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Abstract

In 1952, Harry Markowitz formulated portfolio selection as a trade-off between
expected, or mean, return and variance. This launched a massive research effort
devoted to finding suitable inputs to mean-variance optimization. The estima-
tion problem is high dimensional and a factor model is at the core of many
attempts. A factor model can reduce the number of parameters that need to
be estimated to a manageable size, but these parameters may incorporate sub-
stantial, hidden estimation error. Recent analysis elucidates the nature of this
error, identifies a mechanism by which it can corrupt optimization and provides
a method for its mitigation. We explore this analysis here by illustrating how
to improve the volatility ratio of large optimized portfolios, leading to superior
portfolio selection.∗

∗We certify that we have no affiliations with or involvement in any organization or entity with
any financial interest or non-financial interest in the subject matter or materials discussed in
this manuscript.
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1 In the Beginning . . .

Harry Markowitz launched modern finance when he was an economics graduate stu-
dent in the early 1950s. By framing portfolio construction as an optimization that
trades off expected return against risk, Markowitz brought mathematics, computing
and data science to bear on investing, even though computing and data science had
scarcely been invented. In a seminal article that Myron Scholes described as “the
big bang,”1 Markowitz (1952) introduced the concept of an efficient portfolio, which
minimizes risk for a prescribed level of expected return, subject to constraints. Hid-
ing in this simple formulation are two profound ideas that, prior to Markowitz, had
not been explicitly central to finance or economics. The first is a portfolio level per-
spective, which leads to high dimensional analysis of statistical problems that involve
many variables. The second is a quantitative notion of risk, which Markowitz had en-
countered in engineering and operations research.2 Markowitz characterized risk as
variance of portfolio return, and he mused about how to construct efficient portfolios.

The name “Markowitz” is sometimes attached to a portfolio that is completely de-
termined by the mean-variance tradeoff under full investment. The efficient frontier,
as featured in business schools everywhere, is composed of “Markowitz portfolios,”
whose weights can be conveniently expressed with a closed formula. Markowitz port-
folios typically have short positions, but there were no securities lending desks in the
1950s. Harry Markowitz, was more interested in long-only portfolios, the kind that
were available to investors, but the weights of a long-only portfolio required mathe-
matical recipes that did not exist. So, Markowitz (1956) developed the critical line
algorithm to incorporate position limits into mean-variance optimization, a develop-
ment that was roughly coincident with the introduction of Fortran.3 Well into his 90s,
Markowitz wrote code.

The inputs to mean-variance optimization include a vector of expected returns
and a matrix of return covariances. These inputs are never observable. A massive
research effort dedicated to finding suitable estimates followed Markowitz’ portfolio
selection article, and continues today in industry and the academy. Why is this problem
difficult? One obvious contributor is “dimension.” As Markowitz realized early on,
methods from classical statistics are not adequate when the number of securities, or
variables, is large. In a prescient comment in his 1952 paper, Markowitz’a considered
alternatives:

1Scholes offered his comments at the March 2024 Journal of Investment Management conference in
Markowitz’s honor held in San Diego.

2A discussion of how Markowitz brought ideas from engineering to finance is in MacKenzie (2006).
3Bailey and López de Prado (2013) describe an implementation of Markowitz’s 1956 critical line

algorithm. Cottle and Infanger (2010) provides a history of Markowitz’s contributions to quadratic pro-
gramming. New algorithms descending from the critical line algorithm are described in Boyd et al. (2024).
A compendium of Markowitz’s early ideas is in Markowitz (1959).
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Perhaps there are ways, by combining statistical techniques and the judgment of experts,
to form reasonable probability beliefs (µi, σij). ... One suggestion as to tentative µi, σij
is to use the observed µi, σij for some period of the past. I believe that better methods,
which take into account more information, can be found. I believe that what is needed is
essentially a “probabilistic” reformulation of security analysis. I will not pursue this subject
here, for this is “another story.” It is a story of which I have read only the first page of
the first chapter.

This query preceded works by Wigner (1955) and Marcenko and Pastur (1967),
which lay out the foundations of random matrix theory, a rich area of mathematics
that informs high dimensional covariance matrix (or, σij) estimation. It also preceded
a major development in the work of Stein (1956) and James and Stein (1961) who
convinced the statistics community that in high dimensions, better estimators than the
sample mean (or µi) provably exist. For Markowitz, the dimension played a key role
in the “law of the average covariance,” which he often used to point out the “do’s and
don’ts of large portfolios” (Markowitz, 1959, Chapter 5). He used many thousands of
securities for his numerical illustrations. In what follows, we use numerics to illustrate
the “probabilistic” properties of large mean-variance optimized portfolios. We also
combine insights from random matrix theory and James-Stein estimation to show how
higher dimensions yield the additional “information” needed to improve the estimates
(µi, σij).

A complication is the dynamic and noisy nature of financial markets. Observations
from a volatile period may not be useful when the market is calm. What limited data
from an irregular past should we use to forecast risk in an uncertain future? Markowitz,
as a self-described Bayesian (Markowitz, 2010), believed in the use of historical aver-
ages that are corrected for uncertainty in accordance with Bayesian principles (e.g.,
Markowitz and Xu (1994), Markowitz and Usmen (1996) and Markowitz (2012)). But
mean-variance optimization in the presence of noise proved to be a challenging prob-
lem. As Markowitz concluded, even with a Bayesian approach “the investor is still
too optimistic for his or her own best interest” (Markowitz and Usmen, 2003). This
finding alludes to the now well-known observation that estimated mean-variance op-
timized portfolios tend to severely underestimate the true risk. Higher dimensions
amplify the problem, and this so-called “Markowitz optimization enigma” has led to
an active area of research in the past several decades. A small sampling of this litera-
ture covering various approaches includes Klein and Bawa (1976), Jobson and Korkie
(1980), Best and Grauer (1991), Michaud and Ma (2001), Pafka and Kondor (2003),
Ledoit and Wolf (2004), Lai et al. (2011), Fan et al. (2012), Bun et al. (2017), Ledoit
and Wolf (2017), Bodnar et al. (2022) and Blanchet et al. (2022). We highlight Jobson
et al. (1979) and Jorion (1986) for their use of James-Stein estimation for Markowitz
problems, and a related thread of literature on “beta adjustments” which relies on
Stein-type estimators (Elton et al., 2009, Chap. 7).

In this article, we provide easy to implement “James-Stein-Markowitz” (jsm)
recipes for the estimates (µi, σij). They incorporate the Bayes’ rule instincts espoused
by Markowitz regarding the use of historical averages in the form of James-Stein (js)
estimation. The js estimator, which combines a vector of historical means with some
“shrinkage” target, may be derived by applying Bayes’ rule (e.g., Efron (1978)). In this
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context, a Bayesian prior is replaced by a “shrinkage” target, which stands in for the
“information” that Markowitz sought to correct the historical mean. Our contribution
is the realization that for mean-variance portfolios, that shrinkage target can usually
be obtained from the constraints of the Markowitz optimization itself. We show that
this allows for optimized portfolio selection that has superior performance to portfo-
lios that do not result from this “shrinkage” rule. This principle takes firmer hold as
more securities are added to the portfolio to increase dimension.

The jsm recipe is applied not just to the vector of historical means of the security
returns, but more importantly, to the eigenvectors of their sample covariance matrix.
These sample eigenvectors are high dimensional, and they govern security return cor-
relations. In other words, they are risk drivers from which a factor model may be
constructed. Early developments of such models includes the market model of Sharpe
(1963) and the multi-factor models in the arbitrage pricing theory of Ross (1976).
Beyond their theoretical underpinnings, factor models facilitate the problem of esti-
mating a high-dimensional return covariance matrix.4 They reduce the dimension to
a manageable size, produce robust covariance matrices, and conform to the empirical
fact that a few factors are adequate to explain correlation in security returns in devel-
oped public equity markets. Factor models in finance typically rely on either principal
component analysis (pca) or the commercially successful Barra models (Rosenberg,
1974). Blin et al. (2022) covers many of the historical developments of multi-factor
models in finance, and the use of pca for empirical work is grounded in the pioneering
work of Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986). The
latter had a large influence on the recent advances in high dimensional factor mod-
els and pca (e.g. Bai and Ng (2008), Fan et al. (2013), Bai and Ng (2023) and Fan
et al. (2023)). We adopt a pca framework in which sample eigenvectors are used as
risk factors to construct Markowtitz portfolios.

In Section 2, we review the construction of Markowitz portfolios with mean-
variance optimization and introduce a measure of the volatility ratio of an estimated
portfolio. Here, we allude to the literature showing that in situations endemic to fi-
nancial markets, volatility ratio of large portfolios optimized with pca is low. An
asymptotic description of the volatility ratio is provided by formula (7), which indi-
cates, perhaps counterintuitively, that in a large enough universe, the volatility ratio
of risk forecasts of optimized portfolios may not depend on estimates of factor or
specific variances. Rather, it is errors in means and factor exposures that distort mean-
variance portfolios. The recipes for mean and covariance estimates that correct this
distortion for pca are in Section 3. A numerical illustration comparing pca and jsm
is in Section 4. In Section 5, we return to Markowitz the statistician, who had a deep
interest in generating the best possible inputs to mean-variance analysis Appendix A
covers factor-model portfolio construction and summarizes the derivation of formula
(7). The calibration of a seven-factor return generating process used in our numerical
results is specified in Appendix B. Appendix C contains technical details related to
our numerical recipes.

4Factor modeling originated with an inquiry into the determinants of human intelligence in Spearman
(1904). Spearman’s g factor for intelligence is equivalent from a modeling viewpoint to the market factor
in finance.
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2 The Volatility Ratio of Markowitz Portfolios

For a universe of p securities, we estimate a p-vector µ = (µi) of means and a (p× p)-
matrix Σ = (σij) of covariances. These two estimates determine a Markowitz portfolio
w via optimization, as the solution to

min
w

w⊤Σw

subject to:

µ⊤w ≥ α

e⊤w = 1 ,

(1)

where e is a p-vector of ones and α is a return target. Assume µ does not have identical
entries. If we knew the true means µ and covariances Σ, the computed portfolio
w would be “mean-variance” optimal. But in practice, the parameters µ and Σ are
estimates, and the resulting errors affect the accuracy of the optimized portfolio return
and risk. As aptly stated in Michaud (1989), mean-variance “optimizers are, in a
fundamental sense, estimation-error maximizers”.

We can characterize this mathematically in terms of volatility (or risk). The
estimated variance of w is,

(EV)2 = w⊤Σw (2)

and the square-root yields the estimated portfolio volatility EV. Its relationship to
the true volatility TV, and the true variance (TV)2 = w⊤Σw, may be quantified by
the volatility ratio, denoted by V, and defined via the relation

EV = TV× V,

so that

V =
EV

TV
=

Estimated Volatility

True Volatility
. (3)

Since we don’t know the true volatility, we don’t know V. But quantities such as
V are of great interest to both investors and academics, with a vast literature
spanning many disciplines; e.g, mathematical finance, physics, economics, statistics
and operations research. Ideally, V is close to 1. Not only is that unlikely in actual
use, but the opposite tends to be true in high dimensions, as we discuss in this
section. Unless the estimated mean µ and covariance Σ are chosen in special way, as
described below and in Appendix A, under reasonable assumptions:

The ratio V tends to zero as the number of securities p grows to infinity.

In other words, the estimated volatility EV may be severely understated relative
to the truth for a portfolio optimized from a large universe of securities. There is
a rich literature on the cause of this phenomenon as discussed in the introduction.
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We explore the volatility ratio of Markowitz portfolios when security returns follow a
factor model,5 the industry standard for a security return generating process.

Suppose that security returns in excess of the riskless rate are generated by the
process

r = βf + ϵ, (4)

where f denotes a random k-vector of returns to k risk factors, ϵ denotes a random
p-vector of security specific returns, and β is an unknown non-random (p× k)-matrix
of sensitivities of the securities to the factors.6 We observe only the p-vector r on the
left side of (4). We seek estimates of the unknown parameter β and the covariance
matrices Φ and ∆ that form the nonrandom parameters of the latent components of
return f and ϵ.

If we assume that the entries of ϵ are uncorrelated with f and pairwise uncorrelated
with one another, the true covariance matrix Σ decomposes into a sum of factor and
specific risk components (see Appendix B). Assuming the same factor-structure for
the estimated model, for estimates (β,Φ,∆) of the true parameters (β,Φ,∆), we let

Σ = βΦβ⊤ +∆. (5)

Squaring (3) and substituting the estimated and true parameters as well as the
optimized portfolio w, we obtain

V2 =
w⊤βΦβ⊤w + w⊤∆w

w⊤βΦβ⊤w + w⊤∆w
. (6)

Under empirically reasonable assumptions, unless the estimate β is chosen so that
the optimization bias, defined below, tends to zero (e.g., per the jsm recipe in the next
section), all terms except for the factor component of the true variance, w⊤βΦβ⊤w,
decay as 1/p or faster. In such cases, a first-order approximation of V obeys the
proportionality,

V ∝ 1√
pMp(β) + 1

(7)

where Mp(β) is bounded between zero and infinity, and is called the optimization bias
(see Appendix A for further details and assumptions). This systematic bias is the key
to understanding the accuracy of mean-variance optimized portfolios. We emphasize
that (7) implies the volatility ratio V of the portfolio w decays to zero at rate 1/

√
p.

That is, as investors grow their portfolios (perhaps with the aim of diversifying), their
risk estimates become less and less accurate. These portfolios mislead the investors
into seeing much less risk on paper than there is in reality.

5An additional source of error in practice is mis-specification of the number k of factors. We do not
address this source of error here.

6See Connor (1995) and Connor and Korajczyk (2010) for discussions of different factor model
architectures used in finance.
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The optimization bias Mp(β) has no dependence on the estimate Φ, and depends
on β only through col(β), the column space of β, or equivalently, the span of the es-
timated factor exposures. The estimates µ and ∆ do effect the value of Mp(β) but
cannot prevent V from decaying to zero.7 This turns out to imply, perhaps unexpect-
edly, that the optimization bias Mp(β) may be removed only by changing the estimate
β. Errors in the column space of β can be understood in high dimensions due to the
influence of the law of large numbers, in the following way. A high dimensional noise
vector will be nearly orthogonal to any fixed set of reference directions. This noise
may be found in an estimate col(β), constructed by pca for example, in the form of
an additive perturbation of the true column space col(β). Its effect in high dimensions
is to therefore push col(β) away from the chosen reference directions. Shrinkage back
toward those directions can undo this effect. A quantitative version of this idea is de-
scribed in the jsm recipes below, which leverages the constraint vectors e and µ in (1)
to construct the reference directions.

New work and work in progress8 investigates the behaviour of Mp(β) for large p
and identifies optimization biases caused by the interactions between quadratic pro-
grams and errors in estimated parameters. The elimination of these biases makes use
of the high dimensional properties of random matrices to bring V closer to the ideal
V = 1. In the next section, we provide recipes for optimization bias-free inputs to
mean-variance programs, yielding special estimates β and µ that send the optimiza-
tion bias Mp(β) to zero as p tends to infinity. They are derived from an intricate use
of mathematics and data science; the very tools Markowitz brought to finance in the
1950s.

3 Recipes for an Improved Volatility Ratio

We provide implementable recipes to estimate the means and covariances as inputs to
the mean-variance optimization program (1). The first recipe adopts the “usual” esti-
mators based on maximum likelihood (ml). Here, the estimate µ = (µi) for the target
return constraint in (1) is computed as the usual sample average. Similarly, a maxi-
mum likelihood estimator, in the form of principal component analysis,9 is applied to
produce a factor-model covariance estimate Σ = (σij). These estimates will be denoted
by µml and Σpca. The second recipe will leverage James-Stein shrinkage to improve the
usual estimators. The estimate µml of the mean security return is replaced by the well-
known James-Stein estimator µjs, which improves upon the vector of sample averages
when p > 2 (see Stein (1956), James and Stein (1961), Efron and Morris (1975) and
Efron and Morris (1977)). The estimate Σpca is replaced by a more recent Stein-type
estimators that improve sample eigenvectors (i.e., principal component (factor) load-
ings – see Shkolnik (2022) and Goldberg and Kercheval (2023)). The new covariance
estimate is denoted by Σjsm. The corresponding James-Stein-Markowitz estimator is

7We remark that when ∆ is a scalar matrix the dependence of Mp(β) on it vanishes in a cancellation.
8Including Goldberg et al. (2020), Goldberg et al. (2022), Gurdogan and Kercheval (2022), Goldberg and

Kercheval (2023), Goldberg et al. (2024), andGurdogan and Shkolnik (2024)
9e.g., Tipping and Bishop (1999) give an interpretation of pca as maximum likelihood for factor analysis

under suitable conditions.
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designed specifically to remove optimization biases from the weights of portfolios con-
structed with pca. The outputs of both recipes, first (µml,Σpca) and second (µjs,Σjsm),
are used in (1) to compute the portfolio weights. We test the volatility ratio of these
weights in the next section.

We begin with a p×n data matrix R of excess returns, the columns of which hold
n observation of the left side of equation (4). Starting with only this ingredient, our
recipes output the estimates of the means and covariances.

Recipe for the return constraint

1. Let r̄ be the p-vector average of the n columns of R.
2. Let µ = r̄ for the target return constraint in (1).

Recipe for the covariance model

1. With r̄ as above, let R̄ be the (p × n) matrix with r̄ in every column, to
center the data, i.e,

Y = R− R̄ . (8)

2. For the centered sample covariance matrix S = Y Y ⊤/n, write its spectral
decomposition as

S =
∑

(s2,h)s
2hh⊤ = HH⊤ +N (9)

where the sum is over all eigenvalue/eigenvector pairs (s2, h) of S, H is a
p × k matrix with every column of the form sh sourced from the k largest
eigenvalues s2, and N = S −HH⊤.

3. The specific risk estimate ∆ in (5) sets all the off-diagonal elements of N to
zero, i.e.,

∆ = diag(N) . (10)

4. The pca covariance matrix is Σpca = HH⊤ +∆.

Recipe 1 Principal component analysis (pca) recipes for means and covariances.

Recipe 1 computes the sample average µml = r̄ of the columns of R for the con-
straint µ and a pca covariance matrix Σpca given return data R as input. The estimate
Σpca = HH⊤ +∆ may now be expressed, if desired, in terms of a factor model esti-
mate βΦβ⊤ + ∆, by finding (β,Φ) satisfying βΦ1/2 = H for a (p × k) matrix β and
a (k × k) covariance matrix Φ of factor returns. However, the individual terms β and
Φ are separately unidentifiable, so are not unique. However, there is no need to find
separate estimates for β and Φ, because the optimal portfolio only depends on the
sum of HH⊤ and ∆. Step 2 of Recipe 1 may be computationally expensive and we
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Recipe for the return constraint

1. The James-Stein estimate µjs adjusts the sample mean r̄ by a shrinkage
parameter,

c = 1− ν2J−1 , J = (r̄ −m)⊤(r̄ −m) , (11)

where ν2 is the variance of noise and some p-vectorm ̸= r̄, a shrinkage target.
2. Let µ = µjs for the target return constraint in (1) be computed as,

µjs = r̄c +m(1− c) . (12)

3. The noise variance ν2, given the S = HH⊤ + N in the pca recipe, is
computed via

ν2 =
trace(N)

n+ − k
, (13)

where n+ is the number of nonzero eigenvalues of the sample covariance S.
4. The shrinkage target m may be any p-vector, but a popular choice is (the

grand mean),

m = e (e⊤e)−1 r̄ = e⊤r̄ /p. (14)

Recipe 2 James-Stein-Markowitz (jsm) recipe for means.

defer to Appendix C for a faster procedure to compute the eigenvector matrix H. An
improved estimate ∆ is also stated there. An efficient computation of the Markowitz
portfolio weights, given Σpca, is described in Appendix A.

Recipe 2 uses the classic James-Stein estimator µjs to improve the sample average
µml in the sense of expected mean-square error when p > 2 with ν2 known. For a
discussion of James-Stein in the asymptotic case of p growing to infinity, see Casella
and Hwang (1982). For these asymptotics, step 3 supplies a consistent estimate ν2 of
the variance of the noise in the vector of averages µml under reasonable assumptions.
The vector of ones used in step 4 implements a shrinkage toward the grand mean (the
average of averages in µml = r̄) as popularized by Efron and Morris. However, this
estimate alone cannot correct for the optimization biases described in Section 2. To
this end, the covariance estimate Σjsm applies shrinkage to the eigenvectors H (the
principal component loadings) in the estimate Σpca to address its decay in volatility
ratio V per formula (7) as p grows. For Σjsm, the optimization bias Mp(β) for the
Markowitz portfolio problem (1) tends to zero (see Appendix A for more detail). Our
numerical results show that the rate of decay of Mp(β) is sufficiently fast so that V
remains bounded above zero when Σjsm is used. The mitigation of the optimization
bias is achieved by rotating the column space of H̄ = ∆1/2H to obtain Hjsm, defined
in (18). This bears a striking resemblance to classic James-Stein shrinkage formula
(12). When ∆ is a scalar matrix the re-weighting by ∆−1/2 in all steps of the recipe
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Recipe for the covariance model

1. For any estimate ∆ (e.g., (10)), centering and weighting the data, we set

Y = ∆−1/2
(
R− R̄

)
(15)

where ∆−1/2 is diagonal with ∆
−1/2
ii = 1/

√
∆ii and R̄ is the matrix in (8).

2. Recompute H following (9) but from the re-weighted sample covariance S
that uses (15). Set,

H̄ = ∆1/2H . (16)

3. The jsm estimator of the weighted eigenvectors H̄ computes a (k×k)-matrix
valued shrinkage parameter,

C = I − ν2J−1 , J = (H̄ −M)⊤∆−1(H̄ −M) , (17)

where ν2 is the variance of the noise andM ̸= H̄ is a (p×k)-matrix shrinkage
target.a

4. The jsm estimator is analogous to (12) but with matrix valued C and M .

Hjsm = H̄C +M(I − C) (18)

5. The variance ν2 is computed per (13) but withN from the reweighted sample
covariance S.

6. A shrinkage targetM analogous to (14) uses a (p×2)-matrix A =
(
µ e

)
as

M = A(A⊤∆−1A)−1A⊤∆−1H̄ . (19)

7. The basic jsm covariance model is Σjsm = HjsmH
⊤
jsm +∆.

aHere, ̸= is in the sense that the columns spaces of the two matrices are not identical.

Recipe 2 (continued) James-Stein-Markowitz (jsm) recipe for covariances.

may be omitted. The vector shrinkage target m used to shrink the sample mean r̄ is
replace by the matrix M to shrink the (re-weighted) sample eigenvectors H̄. This M
is constructed from the constraint vectors, µ = µjs and e, in order to address the bias
Mp(β) resulting from optimization (1). Our earlier comments regarding pca and the
factor model estimate βΦβ⊤ +∆ equally apply to the estimate Σjsm.

Prior work that applies James-Stein ideas to covariance estimation and optimized
portfolio construction includes Jobson and Korkie (1981) and Jorion (1986) as well as
Ledoit and Wolf (2003) and Ledoit and Wolf (2004). The novelty of the jsm recipes,
however, lies in the application of these ideas directly to the principal component
loadings and the accompanying theoretical analysis of the optimization bias Mp(β)
and the volatility ratio V in formula (7).
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4 Numerical Illustration

We look at risk, excess return and Sharpe ratio of Markowitz portfolios optimized
with pca and jsm, when data are generated by a seven-factor instance of the return
generating process (4). The model is based on excess return to the market, two style
factors and four industry factors. A specification of the return generating process is
in Appendix B. The shrinkage target for the jsm return constraint is the grand mean.

In 400 fictional universes, we simulate six months of daily data, n = 125 observa-
tions, of p security returns that follow the generating process detailed in Appendix B.
From each data set, we construct pca and jsm Markowitz portfolios from (1) with
target annualized expected return 8.5%. Recipes for the construction of pca and jsm
portfolios are in Section 3. We consider universes of size p ranging between 500 and
3,000 to shed light on problems commonly encountered in practice, and, we include
the unrealistic value p = 100, 000 to highlight asymptotic effects.

p opt pca tv pca ev V jsm tv jsm ev V

500 6.33 8.66 6.71 0.77 7.93 10.0 1.26
1000 4.73 7.78 4.71 0.61 6.10 7.17 1.17
2000 3.34 6.89 3.31 0.48 4.43 4.96 1.12
3000 2.78 6.68 2.68 0.40 3.80 4.12 1.09

100000 0.50 6.29 0.47 0.07 0.81 0.83 1.02

Table 1 Portfolio Volatility (annual %) and Volatility Ratio. opt: True
volatility of Markowitz portfolios optimized with true parameters. TV:
Average true volatility of estimated Markowitz portfolios. EV: Average
estimated volatility of estimated Markowitz portfolios. V: Average
volatility ratio of estimated Markowitz portfolios. n = 125, µ = 8.5, 400
simulations.

True and estimated volatility of Markowitz portfolios are shown in Table 1. The
opt column shows oracle values: the true volatility of the true Markowitz portfolio
optimized with true means and covariance matrix for each p. Under empirically sound
assumptions about the calibration of the return generating process for large p, theory
predicts these values tend to zero as p tends to infinity, since factor return tends
to be hedged and specific return tends to diversify away. This limiting behavior is
suggested by the volatility of 0.50% for the optimal Markowitz portfolio estimated
from a universe of p = 100, 000 securities. The oracle values serve as a benchmark
against which we can assess portfolios optimized with estimated parameters.

The remainder of Table 1 concerns true and estimated volatility of Markowitz port-
folios optimized with pca and jsm estimates. For p = 500, pca and jsm Markowitz
portfolios have similar average true volatilities of 8.66% and 7.93%. Unlike jsm, how-
ever, the estimated volatility pca is underforecast at an average of 6.71%, leading to
an average V = 0.77. An asset manager sees a p = 500 Markowitz portfolio estimated
with pca as 23% less risky than it is, and less risky than the jsm analog whose volatil-
ity is overforecast. As p grows, the average true volatility of the Markowitz portfolio
estimated with jsm diminishes toward 0 as it does for the oracle, but the volatility of
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the pca Markowitz portfolio does not. The distortion of pca plummets as p, while
that of jsm gets closer to 1.

p opt pca tr pca er D jsm tr jsm er D

500 8.5 6.96 8.50 1.23 7.56 8.51 1.14
1000 8.5 7.04 8.50 1.21 7.59 8.51 1.13
2000 8.5 7.03 8.50 1.21 7.63 8.51 1.12
3000 8.5 6.92 8.50 1.23 7.51 8.51 1.14

100000 8.5 6.93 8.50 1.23 7.27 8.50 1.17

Table 2 Portfolio Expected Excess Return (annual %) and Distortion:
opt: True returns of Markowitz portfolios optimized with true
parameters. TR: Average true return of estimated Markowitz portfolios.
ER: Average estimated return of estimated Markowitz portfolios. D:
Average ratios of estimated to true return for estimated Markowitz
portfolios. n = 125, µ = 8.5, 400 simulations.

True and estimated expected excess returns of optimized Markowitz portfolios are
shown in Table 2. For all values of p, estimated expected returns of pca and jsm
are 8.5% because the optimizer targets that value with estimated security returns.
These estimates are equal to the expected excess return of the oracle, noted in opt,
since they are made with true returns. The unobservable truth is higher for jsm than
pca due to the jsm return constraint detailed in Section 3. This means that average
distortion D = ER/TR is greater for pca than for jsm.

p opt pca tsr pca esr D jsm tsr jsm esr D

500 1.34 0.81 1.72 2.13 0.95 1.12 1.17
1000 1.8 0.91 2.35 2.59 1.24 1.52 1.22
2000 2.54 1.03 3.33 3.25 1.73 2.21 1.28
3000 3.06 1.04 4.08 3.91 1.98 2.62 1.32

100000 16.98 1.11 22.99 20.71 8.97 12.78 1.42

Table 3 Portfolio Sharpe Ratio and Distortion: opt: True Sharpe Ratio of
Markowitz portfolios optimized with true parameters. TSR: Average true
Sharpe Ratio of estimated Markowitz portfolios. ESR: Average estimated
Sharpe ratios of estimated Markowitz portfolios optimized with pca or jsm. D:
Average ratio of estimated to true Sharpe Ratio for estimated Markowitz
portfolios. n = 125, µ = 8.5, 400 simulations.

Risk-adjusted expected excess returns or Sharpe ratios for Markowitz portfolios
are shown in Table 3. Estimated Sharpe ratio exceeds true Sharpe ratio on average for
Markowitz portfolios optimized with pca and jsm for all values of p considered, but
is close to 1 for the latter. The Sharpe ratio distortion D = ESR/TSR explodes for
pca as p grows. There are two sources of the discrepancy between the relatively tame
distortion for jsm and the explosion one observes with pca. The first is that return
distortion is greater for pca than for jsm, as shown in Table 2. The second, more potent
source is the plummeting volatility ratio of pca volatility estimates, shown in Table 1.
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For an asset manager tracking their risk-adjusted excess return, disappointment in
our fictional universes is rife when Markowitz portfolios are constructed with pca.

5 Harry Markowitz Was a Statistician

Prompted by questions posed in Markowitz (1952) we apply tools from high dimen-
sional statistics to estimate inputs appropriate for use in mean-variance optimization.
We illustrate how shrinkage techniques used in the James-Stein-Markowitiz recipe for
means and covariance matrices correct optimization biases that, left unchecked, cor-
rupt optimized quantities. Markowitz looked holistically at problems in a way that
allowed theoreticians to build on his work and practitioners to use it. He explored
widely outside his fields of expertise. This may help explain why he was so effective
at solving big problems that require deep understanding of many subjects.

Harry fans sometimes ask whether their hero was an economist, a computer scien-
tist or a mathematician. Let’s add “statistician” to the list. His early inquiries about
the importance of risk in portfolio selection and the suitability of classical statistics
for estimating inputs to mean-variance optimization launched vast bodies of research.
His late-in-life crusade to clarify the assumptions on data required for a mean-variance
optimized portfolio to be the best choice is ongoing. As we strive to develop better
inputs to optimization, we are inspired by Markowitz’s stubborn insistence on getting
the right answer.

Acknowledgements. We are grateful to John Blin, Kay Giesecke, Nick Gunther,
Ron Kahn, Ananth Madhavan and Alex Ulitsky for insightful comments on an early
draft of this article.

A Factor Models & Markowitz Portfolios

Provided the (p×p) covariance Σ is invertible, the optimized (mean-variance) portfolio
solving (1) has the form,

w = γeΣ
−1e + γµΣ

−1µ (20)

a combination of a global minimum variance portfolio and the characteristic portfolio
of µ, weighted by their shadow prices γe and γµ.

10 Letting ϕ(x, y) = x⊤Σ−1y, these
two portfolios are given by Σ−1e/ϕ(e, e) and Σ−1µ/ϕ(µ, µ).

When the return to the global minimum variance portfolio, µ⊤Σ−1e/ϕ(e, e),
exceeds the target return α,

γe =
1

ϕ(e, e)

γµ = 0

(ϕ(µ, e)
ϕ(e, e)

≥ α
)
. (21)

10Shadow prices are the values of the Lagrange multipliers of the constrained optimization problem at
its optimal solution. See Grinold and Kahn (1999) for an exposition of the algebra of efficient frontiers.
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Otherwise, the shadow prices are expressed in terms of all the inputs to (1) as
follows.

γe =
ϕ(µ, µ)− αϕ(e, µ)

ϕ(e, e)ϕ(µ, µ)− ϕ(e, µ)2

γµ =
αϕ(e, e)− ϕ(µ, e)

ϕ(e, e)ϕ(µ, µ)− ϕ(e, µ)2

(ϕ(µ, e)
ϕ(e, e)

< α
)
. (22)

Formula (20) is costly to evaluate when the matrix Σ is very large. But given a
factor-structure, (20) may be computed efficiently via the Woodbury matrix identity.
This is accomplished by adopting a factor model for the security returns; a choice with
additional advantages (e.g., reducing the number of estimated parameters).

The excess return generating process r = βf + ϵ introduced in (4) is expressed in
terms of factor returns f ∈ Rk specific returns ϵ ∈ Rp, and (true) security sensitivities
to factors β ∈ Rp×q. In a factor model, the entries of ϵ are uncorrelated with factor
returns f and pairwise uncorrelated with one another. Then, the covariance of r is
given by

Σ = βΦβ⊤ +∆ (23)

where Φ is the covariance matrix of the factor return f and ∆ is a covariance matrix
of the specific return ϵ. The matrix ∆ is further assumed to be diagonal and invertible.
Taking the expectation of r, we obtain the decomposition

µ = βµf + µs , (24)

of the (true) expected security returns µ, where µf ∈ Rk and µs ∈ Rp are the expected
factor and specific returns.

The estimated covariance matrix Σ discards the bold lettering notation, and is
written as

Σ = βΦβ⊤ +∆ (25)

where the estimates (β,Φ,∆) have the same dimensions and properties as the true
(population) parameters (β,Φ,∆). Implicit in this is the knowledge of the true num-
ber of factors k, which we assume is granted. Our assumptions (in particular the
invertibility of ∆) ensure Σ−1 exists and hence the Markowitz portfolio in (20) is
well-defined.

Given the factor-structure in (25) and Φ invertible, Σ−1 is computed efficiently via
the Woodbury identity as,

Σ−1 = ∆−1 −∆−1β (Φ−1 +Q)−1β⊤∆−1, Q = β⊤∆−1β , (26)

by leveraging the fact that the matrix (Φ−1+Q) is a (k×k) matrix (with the number of
factors k being small or moderate) may be efficiently inverted (or, used in computations
that perform this inversion implicitly).
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We analyze the asymptotic behavior of the volatility ratio V in (3) of the estimated
mean-variance portfolio in (20). The following conditions on (β,Φ,∆), their estimates
and the estimate µ of µ in (24) are required for our results.

Regularity conditions. β⊤∆−1β/p and β⊤∆−1β/p (the estimate ∆ of ∆ used
for both) converge to invertible (limit) k × k matrices, and the diagonal entries of ∆
and ∆ remain bounded in (0,∞) as p tends to infinity. The matrix Φ and its estimate
Φ do not depend on p and are both invertible. The vector µ does not vanish, e and µ
are not collinear and neither e nor µ belongs to the column space of ∆−1/2β in the
limit where p diverges.11

With these conditions in place, the sequence of portfolios (20), may be shown12 to
have w⊤∆w, w⊤∆w and w⊤βΦβ⊤w decaying to zero at the rate 1/p as p grows, and
(6) may be simplified as follows.13

V2 =
(EV)2

(TV)2
=
w⊤βΦβ⊤w + w⊤∆w

w⊤βΦβ⊤w + w⊤∆w
=

(Cp
p

) 1

w⊤βΦβ⊤w
(27)

for some sequence Cp that is bounded in (0,∞). To analyze the remaining term
w⊤βΦβ⊤w, we define

ψ(β, ζ) = ∆−1 (ζ − βQ−1β⊤∆−1ζ) (ζ ∈ Rp)

and, using (26), it may be shown that our characteristic portfolios satisfy Σ−1ζ
ϕ(ζ,ζ) =

ψ(β,ζ)
ζ⊤ψ(β,ζ)

+ cp/p for some sequence cp bounded in R, taking ζ = e for the global

minimum variance or ζ = µ. Moreover, the quantities

β⊤ψ(β, e)

e⊤ψ(β, e)
and

β⊤ψ(β, µ)

µ⊤ψ(β, µ)
(28)

are vectors in Rk that remain bounded as p grows. These quantities are “optimization
biases” that result from mismatches between β and β and their interplay with the
optimization constraint vectors e and µ.

Now, for | · | the Euclidean norm and an op that vanishes as p tends to infinity,

w⊤β⊤Φβ⊤w = |Φ1/2β⊤w| = |Φ1/2(γeβ
⊤ψ(e) + γµβ

⊤ψ(µ))|+ op .

Under our conditions, Γe = Φ1/2γe e
⊤ψ(β, e) and Γµ = Φ1/2γµµ

⊤ψ(β, µ) are both
bounded in Rk and the former is bounded away from zero irrespective of the cases,
(21) or (22). We arrive at Mp(β, µ) in (7) in the form,

Mp(β, µ) =
∣∣Γe

β⊤ψ(β, e)

e⊤ψ(β, e)
+ Γµ

β⊤ψ(β, µ)

µ⊤ψ(β, µ)

∣∣ (29)

11The matrix ∆−1/2 is diagonal with ∆−1/2 = 1/
√
∆ii

12These calculations are analogous to Theorem 2.3 and Lemma A.1 of Gurdogan and Shkolnik (2024).
13Here, we use that 1

x+δ = 1
x

(
1 − δ/x

1+δ/x

)
.
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where we omit the constant argument e and leave (β, µ) as the pair of estimates that
are “levers” that may be adjusted to set the optimization biases to zero. The estimates
Φ and ∆ do not have this capacity on their own.

The term β⊤ψ(β,ζ)
ζ⊤ψ(β,ζ)

which appears in (29) with ζ = e and ζ = µ, is studied in

Gurdogan and Shkolnik (2024) in terms of what they call the “quadratic optimization
bias”. Each such bias is a k-vector with each component corresponding to a risk factor
in the covariance model. Each may be set to zero by an orthogonal projection of the
column space of the (p × (k + 1))-matrix (β ζ) onto the column space of the true
factor loadings β. Theorem 5.1 of that paper states the conditions under which this
orthogonal projection may be estimated from the observed data, and supplies the
estimator that accomplishes this in the setting of pca, so that β = H per Recipe 1.
Recipe 2 is an extension that estimator that combines the vectors ζ = e and ζ = µ
in an orthogonal projection in (19). The resulting estimator may then be put into
the James-Stein form Hjsm in (18). These theoretical results establish that Mp(Hjsm)
tends to zero almost surely as p diverges provided the estimate ∆ is either a scalar
matrix or independent of the data. The numerical results of Section 4 suggest the
dependent case of (10) has the same property. It is also remarkable that the proofs can
be modified for ζ = µ, a sample mean (or the corresponding James-Stein estimator
µjs of Recipe 2) that depends on the observed data.

B Security Return Generating Process

We specify a seven-factor instance of the excess return generating process r = βf + ϵ,
introduced in (4), in terms of the true mean µ and true covariance Σ. The seven
factors include excess return to the market, two styles, which we might think of as size
and value, and membership in four industries. The dimension dependent components
(β,∆) of Σ = βΦβ⊤ +∆ are generated for the largest value of p (i.e., 100, 000) used
in the numerical results first, and subsets of these are taken to produce returns for a
smaller number of securities.

Market Size Value Industry 1 Industry 2 Industry 3 Industry 4

16.0 4.0 2.0 20.0 15.0 10.0 5.0

Table 4 Volatilities of the factor returns f = (f1, . . . , fk) in percent annualized.

The (7× 7)-covariance matrix Φ of the factor returns f = (f1, . . . , f7) is specified
in terms of the factor volatilities and their correlations. The factor volatilities are
calibrated as in Bayraktar et al. (2014, Table J4) and are presented in Table 4. Table 5
presents the correlations between the seven factor returns. The style and market factor
correlations are taken from Fama and French (2015, Table 4). The correlations between
the industries and the market are relatively small, since we think of industry factors
as residual to the market as in Menchero et al. (2011). The remaining correlations are
set to zero.
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Market Size Value Industry 1 Industry 2 Industry 3 Industry 4

1.00 0.28 −0.30 0.16 0.08 0.04 0.02
1.00 −0.11 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00

1.00 0.00 0.00
1.00 0.00

1.00

Table 5 Correlation matrix of the factor returns f = (f1, . . . , fk). Blank entries
omitted due to symmetry.

The (p× 7)-matrix of β sensitivities to factors is summarized in Figure 1. Its left
panel shows histograms of the first three columns of β, the entries of which are drawn
independently from N(1, 0.252), N(0, 1) and N(0, 0.52) respectively. The industry fac-
tor sensitivities are generated as follows. Each security selects two (of four) industries
for membership (with replacement). Independently generating two numbers uniformly
in (0, 1), we assign each as a sensitivity to the two industries. If only one industry was
selected, the sensitivity equals their sum. An illustration of common memberships to
industries for each pair of securities is illustrated in the right panel of Figure 1.
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Figure 1 Left panel: Histogram of the first three columns of β (market and two style factor sensi-
tivities). Right panel: Industry membership visualization (i.e. entries of a matrix

∑
c cc

⊤ where the
sum is over the last four (industry) columns of β – white entries indicate no industry in common
between two securities.

The square roots of the diagonal entries of ∆, the specific volatilities, are drawn
from 15+ 100×Beta(4, 16), and they range from 15% to 77% (annualized). See third
panel of Figure 2 for illustration.

To calibrate the expected returns µ = βµf + µs per (24), we rely on (Fama
and French, 2015, Table 4) for guidance on µf and following Ang (2023), we set the
expected returns on industry factors to be zero. See Table 6.
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Market Size Value Industry 1 Industry 2 Industry 3 Industry 4

4.80 2.40 1.20 0.00 0.00 0.00 0.00

Table 6 Expectations µf of the factor returns f = (f1, . . . , fk) in percent
annualized.

The expected specific returns are obtained by the projection,

µs =
0.5

100

(
∆− ββ+∆

)
, (30)

where β+ is the pseudo-inverse of ∆.14 This results in a vector µs orthogonal to the
risk factor exposures (i.e., the columns of β), and such that securities with a higher
specific volatility have higher returns on average. In this way, µ decomposes into a
factor return component βµf and a specific return µs which are orthogonal. Scatter
plots of the expected returns against the volatilities for each component of return and
the sum are shown in Figure 2.
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Figure 2 Scatter plots of various components of return versus volatilities for a representative sample
of p = 3000 securities. Left panel: Total return (µ) vs. total volatility (square-roots of the diagonal
entries of Σ). Center panel: Systematic security return (βµf ) versus systematic risks (square-roots

of the diagonal entries of βΦβ⊤). Right panel: Specific returns (µs) versus specific risks (square-
roots of the diagonal entries of ∆).

Lastly, returns to factors f are drawn from a normal distribution with mean µf

and covariance matrix Φ. The specific returns ϵ are uncorrelated with factor returns,
and the components of ϵ are drawn from a joint normal distribution15 with mean µs

and covariance matrix ∆. The returns are generated identically and independently
over the n dates keeping all model parameters (µf ,µs,Φ,β,∆) fixed.

14A discussion of factor premia versus specific return alpha in the context of multiple managers is in
Garvey et al. (2017). Non-zero specific return alpha is inconsistent with the no-arbitrage conclusion in Ross
(1976).

15Normality of f and ϵ is not required for the shrinkage methods described in this article to be effective.

18



C Technical Supplement on the Recipes

Recipe 1 addresses the unidentifiability issues of factor analysis by computing orthogo-
nal factors (i.e., principal component loadings). In the pca covariance model recipe we
note that H⊤H = S2, the (k×k) diagonal matrix of the largest k sample eigenvalues.
To put HH⊤ into the form βΦβ⊤ as required by the estimate (25), we set,

Φ = H⊤H = S2 (31)

and then the columns of β become orthonormal principal component loadings (i.e.
β⊤β is a (k × k) identity matrix).

Moreover, in finite sample regime in which the dimension p tends to infinity, we
may perform a bias correction on the eigenvalues in (31) and formula (13). To improve
the estimate ν2 in (13) for S = HH⊤ +N , we may take,

ν2 =
trace(N)

n+ − (1 + n+/p)k
. (32)

See page 1355 of Wang and Fan (2017) for this estimator. It may be used to improve
the estimate (10) by renormalizing its average to that of ν2.

Letting S−2 be the inverse of S2, we may compute Ψ2 = I − ν2S−2 to improve
(31) further by computing,

Φ = S2Ψ2 . (33)

This adjusts the diagonal entries of S2 downward to reduce their biases. These
biases do not impact Mp(β) in (7) however. The computation of these eigenval-
ues/eigenvectors may be challenging for large p. Instead, letting

L = Y ⊤Y/p

for Y in either (8) or (15), we compute the (n × k) matrix of eigenvectors W corre-
sponding to the k largest eigenvalues of the (n × n)-matrix L. Then, H = Y V/

√
n

which is highly efficient for n much smaller than p.
Recipe 2 which computes Σjsm can also follow the orthogonality conventions of the

pca estimate. Here, compute βjsm by taking for its columns the k eigenvectors of the
matrix Hjsm from the jsm covariance model recipe. Then.

Σjsm = βjsmΦβ
⊤
jsm +∆ (34)

with Φ in (33) is a covariance model that has improved factor variances. We use these
improved pca and jsm models in the numerical results of Section 4. They lead to
improved results relative to the plain recipes of Section 3.

Lastly, the computation of the (k × k) shrinkage parameters matrix C in the
jsm recipe should not invert the matrix J in (17) numerically. Instead, we apply the
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Woodbury identity (as in (26)) to the right side of,

J = (H̄ −M)⊤∆−1(H̄ −M) = S2 − H̄⊤∆−1M .
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