single-index model threshold value that would apply for the
same data with a one-factor model. We observe a relatively small number of assets in the
LOMV portfolio.

The right-hand plot in Figure 5 shows a close-up of the LOMV portfolio’s active assets
with the portfolio weights coded as marker size and color. The largest weight is 10%. The
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portfolio weight of an asset is proportional6 to the ratio di/δ
2
i , where δ2i is the specific variance

of asset i, and di is the perpendicular distance from the asset’s beta point Bi to the separating
hyperplane. Although the active asset portfolio weights shown in Figure 5 generally vary
inversely with the distance from the separating hyperplane, unusually large or small specific
variances can play a dominant role, as is the case for three assets with large exposure to the
second factor.

Figure 5: 2-vector exposures for each asset from a statistical 2-factor JSM return covariance
matrix, plotted for each of the 1000 assets. On the right is a close-up showing portfolio
weights.

An interesting comparison with the portfolio resulting from a single-index model is evi-
dent by examining the vertical dotted red line in the left-hand plot, which, as stated above,
is the one-factor threshold for the same returns data. The 1-factor portfolio excludes a few of
the assets with higher exposure to both factors and includes significantly more with negative
exposure to the second factor. For the two-factor model portfolio, exposure to the second
factor can compensate for a fairly significant positive exposure to the first factor, such as
for the two uppermost orange assets in left-hand plot. These assets are significantly into the

6With a proportionality constant that is the same for all assets. This follows from a computation using
the Woodbury identity.
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excluded region defined by the dotted line. Overall, the 2-factor model includes 41 assets,
24 fewer than the 65 assets of one-factor model.

The angle between the two lines could be considered a measure of the importance of
the second factor in determining active long-only assets. The angle here is 21.5% of a right
angle, which is relatively significant.

3 Proofs

3.1 Proof of Theorem 1 Notation: 1p is the p-dimensional vectors of all ones, and
similarly 0p for all zeros.

The solution w = wL of our constrained optimization problem (2) satisfies the well-known
Karush-Kuhn-Tucker (KKT) conditions7, which are a set of equations in w, an auxiliary p-
vector λ, and an auxiliary scalar ν (the Lagrange multipliers) as follows:

2Σw − λ+ ν1p = 0p (46)
w⊤1p = 1 (47)
λiwi = 0 i = 1, 2, ..., p (48)
λi ≥ 0, wi ≥ 0 i = 1, 2, ..., p. (49)

These KKT conditions include 2p+ 1 equations (46) – (48) in the 2p+ 1 unknowns

w1, . . . , wp, λ1, . . . , λp, ν,

along with 2p inequality constraints (49).
Define the (necessarily non-empty) set

K = {i ≤ p : wi > 0}. (50)

Let k > 0 denote the cardinality of K. For any vector x ∈ Rp, denote by xK ∈ Rk the
k-dimensional vector obtained from x by deleting the entries xj for all j /∈ K. Likewise,
for any p× p matrix M , denote by MK the k × k principal submatrix obtained from M by
deleting all the rows and columns with indices outside K.

Since Σ is symmetric positive definite, so is the submatrix ΣK , and hence ΣK is invertible.
Further,

w⊤Σw = (wK)⊤ΣKwK . (51)

Since λi = 0 for all i ∈ K, taking the k rows of equation (46) corresponding to indices in
K tells us

2ΣKwK + ν1k = 0k, (52)

where here the vectors 1k and 0k are k-dimensional. Multiplying (52) on the left by 1⊤
k (Σ

K)−1

and using 1⊤
k w

K = 1, we obtain

ν =
−2

1⊤
k (Σ

K)−11k

(53)

7See, for example, Beck [2023].
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and therefore

wK =
(ΣK)−11k

1⊤
k (Σ

K)−11k

, (54)

or, equivalently,

wL =
(ΣK,0)+1p

1⊤
p (Σ

K,0)+1p

. (55)

3.2 Proof of Theorem 2 Part 1 of the theorem follows solely from the monotonicity of
the sequence {βi}. For convenience, define

Ci =
i∑

j=1

βj

δ2j
. (56)

It is easy to verify, for all i = 1, . . . , p− 1, that

Ri+1 −Ri = (−βi+1 + βi)Ci. (57)

Since (−βi+1 + βi) is always non-positive, Ri+1 − Ri ≤ 0 when Ci ≥ 0 and Ri+1 − Ri ≥ 0
when Ci ≤ 0.

Let s = min{i : Ci > 0}, 1 ≤ s ≤ p. If j < s, then Cj ≤ 0 by definition of s, so
Rj+1 −Rj ≥ 0. Since βs > 0, Ci is increasing for i ≥ s, so if j ≥ s then Cj > 0, and we have
Rj+1 −Rj ≤ 0. This establishes the conclusion of part 1.

We proceed to Part 2. Our goal now is to determine K = {i ≤ p : wL
i > 0} in explicit

form in term of the parameters σ, β, δ of the problem.
Let k = |K| and define

ℓ = max{i ≤ p : Ri > 0}. (58)

We will complete the proof by establishing

k = ℓ and K = {1, 2, . . . , k}.

Let βK ∈ Rk and the k × k matrix ΣK be determined from K as before, obtained from
β and Σ by deleting rows or rows and columns corresponding to indices outside K.

By the Woodbury identity,

(ΣK)−1 = diag(
1

(δK)2
)−

( βK

(δK)2
)( βK

(δK)2
)⊤

1
σ2 + ( βK

(δK)2
)⊤βK

where 1
(δK)2

= [ 1
δ2j

: j ∈ K]⊤ and βK

(δK)2
= [

βj

δ2j
: j ∈ K]⊤.

This means

(ΣK)−11k =
1

(δK)2
−

( βK

(δK)2
)( βK

(δK)2
)⊤1k

1
σ2 + ( βK

(δK)2
)⊤βK

. (59)

Now if i ∈ K, then

((ΣK)−11k)i =
1

δ2i
−

βi

δ2i

∑
j∈K

βj

δ2j

1
σ2 +

∑
j∈K

β2
j

δ2j

> 0. (60)
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Clearing the positive denominators, we obtain

1

σ2
+
∑
j∈K

β2
j

δ2j
− βi

∑
j∈K

βj

δ2j
> 0 (61)

or
BK > βiCK (62)

where

BK =
1

σ2
+
∑
j∈K

β2
j

δ2j
, CK =

∑
j∈K

βj

δ2j
. (63)

Now suppose instead i /∈ K, so wi = 0. Since Σw = σ2ββ⊤w+ diag(δ2)w and wj = 0 for
all j /∈ K, we have

(Σw)i = σ2βi

∑
j∈K

βjwj. (64)

Conditions (46) and (49) tell us

0 ≤ λi = 2(Σw)i + ν, (65)

or, using (64),
0 ≤ 2σ2βi

∑
j∈K

βjwj + ν. (66)

For j ∈ K, we have, from (54),

wj =
((ΣK)−11k)j
1k(ΣK)−11k

. (67)

Using this, substituting for ν with (53), and multiplying through by 1k(Σ
K)−11k/2 gives us

0 ≤ σ2βi

∑
j∈K

βj((Σ
K)−11k)j − 1. (68)

By (60),

((ΣK)−11k)j =
1

δ2j
− βj

δ2j

CK

BK

. (69)

Using this in the previous inequality, we have

0 ≤ σ2βi

∑
j∈K

βj

δ2j
(1− βjCK

BK

)− 1 (70)

= σ2βi

(
CK − CK

BK

(BK − 1

σ2
)
)
− 1 (71)

= σ2βi
CK

σ2BK

− 1 = βi
CK

BK

− 1, (72)

or
BK ≤ βiCK . (73)

Combining (62) and (73), we have established the following
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Lemma 1. With BK and CK as defined above, i ∈ K if and only if BK > βiCK.

Corollary 3. CK ̸= 0.

Proof of Corollary. If k = p, then CK ̸= 0 is our standing assumption. Otherwise there
exists j /∈ K, so by Lemma 1 BK ≤ βjCK . But BK > 0, so again CK cannot be zero.

Lemma 2. Recall k is the cardinality of K. If CK > 0, then K = {1, 2, . . . , k}. If CK < 0,
then K = {p− k + 1, . . . , p}.

Proof of lemma. Recall that the βi are arranged in increasing order. For all i ∈ K and
j /∈ K, we have

βiCK < BK ≤ βjCK , (74)

hence
βiCK < βjCK . (75)

If CK > 0, this means that βi < βj for all i ∈ K, j /∈ K, and hence i < j for all i ∈ K, j /∈ K.
Therefore K must be an initial segment of the sequence {1, 2, . . . , p}.

Similarly, if CK < 0, then the reverse inequality is true, and K must be a terminal
segment of {1, 2, . . . , p}.

Next, define

CP =

p∑
j=1

βj

δ2j
, (76)

and recall CP > 0 by our standing assumption.

Lemma 3. CK > 0.

Proof. If k = p then CK = CP and there is nothing to prove, so consider the case k < p.
We know that CK ̸= 0. Suppose for contradiction that CK < 0. By Lemma 2, this means
that K = {p− k + 1, . . . , p}.

Note

CP =

p−k∑
j=1

βj

δ2j
+ CK . (77)

Now 0 > CK =
∑p

j=p−k+1
βj

δ2j
, so at least one of the terms of this sum must be negative.

Then, since the beta sequence is increasing, βp−k+1 < 0 and βj < 0 for all j ≤ p − k, and
hence

p−k∑
j=1

βj

δ2j
< 0. (78)

This forces CP < 0 via (77), a contradiction. Hence we must have CK > 0 and CK =
∑k

j=1
βj

δ2j
.

Lemma 4. Under our standing assumption, for the long-only solution w of problem (2),

wi > 0 if and only if βi <
BK

CK

=

1
σ2 +

∑k
j=1

β2
j

δ2j∑k
j=1

βj

δ2j

. (79)
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Proof. From Lemma 3, CK > 0. By Lemma 2, K = {1, 2, . . . , k}. The result follows
from Lemma 1.

By Lemmas 2 and 3, we have established that

K = {1, 2, . . . , k}. (80)

It remains to show that k = ℓ. Recall R1 = 1/σ2 and, for i = 2, . . . , p,

Ri =
1

σ2
+

i−1∑
j=1

βj

δ2j
(βj − βi). (81)

Now, by Lemma 4, βk < BK/CK ≤ βk+1. Also,

Rk =
1

σ2
+

k∑
j=1

β2
j

δ2j
− βk

k∑
j=1

βj

δ2j
(82)

= BK − βkCK > 0. (83)

Likewise

Rk+1 = BK − βk+1CK ≤ 0. (84)

By part 1 of the Theorem, the sequence {Ri} crosses zero at most once, so this establishes

k = max{i ≤ p : Ri > 0} = ℓ, (85)

completing the proof of Part 2.

3.3 Proof of Theorem 3 Let w = wL be the solution of the long-only problem for

Σ = BΩB⊤ +∆, (86)

and K = {i ≤ p : wL
i > 0}, with ℓ = |K|. For any p-vector v, for purposes of this proof

we adopt the notation that vK as defined before, and v′ is the complementary (p− ℓ)-vector
obtained from v by deleting all the coordinates in K; B′ is obtained by deleting all the rows
labeled by entries in K, and BK by deleting the rows not in K.

First recall that i /∈ K implies wi = 0, and hence

(Σw)′ =
(
(BΩB⊤ +∆)w

)′
= (BΩB⊤w)′ = B′Ω(BK)⊤wK . (87)

Recall equations (46) and (49):

2Σw − λ+ ν1p = 0p; λi ≥ 0, wi ≥ 0, i = 1, . . . , p.

Therefore
0p−ℓ ≤ λ′ = 2(Σw)′ + ν1p−ℓ (88)
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and hence
0p−ℓ ≤ 2B′Ω(BK)⊤wK + ν1p−ℓ (89)

using equation (87).
Substituting using (53) and (54), clearing denominators, and dividing by 2, we obtain

0p−ℓ ≤ B′Ω(BK)⊤(ΣK)−11ℓ − 1p−ℓ = B′hK − 1p−ℓ (90)

with
hK = Ω(BK)⊤(ΣK)−11ℓ

as defined in (26) of Theorem 3.
Thus we have established that for every i /∈ K,

1 ≤ Bih
K . (91)

Conversely, recall
ΣK = BKΩ(BK)⊤ +∆K . (92)

We therefore have

BKhK = BKΩ(BK)⊤(ΣK)−11ℓ = (ΣK −∆K)(ΣK)−11ℓ = 1ℓ −∆K(ΣK)−11ℓ. (93)

From equation (54), (ΣK)−11ℓ = (1⊤
ℓ (Σ

K)−11ℓ)w
K , and hence

BKhK = 1ℓ − (1⊤
ℓ (Σ

K)−11ℓ)∆
KwK < 1ℓ, (94)

since the entries of (1⊤
ℓ (Σ

K)−11ℓ)∆
KwK are all positive. We conclude that

Bih
K < 1 (95)

for all i ∈ K.

4 Single factor beta estimation

4.1 The JSE estimator Covariance matrix shrinkage estimators, e.g. Ledoit and Wolf
[2004], have enjoyed wide adoption for various problems when estimating large-dimensional
covariance matrices from data, and typically take the form

Σ = αS + (1− α)T, (96)

where S is a sample covariance matrix, T is a suitable target matrix, such as a scalar matrix,
and α ∈ (0, 1) is defined to minimize some error function.

However, in cases where we are working within the structure of a factor model, we are
primarily interested in estimating the leading covariance eigenvector(s), from which an esti-
mated factor model can be defined. Eigenvector shrinkage is the subject of a recent stream
of research in Goldberg et al. [2020], Goldberg and Kercheval [2023], Goldberg et al. [2022,
2025], Shkolnik [2022]. We call it JSE (James-Stein for Eigenvectors) because the shrinkage
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formulas themselves turn out to be close analogs of the classical James-Stein shrinkage for-
mulas for estimation of multivariate means. The theory provides asymptotic improvements
in the HL asymptotic regime corresponding to the limit as the dimension p → ∞ with the
number of samples n fixed.

In this section we describe how to compute the JSE estimator of the leading eigenvector.
As in Section 2.1, we consider a single factor model of returns,

r = βf + ϵ. (97)

The covariance matrix of r is given by (10):

Σ = σ2ββT +∆.

Setting ζ2 = ||β||2σ2 and b = β/||β||, the single index model may be written

Σ = ζ2bb⊤ +∆, (98)

where recall ∆ = diag(δ21, . . . , δ
2
p). Estimating Σ requires estimating the scalar ζ2, the unit

vector b, and the vector (δ21, . . . , δ
2
p) of idiosyncratic variances.

Suppose we observe a time series of n returns of each of p assets, and p >> n as might
typically be the case when n is limited by non-stationarity or data availability. The obser-
vations can be summarized by a p × n data matrix Y , and the resulting sample covariance
matrix is

S = Y Y ⊤/n. (99)

Let λ2 denote the leading eigenvalue of S, and let

ℓ2 =
tr(S)− λ2

n− 1
(100)

be the average of the non-zero eigenvalues that are less than λ2, where tr(S) denotes trace.
We can think of

η2 = λ2 − ℓ2

as the average leading sample eigengap, and it turns out that η2 is an unbiased approximation
of ζ2.

To approximate the vector b = β/||β||, we could select the leading sample eigenvector h
of S. However, for fixed n, the asymptotic limit in p of the cosine of the angle beetween h
and b is positive. In fact it is equal to(

1 +
δ2

nB2σ2

)−1
< 1,

where B2 is the limit of ||β||2/p and δ2 is the limit of (1/p)
∑p

i=1 δ
2
i as p → ∞.

A definite improvement is obtained with the James-Stein eigenvector shrinkage estimator,
hJSE, defined as follows. Let h1 denote the projection of h onto the line spanned by 1. Define
the shrinkage constant

c =
ℓ2

λ2(1− ||h1||2)
(101)
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and
H = ch1 + (1− c)h. (102)

Then
hJSE = H/||H||. (103)

The unit vector hJSE is obtained from h by correcting a concentration of measure effect that
pushes h farther away from 1 than b.

Recalling that the ith diagonal element sii of S is the sample variance of the ith asset,
we estimate the ith idiosyncratic variance as

δ̂2i = sii − η2(hJSE
i )2. (104)

Our estimated non-singular covariance matrix ΣJSE is now

ΣJSE = η2hJSE(hJSE)⊤ + diag(δ̂21, . . . , δ̂
2
p). (105)

4.2 Consistency of single index estimators When estimating betas from market data
as in Section 2.1, there are three covariance matrices in the picture:

1. the unobserved population covariance

Σ = σ2ββ⊤ +∆,

2. the covariance estimated from observed returns

ΣJSE = η2hJSE(hJSE)⊤ +∆JSE,

3. the market covariance incorporating the observed market portfolio wM

ΣM = σ2
MβM(βM)⊤ +∆M

with notation defined in (36), (37), and (39).

There is a consistency question with this approach, because w⊤
MΣMwM ̸= σ2

M . Further, the
beta factors for the two estimators disagree: (η/σM)hJSE ̸= βM .

However, a single factor estimator like ΣJSE has the benefit that the inconsistency above
vanishes for a large number of assets, as p → ∞.

Direct computation establishes the following

Theorem 4. Consider a sequence in p of p-dimensional population covariance models

Σ = σ2ββ⊤ +∆

where σ2 is fixed, ∆ is bounded in p, and |β|2/p tends to a positive finite limit. Suppose the
number of observations used to determine the sample covariance matrix is fixed independent
of p.

Then, with ΣM computed using Σ̂ = ΣJSE, we have, as p → ∞,

|bM − hJSE| → 0 (106)
|σ2

M |βM |2 − η2|/p → 0 (107)
|δMi −∆JSE

i | → 0. (108)

This means that the market beta, if computed with ΣJSE, is asymptotically the same as
the leading factor in the single index covariance matrix that defines it.
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5 Multifactor JSM estimation

The multifactor JSM estimator is obtained from a PCA estimate by an appropriate shrinkage
of the q-dimensional factor subspace toward a suitable shrinkage target. It is suitable when
p >> n; complete discussion of this method appears in Shkolnik et al. [2024].

In this section we summarize the method, which is the same for any q. The returns model
is

r = Bf + ϵ, (109)

where f is a mean-zero random q-vector of returns to q risk factors, ϵ is a mean zero random
p-vector of specific returns whose components are independent of each other and of f , and
B is an unknown p× q parameter matrix of sensitivities of the securities to the factors.

With a time series of n i.i.d. returns, q < n < p, let R denote the p×n matrix of centered
returns data. For the sample covariance matrix S = RR⊤/n with rank n+ ≤ n and positive
eigenvalues λ2

1 ≥ λ2
2 ≥ λ2

3 ≥ · · · ≥ λ2
n+

, take the spectral decomposition

S =

n+∑
i=1

λ2
ihih

⊤
i = HH⊤ +N, (110)

where hi is the unit eigenvector corresponding to λ2
i , H is the p × q matrix with columns

λ1h1, . . . , λqhq, and N = S −HH⊤. Then form the specific variance estimate ∆ = diag(N)
to be the diagonal matrix with the same diagonal as N .

The q-factor PCA covariance estimator is ΣPCA = HH⊤ +∆, but this can be improved
by shrinking H to obtain

ΣJSM = HJSMH
⊤
JSM +∆ (111)

as follows.
From the re-weighted data matrix Rw = ∆−1/2R, we can recompute the p × q leading

eigenvector matrix H via
RwR

⊤
w/n = HwH

⊤
w +Nw (112)

and then let H̄ = ∆1/2Hw. Define a p× q shrinkage target

M = 1p(1
⊤
p ∆

−11p)
−11⊤

p ∆
−1H̄. (113)

Then HJSM is defined by linear shrinkage toward M :

HJSM = H̄C +M(I − C) (114)

where
C = I − ν2J−1, J = (H̄ −M)⊤∆−1(H̄ −M), (115)

and
ν2 =

trace(∆)

n+ − q
. (116)

The format
HJSM = BΩB⊤ +∆ (117)

is obtained by setting the columns of B to be the ordered unit eigenvectors of HJSMHJSM
⊤,

and Ω the diagonal matrix of corresponding eigenvalues.
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