
SIAM J. FINANCIAL MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 13, No. 2, pp. 521--550

The Dispersion Bias\ast 
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Abstract. We identify and correct excess dispersion in the leading eigenvector of a sample covariance matrix
when the number of variables vastly exceeds the number of observations. Our correction is data-
driven, and it materially diminishes the substantial impact of estimation error on weights and risk
forecasts of minimum variance portfolios. We quantify that impact with a novel metric, the opti-
mization bias, which has a positive lower bound prior to correction and tends to zero almost surely
after correction. Our analysis sheds light on aspects of how estimation error corrupts an estimated
covariance matrix and is transmitted to portfolios via quadratic optimization.
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1. Introduction. There are countless instances throughout the physical, social, and data
sciences where covariance matrices of large random vectors must be estimated from small
samples. In this article, we show that the sampling error inherent in this process leads to excess
dispersion of the leading eigenvector, and we provide a data-driven adjustment that corrects
the bias. The motivation for our work comes from quantitative finance, where vast numbers of
securities and nonstationarity make large, noisy covariance matrices the norm. These matrices
are routinely used to construct portfolios with mean-variance optimization, which overweights
securities whose volatilities and correlations with other securities are underforecast. The
embedded sampling error tricks the optimizer into constructing distorted and highly inefficient
portfolios. This practical problem is the starting point for the theory developed in this article.

Simulation in a one-factor PCA model reveals that errors in security weights and risk
forecasts of the simplest mean-variance optimized portfolio, minimum variance, are driven by
errors in the leading eigenvector and not in its associated eigenvalue (or variance). In this
experiment, communicated to us by Stephen Bianchi, errors in weights and risk forecasts of
estimated minimum variance portfolios are not diminished when the estimated leading eigen-
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value is replaced by its population counterpart. In contrast, replacing the estimated leading
eigenvector with its counterpart (and leaving the estimated eigenvalue alone) substantially
improves estimates of both weights and risk forecasts for a minimum variance portfolio. The
strength of this experiment lies in well-known empirical facts: a single, positive (or market-
like) factor drives substantial return and risk in equity markets, and this factor determines,
to a great extent, the weights of mean-variance optimized portfolios.

Further investigation identifies the specific source of the problem as excess dispersion
in the entries of the estimated leading eigenvector. Here, dispersion refers to the standard
deviation of the entries of the eigenvector divided by their mean. Dispersion is also known as
coefficient of variation. To develop an understanding of why there might be excess dispersion
in an estimated eigenvector, consider a market where correlations are driven by a single factor,
and suppose all security exposures to that factor are identical. With high probability, a PCA
estimate of the leading factor will have higher dispersion, or coefficient of variation, of its
entries. Decreasing the dispersion mitigates the estimation error. A fresh perspective and
some nontrivial analysis are required to mathematically articulate and verify these effects in
a general setting, and we carry that out in this paper. We remove just the right amount of
dispersion required to produce minimum variance portfolios with good properties. We do not
correct all of the estimation error. Rather, we correct estimation error stemming from excess
dispersion in the leading estimated eigenvector. This turns out to be sufficient to mitigate
distortion and inefficiency in an optimized minimum variance portfolio.

We frame our results in the context of a single-factor model as introduced in section
2. This enables us to highlight our novel approach to covariance matrix estimation in a
setting that incorporates the most salient features of equity markets and minimizes irrelevant
complications. Section 2 also introduces what we call the ``optimization bias,"" the quantifiable
error that is key to understanding the interplay between the model estimation error and the
optimizer that computes a minimum variance portfolio. Section 3 demonstrates that it is
the excess dispersion of the leading eigenvector of a sample covariance matrix that must
be removed to address the impact of the optimization bias. In section 4, we show that
shrinking that excess dispersion (i.e., the dispersion bias) materially improves the accuracy
of the weights of minimum variance portfolios and their risk forecasts. Our analysis sheds
light on previously unknown aspects of how sampling error corrupts an estimated covariance
matrix. We illustrate our results numerically in section 5 with simulation experiments that
corroborate our theoretical findings and study the behavior of the estimators we propose.

1.1. Our contributions. We identify and correct excess dispersion in the leading eigen-
vector of a sample covariance matrix when the number of variables vastly exceeds the number
of observations. Our analysis leads to a number of surprising results and also to a method
that substantially improves the accuracy of weights and risk forecasts for estimated minimum
variance portfolios.

The centerpiece of our results is the optimization bias E, which is an important driver
of both the misspecification of a minimum variance portfolio and errors in its risk forecasts.
The optimization bias depends on the inner product between the true leading eigenvector b
and an estimate of it, as well as inner products of the true and estimated eigenvector with the
unique, positive, dispersionless vector z on the sphere. The first surprise is that E allows us
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to correct substantial errors in minimum variance portfolio weights and risk forecasts while
having no direct dependence on estimated eigenvalues. You can get the eigenvalue very wrong
and still get the minimum variance portfolio and its risk forecast very right.

For the PCA estimate h of the leading eigenvector b, Ep(h) is bounded away from zero
almost surely as p \uparrow \infty , so that errors in estimated minimum variance portfolio weights and
risk forecasts have a hard lower bound. For the population eigenvector b, the optimization
bias Ep(b) is zero of course. The second surprise is the existence of a vector h\tau \ast , determined
by the spherical law of cosines along the geodesic between h and z, for which Ep(h\tau \ast ) = 0. In
other words, h\tau \ast zeroes out an important source of estimation error in a minimum variance
portfolio even though the fixed number of observations in our sample prevents h\tau \ast from being
a consistent estimator of the population eigenvector b. The vector h\tau \ast is defined explicitly in
terms of the population eigenvector b. However, we obtain a data-driven estimate h\tau of h\tau \ast 

and show that the optimization bias Ep(h\tau ) tends to 0 almost surely as p \uparrow \infty .
Proofs of our results rely on delicate arguments concerning the asymptotic behavior of

sample eigenvectors. The third surprise is that our arguments are constructed entirely with
tools from classical probability theory, strong laws of large numbers. This emphasizes unex-
pected parallels between the high p low n regime, where the number of variables vastly exceeds
the number of observations, and classical statistics, where the number of observations vastly
exceeds the number of variables.

1.2. Related literature. Sampling error has been an issue for investors since 1952, when
Harry Markowitz transformed finance by framing portfolio construction as a tradeoff between
mean or expected return and its variance. Markowitz's mean-variance optimal portfolios form
an efficient frontier, which is the basis of theoretical breakthroughs as fundamental as the
capital asset pricing model (CAPM) and arbitrage pricing theory (APT), as well as practical
innovations as impactful as exchange traded funds (ETFs). Since we do not observe efficient
portfolios, we estimate them from data, so sampling error permeates every aspect of finance.
The seminal paper is [50]. See [63], [60], [48], [47], [53] for the CAPM and [58] for the APT.

The impact of sampling error on efficient frontier portfolios has been investigated thor-
oughly in simulation and empirical settings. For example, see [39], [10], [7] and the references
therein. Reference [23] compare a variety of methods for mitigating estimation error, bench-
marking against the equally weighted portfolio in out-of-sample tests. They conclude that
unreasonably long estimation windows are required for current methods to consistently out-
perform the benchmark. We briefly mention a few important references that do not overlap
at all with out work. Reference [52] recommends the use of bootstrap resampling. Reference
[42] reformulates the problem of finding the mean-variance efficient frontier as one of sto-
chastic optimization with unknown moments. Reference [34] develops a robust optimization
procedure to determine the efficient frontier by embedding a factor structure in the constraint
set.

Early work on estimation error and the efficient frontier focused on Bayesian approaches.
References [64], [30] were perhaps the first to impose informative priors on the model param-
eters. Prior work analyzed diffuse priors and was shown to be inefficient [30]. The latter,
instead, presumes all stocks are identical and have the same correlations. Reference [64] spec-
ifies a normal prior on the cross-sectional market betas (leading factor). More realistic priors
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incorporating multifactor modeling are analyzed in [55] (sample mean) and [31] (sample co-
variance). Formulae for Bayes's estimates of the return mean and covariance matrix based on
normal and inverted Wishart priors may be found in [41, Chapter 4, section 4.4.1].

A related approach to the Bayesian framework is that of shrinkage or regularization of the
sample covariance matrix. In the Bayesian setup, sample estimates are ``shrunk"" toward the
prior [41]. Shrinkage methods have been proposed in contexts where little underlying structure
is present [8] as well as those in which a factor or other correlation structure is presumed to
exist (see, e.g., [44], [45], [29], [11]). Perhaps surprisingly, shrinkage methods turn out to
be related to placing constraints on the portfolio weights in the Markowitz optimization.
Reference [38] shows that imposing a positivity constraint typically shrinks the large entries
of the sample covariance downward. This is generalized and analyzed further in [22].

Factor models mitigate the impact of sampling error on an estimated covariance matrix by
reducing the number of required parameters. Investors typically rely on fundamental models,
where the factors (or correlation drivers) are identified in advance. Financial practitioners
typically use the fundamental factor models developed in [59], [57], in which factor expo-
sures are specified from observable data and factor returns are estimated with cross-sectional
regression. Finance academics favor the dual construction of factor models popularized in
[28], in which factor returns are observed and exposures are estimated by time series regres-
sion. Latent factor models, in which both exposures and returns are extracted from, are used
everywhere in science. In a financial context, the strengths and shortcomings of fundamental
and latent factor models are complementary. Fundamental models are intuitive but prone to
miss emerging return sources. Latent models are prone to false positives and can be hard to
interpret, but they have the capacity to identify new sources of return. Further details are in
[18].

Principal component analysis (PCA) has been the dominant technique for extracting latent
factors from observed security returns since [58]. Its use in a high dimensional low sample
size (HL) regime, where the number of variables vastly exceeds the number of observations,
is justified by [12], as the population eigenvectors approach the true factors under a mild set
of assumptions. PCA is applied in the HL regime in the pioneering works [19], [20]. In this
regime, sample eigenvectors exhibit behavior that can be counterintuitive, as discussed in [37].
Analysis of the HL regime is in [61], [2].

In the HL regime, the largest eigenvalues of the covariance matrix grow linearly in its
dimension. This is not the traditional random matrix theory, in which the number of variables
grows in proportion to the number of observations. The seminal paper in this HH regime is
[49], and an extensive treatment of the subject is [4]. In the HH regime, consistency of PCA
estimates can be established, as shown in [3]. In the setting of Markowitz portfolios, the
impact of eigenvalue bias and optimal corrections are investigated in [26], [25]. Reference
[24] considers eigenvalue corrections in ``spiked"" covariance matrices, which are similar to the
covariance matrices we consider (in the HL) regime in this article. Reference [54] extends this
framework to consider ``weak"" factors.

It appears that while eigenvector bias is acknowledged, direct bias corrections are made
only to the eigenvalues corresponding to the principal components (e.g., [43] in the HH regime
and [65] in the HL regime). Several approaches to alter the sample eigenvectors indirectly do
exist. For example, [45] shrinks a sample covariance matrix toward a structured covariance
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matrix. However, these approaches are not focused on characterizing the bias inherent to
the sample eigenvectors themselves. Some work on characterizing the behavior of sample
eigenvectors may be found in [56], [61].

A stream of the portfolio construction literature considers the impact of the shape of the
leading factor on the weights of Markowitz portfolios in general and minimum variance in
particular. Reference [35] shows that the dispersion of the leading factor exposures drives
the extreme positions in the portfolio composition. Reference [50, footnote 9] identifies the
minimum variance portfolio as the optimal choice for an investor who believes the expected
returns of all securities are equal. As just one of many illustrations of its theoretical im-
portance, consider the place of minimum variance in the family of optimized portfolios that
can be constructed without reference to expected value, which is notoriously difficult or even
impossible to forecast. This family includes risk parity and maximum diversification; see [1],
[16] as well as references therein. The tens or even hundreds of billions of dollars that have
been invested in ETFs on minimum variance since the financial crisis provide evidence of its
practical importance. The empirical properties of minimum variance portfolios are studied in
[14], and [15] provides simple formulas for the weights of minimum variance portfolios in a
single-index model. Reference [33] shows the beneficial impact of beta shrinkage on minimum
variance portfolios.

References [6], [7], [46], [65], [33] and many studies referenced in those articles use portfolio
metrics such as variance or volatility forecast ratios, out-of-sample volatility, and tracking error
to assess the accuracy of a covariance matrix. Tracking error is the workhorse of the financial
services industry, and it is used, for example, to construct ETFs. By definition, tracking error
is the width of the distribution of the return difference between a portfolio and its benchmark.
Typically, the benchmark is taken to be a broad market index. References [7], [33] use tracking
error to gauge the impact of sampling error on optimization by measuring the width of the
distribution of the return difference between portfolios constructed with population and finite
sample covariance matrices.

While the notion of eigenvector shrinkage is new, market beta shrinkage is widely used
by financial practitioners. The idea has its origins in [64], [9]. A detailed history is in
[33]. Generalizations of the eigenvector shrinkage method developed in this article to include
multiple anchor points and order information are in [36]. Reference [62] demonstrates the
mathematical equivalence between the dispersion bias correction developed in this article and
a James--Stein estimator for the first principal component. That article also provides elegant
alternative proofs of some of the results presented here. Reference [32] provides an overview
of James--Stein for eigenvectors and its applications.

2. Problem formulation. Let e = (1, . . . , 1) be the vector in \BbbR p of all unit entries, and
denote by | \cdot | the Euclidean norm so that | e| = \surd 

p. Given a p\times p covariance matrix \Sigma = Var(Y )
of returns Y \in \BbbR p to p securities, we consider the following optimization problem:

(1)
min
w\in \BbbR p

w\top \Sigma w,

e\top w = 1.

The solution minimizes the variance of the portfolio return over all fully invested portfolios.
In practice, the matrix \Sigma must be estimated from security returns data, and there exists a



526 L. R. GOLDBERG, A. PAPANICOLAOU, AND A. SHKOLNIK

plethora of literature documenting the detrimental impact of estimation error on the portfolio
weights computed via (1) and related optimization problems. Our choice of (1) is guided by
the simplicity and practical importance of minimum variance and the fact that it provides
an ideal setting to illustrate the delicate tradeoffs inherent in correcting estimation error in a
returns covariance matrix.

2.1. The optimization bias. We adopt a framework in which the number of securities
is large and the number of observed returns is small. This arises in many situations. One
example concerns the estimation of equity risk models based on daily data. In such settings,
typical estimation universes include hundreds or even thousands of securities, and market
nonstationarity severely limits the available data history.

These considerations lead us to treat p as large, with the associated asymptotics p \uparrow \infty ,
and accept finite sample error in all estimates. We begin by illustrating a phenomenon we
term the optimization bias. Our analysis focuses on a simple model.

For a vector \beta \in \BbbR p and \sigma , \delta \in (0,\infty ), consider the covariance matrix

\Sigma = \sigma 2\beta \beta \top + \delta 2I,(2)

where the I denotes a p\times p identity matrix. This covariance model is consistent with a market
model which captures, in a remarkably simple manner, the systematic and specific risk we
observe in equity markets. In practice, the betas \beta = (\beta 1, . . . , \beta p) in (2) are often taken to be
security sensitivities to a cap-weighted index. For many investors, beta is the main indicator,
or even the only indicator, of systematic risk. The \sigma and \delta denote the volatilities of the market
and the specific (diversifiable) return.

For our analysis, we adopt a normalization to the unit sphere in \BbbR p, defining

b =
\beta 

| \beta | 
and z =

e
\surd 
p
.(3)

Letting \langle x, y\rangle = x\top y, the standard inner product of x \in \BbbR p onto y \in \BbbR p, we define

E(h) =
\langle b, z\rangle  - \langle b, h\rangle \langle h, z\rangle 

1 - \langle h, z\rangle 2
, | h| = 1, h \in \BbbR p .(4)

We refer toE as the optimization bias since it is arises from the interaction of the optimization
in (1) and the estimation error in the estimated covariance matrix. To see this, consider a
portfolio \^w \in \BbbR p computed by solving (1) but after replacing the covariance \Sigma by an estimate
\^\Sigma . In particular, the triplet (\beta , \sigma , \delta ) that leads to the \Sigma in (2) is estimated by some (\^\beta , \^\sigma , \^\delta )
from which an estimate \^\Sigma is then constructed. The true variance V2 of the estimated portfolio
\^w may then be shown (under the mild assumptions on the estimates ( \^\beta , \^\sigma , \^\delta ) in Appendix B)
to satisfy the large p asymptotics,

V2 = \^w\top \Sigma \^w \asymp E2(h),(5)

where h = \^\beta /| \^\beta | is the normalized estimate \^\beta . Here, the (Vinogradov) asymptotic notation
ap \asymp f(p) refers to the existence of two constants c, C > 0 such that for all p sufficiently large,
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c| f(p)| \leq | ap| \leq C| f(p)| . Sharper asymptotics that reveal that the leading constant in (5)
depends only on the true parameters \sigma and \beta may be found in Appendix B. It is remarkable
that the dependence of V2 on the estimates of the volatilities \sigma and \delta vanishes for p large. In
fact, the sole estimated quantity that determines the true variance V2 is h, the estimate of
the normalized betas b defined in (3). This dependence occurs through E(h), and we further
note that E(b) = 0.

Note that V2 is the expected out-of-sample variance of the estimated, minimum variance
portfolio \^w. That is, for a return vector Y , independent of the data generating process that
yielded \^w, the out-of-sample portfolio return is Y \top \^w, and consequently, V2 = Var(Y \top \^w).
Since \^w minimizes the in-sample variance (with respect to \^\Sigma ), it is instructive to compare
V2 in (5) to this estimated variance \^V2. The latter (under the mild assumptions on (\^\beta , \^\sigma , \^\delta )
stated in Appendix B) obeys the large p asymptotics,

\^V2 = \^w\top \^\Sigma \^w \asymp 1/p.(6)

This states that the in-sample variance of the portfolio \^w vanishes as p grows.
The asymptotic estimates supplied by (5) and (6) provide a first indication of how the

optimization bias E(h) is related to the investment process. In particular, we observe that
the ratio of the true variance to the estimated variance satisfies

V2/ \^V2 \asymp 1 + pE2(h),(7)

which explodes for large p unless E2(h) vanishes. In finite sample, however, regardless of
the estimation procedure, we expect E2(h) to be bounded away from zero. Thus, the in-
sample minimum variance will be severely underestimated for large portfolios, relative to that
encountered out of sample. This is because the optimization in (1) exploits the deviations of h
from the true vector b to hedge out the perceived systematic risk, yielding a deceptively small
portfolio variance. More refined asymptotics of the variance forecast ratio in (7) are supplied
in Appendix B. Additional portfolio metrics such as tracking error, which may be used to
measure the impact of sampling error on portfolio weights and is asymptotically driven by
E2(h), are also adversely affected.1

It may seem entirely impossible to remedy the dilemma posed by (7) since in our finite
sample regime we cannot expect h to be a consistent estimator (i.e., h does not tend to b for
which E(b) = 0). Yet, this is precisely what we accomplish.

2.2. Model and assumptions. For random X \in \BbbR and Z \in \BbbR p, we consider a linear
model for the excess return to p securities of the form

Y = \beta X + Z,(8)

where the \beta \in \BbbR p represents a constant parameter to be estimated from data that is generated
from the model. We will assume the variables X and Z are latent.

To accommodate a forthcoming asymptotic analysis, we consider the infinite sequences
\{ \beta i\} i\in \BbbN and \{ Zi\} i\in \BbbN and write \beta = (\beta 1, . . . , \beta p)

\top and Z = (Z1, . . . , Zp)\top for the vectors in (8)

1See [33] for details.
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(with the dimension p implied from context). All random variables are defined on a common
probability space equipped with an expectation E, variance operator Var, and covariance
operator Cov with respect to a probability measure P.

Assumption 2.1. For constants \delta , \sigma > 0, Var(X) = \sigma 2 and every Var(Zi) = \delta 2. Further-
more, X \not = 0 almost surely and every Cov(X,Zi) = E(X) = E(Zi) = 0.

The generating process based on (8), under Assumption 2.1, is called a single-index or
``market model.""2 The systematic component \beta X is the sole driver of correlation in the security
return Y , and the specific component of return Z diversifies away in large portfolios. While
it is common to include additional drivers of correlation, they are not relevant to minimum
variance portfolios (see [15], [33]). Model (8) also provides the simplest and most parsimonious
means to capture the empirically observed systematic and specific return components.3 It
allows us to isolate the profound influence of the leading factor \beta on portfolio construction
without the the distraction of less important effects.

Our analysis adopts an asymptotic regime wherein the number observations n of the
return Y are finite (and fixed) while the number of securities p grows large. This corresponds
to the high dimension and low sample size (HL) framework, which is increasingly relevant for
modern applications involving large data sets. Our assumptions below are concerned with the
applicability of the HL regime to financial data and the technical conditions that are required
for our analysis in sections 3 and 4.

Let \mu p(\beta ) = \mu (\beta ) and dp(\beta ) = d(\beta ) denote the mean and dispersion of the vector \beta \in \BbbR p
with the subscript p denoting the dependence on the dimension:

\mu (\beta ) =
1

p

p\sum 
i=1

\beta i and d2(\beta ) =
1

p

p\sum 
i=1

\biggl( 
\beta i
\mu (\beta )

 - 1

\biggr) 2

.(9)

Assumption 2.2. The sequence \{ \beta i\} i\in \BbbN is such that \{ \mu p(\beta )\} p\in \BbbN and \{ dp(\beta )\} p\in \BbbN converge
to the limits \mu \infty (\beta ) \in (0,\infty ) and d\infty (\beta ) \in (0,\infty ), respectively, as p \uparrow \infty .

Assumption 2.2 imposes regularity on the sequence \{ \beta i\} i\in \BbbN in order to simplify the state-
ments of the theoretical results. For conclusions that address only the efficiency of a given
estimator of \beta , it suffices to work over subsequences that achieve the best or worst case asymp-
totics of the optimization bias (i.e., subsequences attaining lim infp\uparrow \infty Ep and lim supp\uparrow \infty Ep).
In this manner, the regularity conditions may be removed entirely (see Remark 4.2 for further
detail). The requirement that the limit \mu \infty (\beta ) is positive is without loss of generality, i.e., the
\{ \beta i\} i\in \BbbN may always be negated to ensure the limit has a positive sign, while simultaneously
negating the return X. This results in no change to the model in (8) or to the covariance
matrix \Sigma in (2).

We require further assumptions on the \{ Zi\} i\in \BbbN and on the temporal correlation of their
realizations. Let Zj = (Z1

j , . . . ,Z
p
j ) \in \BbbR p be the random variable equal in law to Z \in \BbbR p so

that Yj = \beta Xj + Zj for Xj the jth realization of X.

2The market model is also the standard, one-factor model that, under Assumption 2.1, yields to the theo-
retical requirements of estimation procedures such as PCA [40]. Note, for example, that Var(Y ) = \Sigma is of the
form in (2).

3The market model as developed in [59] facilitates the efficient implementation of mean-variance portfolio
construction [50] via the critical line algorithm [51].
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Assumption 2.3. The random variables \{ Zi\} i\in \BbbN are pairwise independent and identically
distributed and, moreover, Cov(Zij ,Z

i
k) = 0 for all i \in \BbbN and every j \not = k.

Assumption 2.3 may be relaxed to accommodate various forms of weak dependence (re-
placing pairwise independence) across the securities and mixing conditions (allowing for cor-
relation) in time. This is evident from the proofs of the main results in Appendix A. We do
not pursue such extensions, focusing instead on introducing the concept of the dispersion bias
and its relationship to minimum variance portfolios.

We discuss the realism of Assumption 2.3 in the context of the temporal correlation and
nonstationarity of financial returns. For example, market microstructure is evident in the
time series of returns at horizons of fractions of a section. Our focus, however, is primarily
on daily and even lower frequencies for which temporal correlation may not be a concern.4

Moreover, Assumption 2.3 removes the temporal correlation from the specific return only,
leaving the market return X and ultimately the security return Y to be potentially correlated
in time. With respect to stationarity, returns do exhibit volatility regimes, indicating that
long histories may not be relevant to current forecasts. As a consequence, risk estimates that
rely on historical returns are often based on short histories. The length of the applicable
history varies with analysis date and data frequency, and it also depends on the application.
This underscores the importance of the asymptotic regime (HL) that we adopt, i.e., when the
number of securities p vastly exceeds n, the number of observed returns.

3. Dispersion bias. Let Y denote the p\times n data matrix of realized security returns, i.e.,
the matrix whose jth column is Yj \in \BbbR p. We denote by s2p the largest eigenvalue of

S = YY\top /n,(10)

the sample covariance matrix of the returns. Since b in (3) is the eigenvector of \Sigma in (2) with
the largest eigenvalue, a natural estimate of b is the corresponding sample eigenvector. To
this end, we take the following definition for the estimate h of b:

h \in \BbbR p : Sh = s2p h, | h| = 1, \mu p(h) \geq 0 .(11)

Note that the condition on \mu p(h) = 1
p

\sum p
i=1 hi is without loss of generality, as an h with

\mu p(h) < 0 can always be negated preserving the remaining requirements. This convention is
adopted for consistency with Assumption 2.2 (cf. \mu \infty (\beta ) > 0).5

The relative gap between s2p and the average of the remaining nonzero eigenvalues of S,
denoted by \ell 2p , plays an important role in our analysis. Define

\psi p =

\sqrt{} 
s2p  - \ell 2p

s2p
.(12)

To highlight the dependence on p, we write \langle x, y\rangle p = \langle x, y\rangle = x\top y for any x, y \in \BbbR p and
let \langle x, y\rangle \infty = limp\uparrow \infty \langle x, y\rangle p provided that the limit exists. The following result characterizes

4In a compendium of stylized facts about financial returns, [21] argues that temporal dependence is not an
important consideration at a daily horizon.

5Note that h is not directly comparable to \beta in the sense that h estimates b = \beta /| \beta | .
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the bias in a p-dimensional sample eigenvector h that estimates its population counterpart b
for p large with respect to the z in (3).

Theorem 3.1. Fix n \geq 2, and suppose Assumptions 2.1, 2.2, and 2.3 hold. Then,

\langle h, z\rangle \infty = \langle h, b\rangle \infty \langle b, z\rangle \infty and \langle h, b\rangle \infty = \psi \infty \in (0, 1)(13)

almost surely and \psi \infty = limp\uparrow \infty \psi p is a nondegenerate random variable almost surely.

The proof of Theorem 3.1 is deferred to Appendix A.

Remark 3.2. The (deterministic) limit \langle b, z\rangle \infty exists and is in (0, 1) under Assumption
2.2. This is easily seen from the calculation in Appendix C which shows that

\langle b, z\rangle 2p =
1

1 + d2p(\beta )
\rightarrow 1

1 + d2\infty (\beta )
\in (0, 1) as p \uparrow \infty 

since dp(\beta ) is assumed to converge to d\infty (\beta ) \in (0, 1) as part of Assumption 2.2. This confirms
that the relation in (13) is not trivial (i.e., \langle h, z\rangle p and \langle b, z\rangle p both converge to zero). The
relevant part of Assumption 2.2 is \mu \infty (\beta ) \not = 0, which prevents the trivial case.

Remark 3.3. The asymptotic angle \langle h, b\rangle \infty between the sample eigenvector h and its popu-
lation counterpart b has been studied in [61] and elsewhere. Our result differs in three respects
from these prior works. First, the proof leverages the structure of the factor model in section
2.2 and consequently uses different techniques. Second, our characterization of \langle h, b\rangle \infty is in
terms of the limit of \psi p, which may be computed from the observed returns data Y. This
facilitates the correction for the bias in section 4. Third, an expression for \langle h, b\rangle \infty alone does
not point to a correction, as bias must be characterized with respect to some known vector. In
our case, it is z, the vector in the expression for the optimization bias E(h) in (4) and related
to the constraint in (1).

Remark 3.4. Numerical evidence suggests this dispersion bias phenomenon continues to
hold under a much weaker set of conditions than those of Assumptions 2.1--2.3.

We refer to the systematic error identified by Theorem 3.1 as the dispersion bias (of a
sample eigenvector) for the following reason. The dispersion dp(h) of h has

d2p(h) =
1

p

p\sum 
i=1

\biggl( 
hi

\mu p(h)
 - 1

\biggr) 2

=
1 - \langle h, z\rangle 2p
\langle h, z\rangle 2p

(14)

by a calculation similar to that of Remark 3.2 (see Appendix C). Theorem 3.1 implies that
\langle b, z\rangle p > \langle h, z\rangle p with high probability (w.h.p.)6 in p. Consequently, for p large, the dp(h)
typically exceeds the dispersion dp(b) = dp(\beta ) > 0 of b since

d2p(h) =
1 - \langle h, z\rangle 2p
\langle h, z\rangle 2p

>
1 - \langle b, z\rangle 2p
\langle b, z\rangle 2p

= d2p(b) w.h.p. in p.(15)

6We say Ap > Bp w.h.p. (in p) if for any \epsilon > 0 there is a p\epsilon such that Ap > Bp on a set of probability 1 - \epsilon 
for all p \geq p\epsilon . Our usage of this term is not standard, as w.h.p. typically states that an event Ep holds w.h.p.
(in p) if for all \epsilon > 0 there is a p\epsilon such that P(Ep) > 1  - \epsilon for all p \geq p\epsilon . The stronger statement we make is
facilitated by Egoroff's theorem [17, Proposition 1.3.4].
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More specifically, we have the following corollary of Theorem 3.1 which specifies (asymp-
totically) the amount by which h is overly dispersed relative to b.

Corollary 3.5. Fix n \geq 2, and suppose Assumptions 2.1, 2.2, and 2.3 hold. Then,

d2\infty (h) = d2\infty (b) +
1 - \psi 2

\infty 
\langle h, z\rangle 2\infty 

(16)

almost surely where d2\infty (h) = limp\uparrow \infty d2p(h) and d\infty (\beta ) = d\infty (b).

Proof. This is a consequence of (13) and (14).

The characterization of the dispersion bias in the leading eigenvector of the sample return
covariance matrix has significant implications for PCA estimates of optimized portfolios. In
particular, recalling that the optimization bias E(h) in (4),

Ep(h) =
\langle b, z\rangle p  - \langle b, h\rangle p\langle h, z\rangle p

1 - \langle h, z\rangle 2p
(17)

(we add the subscript p to highlight the dependence), is the primary driver of error in minimum
variance portfolios motivates the following corollary of Theorem 3.1. To see its ramifications
for PCA estimated portfolios, recall from (7) that the ratio of the true to the estimated
minimum variance satisfies V2/\^V2 \asymp 1 + pE2

p (h).

Corollary 3.6. Fix n \geq 2, and suppose Assumptions 2.1, 2.2, and 2.3 hold. Then,

E\infty (h) =
1 - \psi 2

\infty 
d2\infty (h)\langle h, z\rangle \infty \psi \infty 

(18)

almost surely where E\infty (h) = limp\uparrow \infty Ep(h) with E\infty (h) > 0 almost surely.

Proof. The result follows upon combining (13), (14), and (17). That E\infty (h) > 0 follows
from (13), and \langle b, z\rangle \infty > 0 (hence \langle h, z\rangle \infty > 0) per Remark 3.2.

In the remainder of this section, we discuss the geometric interpretation of the dispersion
bias suggested by the natural normalization of PCA estimates to the unit sphere. Figure 1
illustrates the vectors h, b, and z on the unit sphere in \BbbR p, with the angle between any x
and y denoted by \theta \langle x,y\rangle = \theta \langle x,y\rangle p so that \langle x, y\rangle = cos \theta \langle x,y\rangle . Since the population eigenvector
b is unknown, there is no available direction with respect to which the sample eigenvector
h is biased. In particular, even given the known estimate \psi p of \langle h, b\rangle p = cos \theta \langle h,b\rangle p , the left
panel of Figure 1 shows that h may be located anywhere on the cone around b of radius
\theta \langle h,b\rangle (cf. Remark 3.3). The right panel of Figure 1 illustrates the portion of the bias of h
that is identifiable relative to the vector z. In particular, \theta \langle h,z\rangle p > \theta \langle b,z\rangle p w.h.p. in p, which
is equivalent to the statement in (15) in terms of the dispersions of h and b. This bias
representation now also points to a potential correction which is the problem explored in
section 4.

There is by now an extensive literature on the bias in sample eigenvalues and the corre-
sponding shrinkage estimators that correct for these errors (see, e.g., [24]). In our setting, for
a result in this direction, see Lemma A.2 of Appendix A. This lemma suggests eigenvalue bias
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Figure 1. An illustration of the sample and population eigenvectors h and b, respectively. The angle \theta \langle h,b\rangle 
between h and b is also the length of the arc on the sphere of unit radius between h and b. The left panel shows
that the identification of the bias in h is not possible without a reference frame. The latter is provided by the
vector z in the right panel, where the bias is illustrated by the shaded area. This bias is the amount by which
\theta \langle h,z\rangle exceeds \theta \langle b,z\rangle and is due to the excess dispersion in h.

corrections to the estimates of the volatility parameters (\sigma , \delta ) in the population covariance
\Sigma = \sigma 2\beta \beta \top + \delta 2I in (2). Due to the fact that minimum variance portfolios are driven ex-
clusively by the sample eigenvector bias (see section 2.1), these estimates are not essential in
our context. However, we wish to emphasize the remarkable fact that the bias in the sample
eigenvectors may be used to correct the bias in the sample eigenvalues. To this end, see Table
1, which relies on Theorem 3.1 as well as several of the calculations found in Appendix C.

Table 1
The market and specific return variance estimators \^\sigma 2 and \^\delta 2. Here, X = (X1, . . . ,Xn)

\top is the vector of
n realizations of the market return X in (8). Note that | X| 2/n is an unbiased estimator of \sigma 2 = Var(X) and
w.l.o.g. \mu \infty (\beta ) = 1, as the \sigma and \beta are unidentifiable (i.e., \beta X = (c\beta )(X/c) for any c \not = 0). The estimates \^\sigma 2

and \^\delta 2 are compatible with the normalization \mu ( \^\beta ) = 1 for the estimate \^\beta of \beta .

Finite p Limit p

\^\sigma 2 s2p\mu 
2
p(h) \mu 2

\infty (\beta )| X| 2/n
\^\delta 2 n\ell 2p /p \delta 2

4. Bias correction. To correct the dispersion bias in the estimate h (of b) specified by the
sample eigenvector in (11), we propose the following parametrized family of estimators:

ht =
h+ tz

| h+ tz| 
, t \in \BbbR .(19)
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The optimization biasEp(h) given in (17) that stems from the estimate hmay then be replaced
by Ep(ht) upon replacing h with the estimator ht in (17). We have

Ep(ht) =Ep(h) - t

\biggl( 
\langle h, b\rangle p  - \langle b, z\rangle p\langle h, z\rangle p

1 - \langle h, z\rangle 2p

\biggr) 
(20)

for any t \in \BbbR (see Appendix C). We propose a randomized choice \tau p for t in (19),

\tau p =
(1 - \psi 2

p)\langle h, z\rangle p
\psi 2
p  - \langle h, z\rangle 2p

.(21)

We let h\tau be the estimator constructed with \tau p replacing t in (19) with subscript p in (21)
inferred from the dimension of h \in \BbbR p. It is optimal in the following sense.

Theorem 4.1. Fix n \geq 2, and suppose Assumptions 2.1, 2.2, and 2.3 hold. Then,

E\infty (h\tau ) = lim
p\uparrow \infty 

Ep(h\tau ) = 0 almost surely.(22)

Moreover, the parameter \tau p in (21) may be computed from p\times n data matrix Y only.

Remark 4.2. As conclusions concerning the ultimate performance of PCA and corrected
estimators h and h\tau would involve only best and worst case analyses, one could aim to prove
only that B = lim infp\uparrow \infty E(h) > 0 and W = lim supp\uparrow \infty E(h\tau ) = 0. This leads to further
relaxation of our assumptions. For example, Assumption 2.2 may be significantly relaxed by
considering a subsequence that achieves either B or W and then a further subsequence along
which both \mu p(\beta ) and dp(\beta ) do converge. This relaxes Assumption 2.2 to one requiring only
the boundedness of \mu p(\beta ) and dp(\beta ).

The proof (see Appendix A) is a consequence of Theorem 3.1 and the fact that

Ep(h\tau ) =
\langle b, z\rangle p\psi 2

p  - \langle h, z\rangle p\langle h, b\rangle p
\psi 2
p  - \langle h, z\rangle 2p

.(23)

The second part of the result is trivial, but it crucially shows that the optimal parameter
\tau p in (21) is computable directly from the observed quantities. In particular, it may be directly
computed from the sample covariance matrix S.7 The first part of the result is remarkable in
that even for only two observations (n = 2) of the return vector Y we are able to remove all
of the optimization bias asymptotically.

The implications for the minimum variance portfolio are as follows. Recall that the true
variance of the estimated portfolio \^w is V2

p = \^w\top \Sigma \^w with (5) refined as

V2
p = \sigma 2\mu 2p(\beta )(1 + d2p(\beta ))E

2
p (h) + op(24)

for op \downarrow 0 (see Appendix B). From Corollary 3.6, we have that E2
\infty (h) > 0 almost surely for

the plain PCA estimate h, and under our hypotheses, V2
p remains bounded away from zero

almost surely. In other words, the expected out-of-sample variance is strictly positive and

7The vector h is an eigenvector of S, and \psi p is a function of the eigenvalues of S.
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potentially large (see (18)). On the other hand, replacing h with the corrected estimator h\tau 
ensures the expected out-of-sample variance vanishes.

We see that the variance forecast ratio V2/\^V2 in (7), of the true to the estimated portfolio
variance, diverges for the PCA estimator. Since V2/\^V2 \asymp 1+pE2(h\tau ) supplies the asymptotics
of the corrected variance forecast ratio, it is the moderate deviations scale that becomes
relevant. To this end, we study the behavior of

\surd 
pE(h\tau ) numerically in section 5. Here, we

propose the following bound without proof.

Conjecture. Fix n \geq 2, and suppose Assumptions 2.1, 2.2, and 2.3 hold. In addition,
suppose that supi E((Z

i)8) < \infty and that E(| X| q) < \infty for q = \pm 4 where X = (X1, . . . ,Xn)
\top 

is the vector of n realizations of X, with X and Z in (8). Then,

sup
p

E
\bigl( 
pE2

p (h\tau )
\bigr) 
<\infty .(25)

Remark 4.3. In contrast to (25), we must have lim supp\uparrow \infty pE2
p (h\tau ) = \infty almost surely.

This stems from a variant of the law of iterated logarithms, the fact that the scaled sum
Wp =

Z1+\cdot \cdot \cdot +Zp
\surd 
p for i.i.d. random variables \{ Zi\} i\in \BbbN has lim supp\uparrow \infty Wp = \infty almost surely. The

random walk oscillations are too erratic to avoid path by path entirely, but given sufficient
finite moments of Z1 (as above), they cancel out in expectation.

Remark 4.4. In view of Corollary 3.6, supp E
\bigl( 
cpE

2
p (h)

\bigr) 
= \infty for any cp \rightarrow \infty .

In the remainder of this section, we explore some of the features of the estimator h\tau 
as compared with h, the (unadjusted) sample eigenvector. Theorem 3.1 implies that h is
adversely affected by excess dispersion since d2p(h) > d2p(b) w.h.p. per (15), i.e., the dispersion
of h is larger than that of b, the population eigenvector. However,

d2p(ht) =
1 - \langle ht, z\rangle 2p
\langle ht, z\rangle 2p

=
1 - \langle h, z\rangle 2p
(\langle h, z\rangle p + t)2

< d2p(h), t > 0,(26)

for ht in (19). In other words, for a positive parameter value, the estimator ht has the effect
of decreasing the dispersion of h. The left panel of Figure 2 illustrates the placement of
a ht relative to the b and the dispersionless vector z. Observe that since \psi 2

\infty  - \langle h, z\rangle 2\infty =
\psi 2
\infty (1 - \langle b, z\rangle 2\infty ) > 0, under the assumptions of Theorem 3.1, the optimal parameter \tau p given

in (21) has \tau \infty = limp\uparrow \infty \tau p > 0 almost surely.
To obtain some intuition for the precise value of the parameter \tau p and its effect on the

optimization bias Ep, we make the following two observations:
(1) As noted previously, Ep(b) = 0, which implies that h being a consistent estimator (i.e.,

\langle h, b\rangle p \rightarrow 0) is sufficient for removing the optimization bias asymptotically. However,
this may not be possible in finite sample (when n is fixed). Consistency turns out,
surprisingly, to not be necessary. A remarkable property of the optimization bias is
that it has a root that is distinct from the unknown vector b. It is very easy to verify,
via (20), that Ep(h\tau \ast ) = 0 for ht as in (19) but with t = \tau \ast given by

\tau \ast p =
\langle b, z\rangle p  - \langle h, b\rangle p\langle h, z\rangle p
\langle h, b\rangle p  - \langle h, z\rangle p\langle b, z\rangle p

,(27)
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Figure 2. An illustration of the estimator ht for t > 0 (left panel), which shrinks the dispersion d(ht)
of ht relative to that of h. Equivalently, we shrink the angle \theta \langle ht,z\rangle relative to \theta \langle h,z\rangle by taking t > 0 (see
also Figure 1). The spherical angle \Theta ht controls the optimization bias Ep(ht) per formula (28). The right
panel illustrates the choice h\tau \ast at which \Theta h\tau \ast = 90 degrees. The equi-mean contour of b (x with | x| = 1 and
\langle x, z\rangle = \langle b, z\rangle ) is further from z than the optimal point h\tau \ast . Thus, the distance to the b is not minimized at
the intersection of its equi-mean contour and \{ ht\} t\in \BbbR .

where the suppressed subscript p in h\tau \ast is inferred from the dimension of h \in \BbbR p.
However, \tau \ast p cannot be constructed in practice since b is not known. Theorem 4.1
states that \tau p approximates \tau \ast p for p large, and \tau p is implementable from the observed
data. Indeed, it is not difficult to check that | \tau p  - \tau \ast p | \rightarrow 0 as p \uparrow \infty almost surely.

(2) The geometry of the (finite p) optimal point \tau \ast p in (27) is best illustrated with the
spherical law of cosines [5]. Recalling that \theta \langle x,y\rangle p denotes the angle between x and y
in \BbbR p, we can write the optimization bias of ht for any t \in \BbbR as

E(ht) =
\langle b, z\rangle  - \langle ht, b\rangle \langle ht, z\rangle 

1 - \langle ht, z\rangle 2
=

\biggl( 
sin \theta \langle ht,b\rangle 

sin \theta \langle ht,z\rangle 

\biggr) 
cos\Theta ht ,(28)

where \Theta ht denotes the spherical angle between the arcs emanating from ht, i.e., the
arcs from ht to z and ht to b. Figure 2 illustrates the spherical angle \Theta ht , and we
note that when \Theta ht = 90 degrees, for such t \in \BbbR , we have E(ht) = 0 per (28). This
occurs precisely for t = \tau \ast p in (27). It may be verified that \tau \ast p is also the maximizer
of \langle ht, b\rangle over t \in \BbbR and, equivalently, \tau \ast p is the minimizer of \theta \langle ht,b\rangle over t \in \BbbR , i.e.,
the t = \tau \ast p minimizes the arc length between b and ht on the unit sphere in \BbbR p. The
random parameter \tau p approximates this minimizer asymptotically as p \uparrow \infty .

Our findings are particularly interesting from the perspective of the interplay between the
geometry of the optimization bias and the optimality of the parametrized family of estimators
\{ ht\} t\in \BbbR in (19). The analysis of the minimum variance in section 2.1 (and Appendix B)
motivated this family of estimators. But, conversely, viewing the \{ ht\} t\in \BbbR as a family of
(dispersion) shrinkage estimators, the optimal choice of ht is naturally the one that minimizes
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its ``distance"" to b, the unknown. This h\tau \ast coincides with the root of the optimization bias
E( \cdot ) and so yields ``optimal"" minimum variance portfolios. The fact that the h\tau \ast may be
arbitrarily well approximated in finite sample, only from the observed data, and simply by
considering more variables, is striking.

5. Numerical study. We present results of two simulation experiments that illustrate the
impact on a minimum variance portfolio of the dispersion bias correction, corroborating the
theory of section 4.8 Section 5.2 investigates the behavior of the portfolio volatility for the
PCA and several corrected estimators in the case of small n and moderate p. Sections 5.3 and
5.4 study the large p asymptotics of the dispersion and optimization biases.

We generate a return observation Yj \in \BbbR p to p securities from model (8) so that

Yj = \beta Xj + Zj(29)

for unobserved factor and specific returns Xj \in \BbbR and Zj = (Z1
j , . . . ,Z

p
j )

\top . The Yj for
j = 1, . . . , n form the columns of the p\times n data matrix Y. We extract a PCA estimate h from
the sample covariance S = YY\top /n in (10) ensuring it is positively oriented (i.e., \mu (h) \geq 0)
per (11). The estimator ht \propto h + tz is formed via (19) for constant t \in \BbbR +. Similarly, the
estimators h\tau \ast and h\tau follow (19) but with the random (dispersion) shrinkage parameters \tau \ast p
and \tau p in (27) and (21). The latter relies on the eigenvalues of S. We refer to h\tau \ast as the exact
estimator, as it carries no optimization bias. We call h\tau the blind estimator, as it is unable
to observe \beta , and the family \{ ht\} t\in \BbbR + the parametric estimator to which the PCA estimator
h = h0 belongs.

5.1. Market model calibration and estimation. We require the generating process to
obey Assumptions 2.1 and 2.3 and take the \{ Xj\} and \{ Zj\} in (29) to be i.i.d. normal with
mean zero, Var(X1) = \sigma 2 = (0.16)2, and Var(Z1) = \delta 2I = (0.5)2I. The unknown vector \beta \in \BbbR p
is constructed to have mean \mu (\beta ) = 1 and dispersion d(\beta ) = 0.5, and it is held constant over
the observations.9 Then, Var(Yj) = \Sigma with

\Sigma = \sigma 2\beta \beta \top + \delta 2I

as in (2). Our task amounts to specifying the estimates ( \^\beta , \^\sigma , \^\delta ) of (\beta , \sigma , \delta ).
We use each of the estimates ht, h\tau \ast , and h\tau as the basis of an estimate \^\Sigma of the covariance

matrix. Given a choice of \^\beta , we estimate the covariance matrix \Sigma by

\^\Sigma = \^\sigma 2 \^\beta \^\beta \top + \^\delta 2I.(30)

We take the estimates \^\sigma 2 = s2p\mu 
2
p(h) and

\^\delta 2 = n\ell 2p/p = (tr(S) - s2p)
\bigl( n/p
n - 1

\bigr) 
directly from Table

1 regardless of the choice \^\beta of the estimator used for \beta . These estimates are compatible
with the assumption that \mu ( \^\beta ) = 1, which is without loss of generality, as the \sigma and \beta are
unidentifiable (i.e., \mu (\beta ) = 1 is not exploited but serves solely as a convention). Thus, \^\beta is
either ht

\mu (ht)
(parametric), h\tau 

\mu (h\tau )
(blind), or h\tau \ast 

\mu (h\tau \ast )
(exact).

8For complementary simulations calibrated to the U.S. equity market, see [33].
9More precisely (independently of all other variables), some \{ \eta i\} pi=1 are drawn independently from the

normal distribution of mean one and variance one. The transformation \beta i = c\eta i/\mu (\eta ) + (1 - c) is then applied
with c = 0.5/d(\eta ) so that d(\beta ) = 0.5 and \mu (\beta ) = 1 for \beta = (\beta 1, . . . , \beta p)

\top .
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Figure 3. Boxplots of the true volatility V of the estimated minimum variance portfolio \^w constructed with
the parametric, exact, and blind estimators. The boxplots for five constant parameter estimators ht are shown
on the right of the V-axis. The minimizer (over t) of the average volatility is approximately 0.5. The left of the
V-axis shows boxplots for the PCA, exact, and blind estimators. The dashed line marks the optimal minimum
volatility V, the square root of the minimum value of (1). For each boxplot, we perform 103 simulations, each
consisting of n = 50 observations of p = 500 securities. Each boxplot shows the interquartile range, the means
marked with triangles, and the outliers that lie below 1\% and above 99\% of the distribution.

5.2. Minimum variance portfolio volatility. We compare the performance of the exact
and blind estimators to PCA and investigate the behavior of the parametric estimator. For
each estimator, we form the \^\Sigma in (30) and compute the estimated, minimum variance portfolio
\^w by solving (1) after replacing \Sigma by \^\Sigma . We take the true volatility V (square root of V2 =
\^w\top \Sigma \^w) of the estimated minimum variance portfolio as our performance metric. This metric,
which may be regarded as the out-of-sample volatility, emphasizes the practical utility of the
experiments we conduct.

Figure 3 shows boxplots of V for each of the estimators. Even for the moderate number
of securities (p = 500) and small sample size (n = 50) used in our experiment, the exact and
blind estimators materially outperformed PCA. For instance, relative to the PCA estimator,
we observe a reduction in median V of more that 25\% along with a reduction of more than
50\% in the interquartile range for the exact and blind estimators. The (horizontal) dashed
line in Figure 3 marks the value of the optimal minimum volatility V, the square root of
the minimum value of w\top \Sigma w attained in optimization problem (1). All estimators produce
portfolios with higher volatility than V (approximately 4.853), indicating a higher level of risk
than optimal. However, the median volatility produced by the exact and blind estimators are
both within 26\% of the optimum V, while the PCA estimator yields a median volatility that
exceeds the optimum by 74\%. Figure 3 also displays results for five parametric estimators
(on the right of the V-axis). The best parametric estimator ht achieves similar performance
gains to the blind and exact estimators. This estimator corresponds to the value t = 0.65 that
necessarily depends on the unknown \beta . It approximately minimizes the median volatility (a
function of \Sigma ) over the nonrandom parameter choices. However, this value is never accessible
in practice since \Sigma is not known in such settings. Remarkably, it underperforms (in terms of
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the mean and the variance) relative to the blind estimator, which relies only on the observed
data Y. The distributions of the random, exact, and blind dispersion-shrinkage parameters
\tau \ast and \tau are shown in Figure 4. These histograms support the theoretical finding that the
\tau approximates well the exact parameter \tau \ast , which benefits from the knowledge of \beta in the
model.

Table 2 supplements Figure 3 and reports the sample means and variances of the true
volatility V for the PCA, exact, blind, and best parametric (Param) estimators. It also
reports the same statistics for the estimated volatility \^V where \^V2 = \^w\top \^\Sigma \^w was defined
in (6) and shown to be of order 1/p. The blind estimator outperforms PCA and the best
parametric estimator h0.65 on the V-metric in terms of both mean and variance. We find a
variance reduction of factors 5.57 and 1.43 relative to PCA and the best parametric estimator,
respectively. Conversely, the blind estimator exhibits a variance for the estimated volatility \^V
that is larger than both PCA and h0.65. This is an advantage, as the higher number allows for
a larger level of uncertainty to be taken into account in practice. Table 2 also reports statistics
for the ratio of the true to the estimated volatility V/\^V. This reports how much the forecast
volatility deviates from the true volatility. The exact, blind, and best parametric estimators
show a desirably small level of deviation. On the other hand, the volatility forecast produced
by PCA is a factor larger than two away from the true volatility (cf. (7) in section 2.1).

Figure 4. Histograms of 106 simulations for the exact and blind (dispersion) shrinkage parameters \tau \ast p and
\tau p (see formulas (21) and (27)). The sample means and standard deviations are approximately 0.684 and 0.144
for \tau \ast p and 0.650 and 0.137 for \tau p. For each, we take n = 50 observations and p = 500 securities.

Table 2
Sample means and standard deviations for the true and estimated volatilities V and \^V and their ratio V/\^V

computed using 106 simulations. The estimates for E(V) have normal 99\% confidence intervals of \pm 2.58 SD(V)\times 
10 - 3 and analogously for E(\^V) and E(V/\^V). Param denotes the best parametric estimator h0.65.

E(V) E(\^V) E
\bigl( 
V/\^V

\bigr) 
SD(V) SD(\^V) SD(V/\^V)

PCA 8.490 3.944 2.163 0.701 0.157 0.262
Exact 6.091 6.054 1.006 0.262 0.182 0.017
Blind 6.149 5.958 1.035 0.297 0.347 0.069
Param 6.225 5.982 1.045 0.355 0.280 0.103
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5.3. Dispersion bias identification. Table 3 provides support for Theorem 3.1 with es-
timates of the means and standard deviations of \langle h, z\rangle p, \langle h, b\rangle p, and \psi p computed with 106

simulations. We fix n = 50 observations and numbers of securities p ranging from 500 to
8000. The value of \langle b, z\rangle multiplied by the point estimate E(\langle h, b\rangle p) is equal to the point
estimate E(\langle h, z\rangle p) to four decimal places for each p. This result is well within the normal
99\% confidence intervals around E(\langle h, z\rangle p) for each value of p. Further, the sample means of
the values \langle h, b\rangle p and \psi p, which are asymptotically equal, get closer as p increases from 500
to 8000. The 99\% confidence intervals around E(\psi p) and E(\langle h, b\rangle p), however, do not overlap
for the values of p we considered.

Table 3
Sample means and standard deviations for \langle h, z\rangle p, \langle h, b\rangle p, and \psi p with \langle b, z\rangle \approx 0.89442 (corresponding to

d2(b) = 0.5) computed with 106 simulations. For each value of p, we use n = 50. Estimates for E(\langle h, z\rangle p) have
99\% confidence intervals of \pm 2.58 SD(\langle h, z\rangle p)\times 10 - 3 and analogously for E(\langle h, b\rangle p) and E(\psi p).

p E(\langle h, z\rangle p) E(\langle h, b\rangle p) E(\psi p) SD(\langle h, z\rangle p) SD(\langle h, b\rangle p) SD(\psi p)

500 0.8287 0.9265 0.9290 0.01513 0.01467 0.01305
1000 0.8292 0.9271 0.9283 0.01358 0.01399 0.01318
2000 0.8295 0.9274 0.9280 0.01227 0.01366 0.01325
4000 0.8296 0.9275 0.9278 0.01235 0.01349 0.01328
8000 0.8297 0.9276 0.9277 0.01213 0.01340 0.01330

5.4. Asymptotics of the optimization bias. We experimentally confirm the statements
of Theorems 3.1 and 4.1 and support the conjecture of section 4 by simulating models of
increasing size, taking p as large as 8000. For every p,10 we generate a \beta \in \BbbR p and draw
n = 50 i.i.d. observations of the returns obeying (29) as described at the outset. The subscript
p highlights the dependence on the size of the portfolio. We study the optimization biasEp(h)
for the PCA estimate and its corrected counterpart Ep(h\tau ) that is produced by the blind
estimator (the exact estimator has no optimization bias). The error Ep was shown to be
closely related to true volatility of the estimated minimum variance portfolio investigated
in section 5.2. Indeed, the error Ep is the sole component of the asymptotic description of
the true volatility (see V = Vp in (5) and Appendix B) that may be manipulated in an

estimation context. Moreover, per (7), the ratio of the true to the estimated variance V2
p/

\^V2
p

is proportional to pE2
p .

Figure 5 displays the moderate deviations (on the scale
\surd 
p) of the corrected optimiza-

tion bias Ep(h\tau ). It confirms that these deviations do not grow in p and further suggests
a convergence (in law) of the rescaled variable

\surd 
pEp(h\tau ) to some nondegenerate limit (e.g.,

normally distributed) of zero mean and finite variance. By illustrating convergence in law,
these results support Theorem 4.1, which states that Ep(h\tau ) vanishes almost surely as the size
of the portfolio grows. They also provide evidence for the conjecture of section 4, which posits
that

\surd 
pEp(h\tau ) has a second moment that is bounded in p. Tables 4 and 5 supply further

support. Table 4 (the first two columns) illustrates that the mean and standard deviation of

10Following footnote 9, we generate a sequence \eta 1, \eta 2, . . . and take (increasing) subsets \{ \eta i\} pi=1 for each size
p to produce the vector \beta \in \BbbR p with \mu p(\beta ) = 1.0 and dp(\beta ) = 0.5.
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Ep(h\tau ) both tend to zero as p grows. The rate at which the mean tends to zero appears to be
linear, while the standard deviation looks to converge at the rate

\surd 
p (cf. Figure 5). Table 5

supplements these statistics with those for pE2
p (h\tau ). The first column of Table 5 provides ev-

idence for our conjecture by showing that the mean of pE2
p (h\tau ) does not grow in p. It further

demonstrates (second column) that the standard deviation likely remains bounded as well (at
least the Gaussian setting that we adopt in the experiments).

Figure 5. Boxplots of
\surd 
pEp(h\tau ) versus growing portfolio size p. Each blind estimator corrected optimiza-

tion bias Ep(h\tau ) is constructed from (23) by using n = 50 observations. 103 simulations are used to construct
each boxplot that displays the median, and the interquartile range and outliers below 1\% and above 99\% are
shown. Sample means for each value of p are marked with an (upside down) triangle.

Figure 6. Boxplots of
\surd 
pEp(h) versus growing portfolio size p. The optimization bias Ep(h) of PCA

is constructed from (17) by using n = 50 observations. Sample means for each corrected bias
\surd 
pEp(h\tau ) are

depicted with an (upside down) triangle marker. 103 simulations are used to construct each boxplot that displays
the median, and the interquartile range and outliers below 1\% and above 99\% are shown.

The distribution of the optimization bias Ep(h) scaled by
\surd 
p and the mean of that of the

blind estimator are illustrated in Figure 6. As predicted, both the mean and the standard
deviation of the distribution of

\surd 
pEp(h) grow at rate

\surd 
p. This growth results in a scale

difference of 10 relative to the behavior in Figure 5, which displays the same quantities for
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the blind estimator. Table 4 records (fifth column) the ratio of the means of Ep(h) and Ep(h\tau )
showing an improvement of a factor in the hundreds over PCA for large values of p. Columns
three and four of Table 4 confirm the convergence of the optimization bias of PCA to a
nondegenerate positive limit (cf. Corollary 3.6). Table 5 further confirms the linear blow up
of the mean and standard deviation of pE2

p (h) as the portfolio size grows.
The theoretical results we confirm here in the setting of i.i.d. Gaussian observations hold

much more broadly. Neither the i.i.d. nor the Gaussian requirements are needed to obtain
qualitatively similar results. We refer the reader to extensive simulations in [33] that test
our conclusions for more complex models of security returns under more realistic market
calibrations.

Table 4
Sample statistics for the optimization bias Ep produced by the PCA estimator (h) and the blind estimator

(h\tau ) versus growing portfolio size p. Estimates of the ratio E(Ep(h))/E(Ep(h\tau )) measure the improvement of
the blind estimator relative to PCA. Each sample estimate for an expectation (E) and a standard deviation
(SD) is computed using 106 simulations. Every estimate of E(Ep(h\tau )) has the normal 99\% confidence interval
\pm 2.58 SD(Ep(h\tau )) \times 10 - 3 and analogously for the PCA estimator h. For each value of p, we use n = 50
observations.

p E(Ep(h\tau )) SD(Ep(h\tau )) E(Ep(h)) SD(Ep(h))
\mathrm{E}(Ep(h))

\mathrm{E}(Ep(h\tau ))

500 0.0185 0.0611 0.4004 0.0485 21.62
1000 0.0093 0.0436 0.3987 0.0464 42.77
2000 0.0047 0.0310 0.3980 0.0453 84.26
4000 0.0024 0.0220 0.3976 0.0448 166.4
8000 0.0012 0.0156 0.3973 0.0445 338.3

Table 5
Sample statistics for the scaled square of the optimization bias pE2

p generated by the PCA estimator (h)
and the blind estimator (h\tau ) versus growing portfolio size p. Each sample estimate for an expectation (E) and
a standard deviation (SD) are computed using 106 simulations. Every sample estimate of pE(E2

p (h\tau )) has the
normal 99\% confidence interval \pm 2.58pSD(E2

p (h\tau ))\times 10 - 3 and analogously for the PCA estimator h. For each
value of p, we use n = 50 observations.

p pE(E2
p (h\tau )) pSD(E2

p (h\tau )) pE(E2
p (h)) pSD(E2

p (h))

500 2.036 3.013 81.32 19.74
1000 1.990 2.991 161.2 37.66
2000 1.964 2.971 321.0 73.42
4000 1.959 2.992 640.5 145.1
8000 1.953 2.992 1279. 287.9

Appendix A. Proofs. Recall that the p\times n data matrix Y = Yp\times n of n excess returns to
p securities. According to (8), the jth observation (jth column of Y) is Yj = \beta Xj + Zj , and

Y = \beta X\top + Z(31)

for \beta \in \BbbR p, a row vector X\top = (X1, . . . ,Xn) of realized market return X and Z = Zp\times n, the
p\times n matrix with jth column Zj , the jth realized specific return.
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Under Assumption 2.2, for all p sufficiently large we have \mu p(\beta ) > 0 and

| \beta | 2 = p\mu 2(\beta )(1 + d2(\beta ))(32)

as in Appendix C for the mean \mu (\beta ) = \mu p(\beta ) and dispersion d(\beta ) = dp(\beta ) in (9).

Proof of Theorem 3.1. Recall the eigenvector h of the sample covariance matrix S =
YY\top /n with the eigenvalue s2p as in (11). We consider the singular value decomposition
of Y and \chi p \in \BbbR n with | \chi p| = 1 such that h and \chi p form the left and right singular vectors of
Y/

\surd 
n, respectively, with singular value sp \geq 0.11 By (31),

hsp = Y\chi p/
\surd 
n =

\beta X\top \chi p + Z\chi p\surd 
n

.(33)

Taking a dot product of both sides with b and z yields the following identities:

\langle h, b\rangle p = h\top b =

\biggl( 
| \beta | X\top \chi p
sp
\surd 
n

\biggr) 
+

\biggl( 
\beta \top Z
\surd 
p| \beta | 

\biggr) \biggl( 
\chi p

\surd 
p

sp
\surd 
n

\biggr) 
,(34)

\langle h, z\rangle p = h\top z = \langle b, z\rangle p
\biggl( 
| \beta | X\top \chi p
sp
\surd 
n

\biggr) 
+

\biggl( 
e\top Z
\surd 
p| e| 

\biggr) \biggl( 
\chi p

\surd 
p

sp
\surd 
n

\biggr) 
.(35)

Taking the dot product of both sides of (33) with hsp and dividing by p yields

s2p /p =
| \beta | 2(X\top \chi p)

2

np
+
\chi \top 
p Z

\top Z\chi p

np
+ 2(X\top \chi p)

\biggl( 
\beta \top Z
\surd 
p| \beta | 

\biggr) \biggl( 
\chi p| \beta | 
n
\surd 
p

\biggr) 
.(36)

The next result facilitates limit (p \uparrow \infty ) computations in (34), (35), and (36).

Lemma A.1. Let \{ \eta i\} i\in \BbbN \subseteq \BbbR be a sequence with c < 1
p

\sum p
i=1 \eta 

2
i < C for fixed constants

c, C > 0 and all p sufficiently large. For mean-zero, pairwise independent and (real) random
variables \{ Zi\} i\in \BbbN with supiVar(Z

i) < \infty , writing \eta = (\eta 1, . . . , \eta p)
\top and Z = (Z1, . . . , Zp)\top 

for any p, we have that \eta \top Z\surd 
p| \eta | \rightarrow 0 almost surely as p \uparrow \infty .

Proof. Letting Wi = \eta iZ
i, we have

\eta \top Z
\surd 
p| \eta | 

=

\biggl( \surd 
p

| \eta | 

\biggr) 
1

p

p\sum 
i=1

Wi .

The result now follows by the SLLN of [13, Theorem 6], provided that supp
1
p

\sum p
i=1 E(W

2
i ) <\infty 

(taking \phi (t) = t2 in that reference) and since supp
\surd 
p/| \eta | < 1/

\surd 
c < \infty by our assump-

tions. Since E(W 2
i ) = \eta 2iVar(Z

i), we have supp
1
p

\sum p
i=1 E(W

2
i ) = supiVar(Z

i) supp | \eta | 2/p \leq 
C supiVar(Z

i) <\infty .

11By convention, the singular values of a real matrix A are taken as the nonnegative square roots of the
(nonnegative) eigenvalues of A\top A. The largest such value a satisfies a2 = sup| x| =1 A

\top A.
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By applying Lemma A.1 to each
\bigl( \beta \top \mathrm{Z}\surd 

p| \beta | 
\bigr) 
j
and

\bigl( 
\mathrm{e}\top \mathrm{Z}\surd 
p| \mathrm{e}| 

\bigr) 
j
for 1 \leq j \leq n in (34) and (35), we

have, under Assumptions 2.2 and 2.3, that (34) and (35) reduce to

\langle h, b\rangle \infty = lim
p\uparrow \infty 

\biggl( 
| \beta | X\top \chi p
sp
\surd 
n

\biggr) 
,(37)

\langle h, z\rangle \infty = \langle b, z\rangle \infty lim
p\uparrow \infty 

\biggl( 
| \beta | X\top \chi p
sp
\surd 
n

\biggr) 
= \langle b, z\rangle \infty \langle h, b\rangle \infty ,(38)

provided that the limit on the right-hand side of (37) exists almost surely (for the existence
of \langle b, z\rangle \infty , see Remark 3.2) and that supp

\surd 
p/sp <\infty almost surely (see Lemma A.2).

Define the (nondegenerate) random variable \nu 2\mathrm{X} (which is well-defined by Assumption 2.2
and is strictly positive almost surely by Assumption 2.1) as

\nu 2\mathrm{X} =
| X| 2

n
\mu 2\infty (\beta )(1 + d2\infty (\beta )) .(39)

With tr(S) denoting the matrix trace12 of S, we have \ell 2p = (tr(S)  - s2p)/(n  - 1) as in the
definition of \psi p in (12) after taking p \geq n \geq 2.

Lemma A.2. Suppose that Assumptions 2.2 and 2.3 hold. Then, almost surely, limp\uparrow \infty s2p/p =
\nu 2\mathrm{X} + \delta 2/n, limp\uparrow \infty \chi p \rightarrow X/| X| , and limp\uparrow \infty \ell 2p/p\rightarrow \delta 2/n.

We now complete the proof of the main result. Applying (32) and Lemma A.2 to the
right-hand side of (37), we obtain that \langle h, z\rangle \infty = \langle b, z\rangle \infty \langle h, b\rangle \infty and

\langle h, b\rangle \infty =

\sqrt{} 
n\nu 2\mathrm{X}

n\nu 2\mathrm{X} + \delta 2
\in (0, 1)(40)

almost surely. Applying Lemma A.2 to \psi 2
p = (s2p  - \ell 2p )/s

2
p per (12), we obtain that the limit

\psi \infty equals the right-hand side of (40) almost surely.

Proof of Lemma A.2. Let \BbbS n - 1 = \{ x \in \BbbR n : | x| = 1\} , and define

gp(x) =
| \beta | 2(X\top x)2

np
+
x\top Z\top Zx

np
+ 2(X\top x)

\biggl( 
\beta \top Z
\surd 
p| \beta | 

\biggr) \biggl( 
x| \beta | 
n
\surd 
p

\biggr) 
.(41)

By definition we have that s2p /p = gp(\chi p) = supx\in \BbbS n - 1 gp(x), where the last equality follows

due to the fact that gp(x) = (x\top Y\top Yx)/(np) (see footnote 11).
To conclude the first two claims (pertaining to limp\uparrow \infty sp/p and limp\uparrow \infty \chi p), it suffices to

show that gp \rightarrow g\infty uniformly on \BbbS n - 1 almost surely, where

g\infty (x) = \nu 2\mathrm{X}

\biggl( 
X\top x

| X| 

\biggr) 2

+
\delta 2

n
.(42)

If so, then limp\uparrow \infty s2p/p = supx\in \BbbS n - 1 g\infty (x) = \nu 2\mathrm{X}+\delta 2/n since by (36) we have s2p/p = gp(\chi p) \rightarrow 
supx\in \BbbS n - 1 g\infty (x) attained by X/| X| almost surely. Moreover,

| g\infty (\chi p) - g\infty (X/| X| )| \leq | g\infty (\chi p) - gp(\chi p)| + | gp(\chi p) - g\infty (X/| X| )| ,

12The sum of the diagonal elements of S and, equivalently, the sum of its eigenvalues.
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which converges to zero as p \uparrow \infty almost surely (as gp \rightarrow g\infty uniformly on \BbbS n - 1). Consequently,
since g\infty is continuous, g\infty (limk\uparrow \infty \chi pk) = g\infty (X/| X| ) for any convergent subsequence \{ \chi pk\} 
with pk \uparrow \infty . Also, since g\infty has exactly two maximizers on \BbbS n - 1, namely X/| X| and  - X/| X| ,
every convergent subsequence of \{ \chi p\} p\in \BbbN must converge to X/| X| in view of (38) and the
choices of sign for h and b (i.e., w.l.o.g. we have \langle h, z\rangle p \geq 0 per (11) and \langle b, z\rangle p > 0 for all p
sufficiently large under Assumption 2.2). Since every convergent subsequence of the bounded
sequence \{ \chi p\} p\in \BbbN converges to X/| X| almost surely, the same conclusion for \chi p holds.

We proceed to show the almost sure, uniform (on \BbbS n - 1) convergence of gp, which follows
from the bound | gp(x) - g\infty (x)| \leq | \gamma 1p(x)| + | \gamma 2p(x)| + | \gamma 3p(x)| , where

| \gamma 1p(x)| = (X\top x)2
\bigm| \bigm| \bigm| \bigm| | \beta | 2np

 - 
\nu 2\mathrm{X}
| X| 2

\bigm| \bigm| \bigm| \bigm| ,
| \gamma 2p(x)| =

\bigm| \bigm| \bigm| \bigm| x\top Z\top Zx

np
 - \delta 2

n

\bigm| \bigm| \bigm| \bigm| ,
| \gamma 3p(x)| = 2(X\top x)

\bigm| \bigm| \bigm| \bigm| \biggl( \beta \top Z
\surd 
p| \beta | 

\biggr) \biggl( 
x| \beta | 
n
\surd 
p

\biggr) \bigm| \bigm| \bigm| \bigm| .
Using the identity | \beta | 2 = p\mu 2p(\beta )(1+d2p(\beta )) in (32), under Assumption 2.2, we deduce that

supx\in \BbbS n - 1 | \gamma 1p(x)| \rightarrow 0 by the definition of \nu 2\mathrm{X} in (39). For the second term | \gamma 2p(x)| , observe
that x\top Z\top Zx =

\sum n
j=1

\sum n
k=1 xjZ

\top 
j Zkxk, and consequently

| \gamma 2p(x)| \leq 
1

n

n\sum 
j=1

n\sum 
k=1

| xjxk| | Z\top 
j Zk/p - \delta 21\{ k=j\} | 

\leq n max
1\leq j,k\leq n

| Z\top 
j Zk/p - \delta 21\{ k=j\} | ,

where 1A denotes the indicator of A. Per Assumption 2.1, E((Zij)
2) = \delta 2 < \infty . Thus, under

Assumption 2.3, every Z\top 
j Zj/p =

1
p

\sum p
i=1(Z

i
j)

2 \rightarrow \delta 2 by the SLLN [27, Theorem 1]. Similarly,

E(ZijZ
i
k) = 0 for j \not = k by Assumption 2.3, so Z\top 

j Zk/p = 1
p

\sum p
i=1 Z

i
jZ
i
k \rightarrow 0 for every j \not = k.

Thus, supx\in \BbbS n - 1 | \gamma 2p(x)| \rightarrow 0.
The required convergence of gp follows by applying Cauchy--Schwarz to | \gamma 3p(x)| ,

| \gamma 3p(x)| \leq 2| X| 2
\bigm| \bigm| \bigm| \bigm| \beta \top Z\surd 
p| \beta | 

\bigm| \bigm| \bigm| \bigm| \biggl( | \beta | 
n
\surd 
p

\biggr) 
,(43)

so that supx\in \BbbS n - 1 | \gamma 3(x)| \rightarrow 0 by Lemma A.1, the continuity of the norm | \cdot | , and that
supp | \beta | 2/p = supp \mu 

2
p(\beta )(1 + d2p(\beta )) <\infty under Assumptions 2.2 and 2.3.

Finally, observe that since nS = YY\top = X\top X\beta \beta \top + ZZ\top + \beta X\top Z\top + ZX\beta \top , the almost
sure limit as p \uparrow \infty of the trace of S is given by

lim
p\uparrow \infty 

tr(S)

p
= lim

p\uparrow \infty 

\biggl( 
| \beta | 2| X| 2

pn
+

tr(Z\top Z)

pn
+ 2

\biggl( 
| \beta | 
\surd 
pn

\biggr) 
\beta \top ZX

| \beta | \surd p

\biggr) 
= \nu 2\mathrm{X} + \delta 2,(44)

where we applied (32) with Assumption 2.2 and (39) to the first term to obtain \nu 2\mathrm{X}, an
argument identical to that for x\top Z\top Zx above to the second term to obtain \delta 2, and Lemma
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A.1 to remove the third term. From (44) and that s2p/p\rightarrow \nu 2\mathrm{X}+\delta 2/n almost surely, we deduce
that \ell 2p/p = (tr(S)/p - s2p/p)/(n - 1) \rightarrow \delta 2/n almost surely.

Proof of Theorem 4.1. From Appendix C, we have

Ep(ht) =Ep(h) - t

\biggl( 
\langle h, b\rangle p  - \langle b, z\rangle p\langle h, z\rangle p

1 - \langle h, z\rangle 2p

\biggr) 
for ht =

h+tz
| h+tz| and t \in \BbbR . For \tau \ast p =

\langle b,z\rangle p - \langle h,b\rangle p\langle h,z\rangle p
\langle h,b\rangle p - \langle b,z\rangle p\langle h,z\rangle p , we have Ep(h\tau \ast ) = 0 (the subscript p on

\tau \ast in h\tau \ast is suppressed) by the definition of Ep(h) in (17). Then,

Ep(ht) = (t\ast p  - t)

\biggl( 
\langle h, b\rangle p  - \langle b, z\rangle p\langle h, z\rangle p

1 - \langle h, z\rangle 2p

\biggr) 
, t \in \BbbR .(45)

For \tau p =
(1 - \psi 2

p)\langle h,z\rangle p
\psi 2
p - \langle h,z\rangle 2p

in (21), we have by a tedious calculation that

\tau \ast p  - \tau p =
\langle h, z\rangle 2p (\langle h, b\rangle p\langle h, z\rangle p  - \langle b, z\rangle p) + \langle h, z\rangle p(\langle h, z\rangle p\langle b, z\rangle p  - \langle h, b\rangle p)

(\langle h, b\rangle p  - \langle h, z\rangle p\langle b, z\rangle p)(\psi 2
p  - \langle h, z\rangle 2p )

+
(\langle b, z\rangle p  - \langle h, b\rangle p\langle h, z\rangle p)\psi 2

p + \langle h, z\rangle p\psi 2
p(\langle h, b\rangle p  - \langle h, z\rangle p\langle b, z\rangle p)

(\langle h, b\rangle p  - \langle h, z\rangle p\langle b, z\rangle p)(\psi 2
p  - \langle h, z\rangle 2p )

=
\langle h, z\rangle 2p (\langle h, b\rangle p\langle h, z\rangle p  - \psi 2

p\langle b, z\rangle p) + \langle b, z\rangle p\psi 2
p  - \langle h, z\rangle p\langle h, b\rangle p

(\langle h, b\rangle p  - \langle h, z\rangle p\langle b, z\rangle p)(\psi 2
p  - \langle h, z\rangle 2p )

.

Then, continuing with (45), we obtain

Ep(h\tau ) = (\tau \ast p  - \tau p)
\langle h, b\rangle p  - \langle b, z\rangle p\langle h, z\rangle p

1 - \langle h, z\rangle 2p

=
\langle h, z\rangle 2p

\bigl( 
\langle h, b\rangle p\langle h, z\rangle p  - \psi 2

p\langle b, z\rangle p
\bigr) 
+
\bigl( 
\langle b, z\rangle p\psi 2

p  - \langle h, z\rangle p\langle h, b\rangle p
\bigr) 

(1 - \langle h, z\rangle 2p )(\psi 2
p  - \langle h, z\rangle 2p )

=
\langle b, z\rangle p\psi 2

p  - \langle h, z\rangle p\langle h, b\rangle p
\psi 2
p  - \langle h, z\rangle 2p

.(46)

Taking p \uparrow \infty , the claim now follows by Theorem 3.1 under its assumptions.

Appendix B. Asymptotic variance of minimum variance portfolios. We develop as-
ymptotic expressions for the variance of a minimum variance portfolio, which supply refined
versions of the asymptotic expressions given in section 2.1.

Setting \nu 2 = | \beta | 2/p, the covariance matrix \Sigma = \sigma 2\beta \beta \top + \delta 2I takes the form

\Sigma = \sigma 2p\nu 2 bb\top + \delta 2I,

where, as always, b = \beta /| \beta | . The estimated model \^\Sigma employs the estimates ( \^\beta , \^\sigma , \^\delta ) of the
parameters (\beta , \sigma , \delta ) and may be written in the form \^\Sigma = \^\sigma 2p\^\nu hh\top + \^\delta 2I, where q = \^\beta /| \^\beta | 
and \^\nu 2 = | \^\beta | 2/p. Here, the estimates (h, \^\sigma , \^\delta ) need not involve PCA but may result from any
estimation procedure obeying Assumption B.1 below.
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Define \^\kappa = \^\delta /(\^\sigma \^\nu ), and, as before, we let \^w \in \BbbR p denote the minimizer of min\mathrm{e}\top w=1w
\top \^\Sigma w,

the optimization problem (1) but with \^\Sigma replacing \Sigma . As in (3), set z = e/
\surd 
p for e = (1, . . . , 1).

The solution \^w (in closed form) may be written as

\^w =
1
\surd 
p

\biggl( 
z\rho  - h

\rho  - \langle h, z\rangle 

\biggr) 
, where \rho =

\^\kappa 2/p+ 1

\langle h, z\rangle 
.

The true variance V2 = \^w\top \Sigma \^w = \sigma 2p\nu 2( \^w\top b)2 + \delta 2| \^w| 2 and the estimated variance \^V2 =
\^w\top \^\Sigma \^w = \^\sigma 2p\^\nu 2( \^w\top h)2+\^\delta 2| \^w| 2 of the portfolio \^w (both introduced in section 2.1) are governed
by the asymptotics of the following. First, for E(h) in (4),

p( \^w\top b)2 =

\biggl( 
(\^\kappa 2/p+ 1)\langle b, z\rangle  - \langle h, b\rangle \langle h, z\rangle 

\^\kappa 2/p+ 1 - \langle h, z\rangle 2

\biggr) 2

=

\biggl( 
E(h) +

1

p

\biggl( 
\^\kappa 2\langle b, z\rangle 

1 - \langle h, z\rangle 2

\biggr) \biggr) 2\biggl( 1

1 + op

\biggr) 2

,

where op =
\^\kappa 2/p

1 - \langle h,z\rangle 2 and
\bigl( 

1
1+op

\bigr) 2
=

\sum 
k\geq 1 ko

k - 1
p when the series converges. Next,

| \^w| 2 = 1

p

\biggl( 
1

1 - \langle h, z\rangle 2

\biggr) \biggl( 
\^\kappa /p+ 1

1 + op
 - \^\kappa 2(1 - \langle h, z\rangle 2)\langle h, z\rangle 2

(1 + op)2p

\biggr) 
and the series 1

1+op
=

\sum 
k\geq 1 o

k - 1
p is useful when convergent. Finally,

p( \^w\top h)2 =
1

p2

\biggl( 
\^\kappa 2\langle h, z\rangle 

\^\kappa 2/p+ 1 - \langle h, z\rangle 2

\biggr) 2

.

From the expressions given above, the asymptotics of V2 and \^V2 are immediate provided
the following assumptions on the estimates (h, \^\sigma , \^\delta ).

Assumption B.1. The estimates \^\sigma and \^\delta (which possibly depend on p) are bounded above
and away from zero, and the estimate h satisfies supp\langle h, z\rangle 2p < 1.

Note that these assumptions are satisfied for the PCA estimates we analyze (see Theorem
3.1 and Table 1). Under Assumption B.1, for p sufficiently large,

V2 = \sigma 2\nu 2E2(h) +
2

p

\biggl( 
E2(h) +

E(h)\^\kappa 2\langle b, z\rangle + \delta 2/2

1 - \langle h, z\rangle 2

\biggr) 
+O(1/p2),

\^V2 =
\^\delta 2/p

1 - \langle h, z\rangle 2
+O(1/p2),

confirming the asymptotics stated in (5) and (6) using Vinogradov's notation.
The variance forecast ratio V2/\^V2 asymptotics in (7) may now be refined as

V2/\^V2 \sim A+BpE2(h),

where A = \delta 2+E(h)\^\kappa 2\langle b,z\rangle 
\^\delta 2

+ 2(1 - \langle h,z\rangle 2)
\^\delta 2

E2(h) and B = \sigma 2\nu 2(1 - \langle h,z\rangle 2)
\^\delta 2

.
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Appendix C. Auxiliary calculations. We present several calculations useful in the proof
of Theorem 4.1, the estimators of Table 1, and equations stated without derivation (i.e., (14),
(15), (20), and (26)).

Considering any \eta \in \BbbR p with (Euclidean) length | \eta | , mean \mu (\eta ) = 1
p

\sum p
i=1 \eta i, and disper-

sion d2(\eta ) = 1
p

\sum p
i=1(\eta i/\mu (\eta ) - 1)2 defined for \mu (\eta ) \not = 0, we have

| \eta | 2 =
p\sum 
i=1

\eta 2i = p\mu 2(\eta ) +

p\sum 
i=1

(\eta i  - \mu (\eta ))2

= p\mu 2(\eta )(1 + d2(\eta )) (\mu (\eta ) \not = 0) .(47)

Next, recall the vectors e = (1, . . . , 1)\top \in \BbbR p and z = e/
\surd 
p and for \eta above with | \eta | > 0,

define h = \eta /| \eta | . We have \langle h, z\rangle = h\top z = p\mu (\eta )\surd 
p| \eta | , and by (32),

\langle h, z\rangle 2 = 1

1 + d2(\eta )
and d2(\eta ) =

1 - \langle h, z\rangle 2

\langle h, z\rangle 2
.

This calculation justifies (14) and (15).
Table 1 involves the following calculation (note that the estimate \^\delta 2 = n\ell 2p/p is justified

on the basis of Lemma A.2). The estimate \^\sigma 2 = s2p\mu 
2
p(h) = s2p \langle h, z\rangle 2p/p uses the identities for

\eta above. The limit follows from Lemma A.2 and Theorem 3.1.
We proceed to justify (20). For E(h) as in (4) and any h \in \BbbR p with | h| = 1, letting

ht =
h+tz
| h+tz| for t \in \BbbR , we have

E(ht) =
\langle b, z\rangle | h+ tz| 2  - \langle h+ tz, b\rangle \langle h+ tz, z\rangle 

| h+ tz| 2  - \langle h+ tz, z\rangle 2

=
\langle b, z\rangle (1 + 2t\langle h, z\rangle + t2) - (\langle h, b\rangle + t\langle z, b\rangle )(\langle h, z\rangle + t)

1 + 2t\langle h, z\rangle + t2  - (\langle h, z\rangle + t)2

=
\langle b, z\rangle + t\langle b, z\rangle \langle h, z\rangle  - \langle h, b\rangle \langle h, z\rangle  - t\langle h, b\rangle 

1 - \langle h, z\rangle 2

=E(h) - t
\langle h, b\rangle  - \langle b, z\rangle \langle h, z\rangle 

1 - \langle h, z\rangle 2
.

To justify (26) we check that

d2(ht) =
1 - \langle ht, z\rangle 2

\langle ht, z\rangle 2
=

| h+ tz| 2  - (\langle h, z\rangle + t)2

(\langle h, z\rangle + t)2

=
1 - \langle h, z\rangle 2

(\langle h, z\rangle + t)2
.
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