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Abstract

The Stein paradox has played an influential role in the field of high di-
mensional statistics. This result warns that the sample mean, classically re-
garded as the “usual estimator”, may be suboptimal in high dimensions. The
development of the James-Stein estimator, that addresses this paradox, has
by now inspired a large literature on the theme of “shrinkage” in statistics. In
this direction, we develop a James-Stein type estimator for the first principal
component of a high dimension and low sample size data set. This estima-
tor shrinks the usual estimator, an eigenvector of a sample covariancematrix
under a spiked covariancemodel, and yields superior asymptotic guarantees.
Our derivation draws a close connection to the original James-Stein formula
so that the motivation and recipe for shrinkage is intuited in a natural way.
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1. Introduction. The Stein paradox has played an influential role in the field of
high dimensional statistics. This result warns that the sample mean, classically re-
garded as the “usual estimator”, may be suboptimal in high dimensions. In particular,
Stein (1956) showed that the usual estimator of a location parameter � 2 Rp fromun-
correlated Gaussian observations becomes inadmissible when p > 2 under a mean-
squared error criterion. That is, an estimator with a uniformly lower risk must exist.
That estimator was established by James & Stein (1961) and eponymously named.

Among the numerous perspectives thatmotivate the James-Stein estimator,1 the
empirical Bayes perspective (see Efron&Morris (1975)) is particularly elegant. Letting
� denote the sample mean computed with n measurements of an unknown � 2 R
and assuming an additive, normally distributed error w that has a zero mean and a
variance �2 (e.g., � D •=

p
nwhere eachmeasurement has standard error •), we write

� D � C w:(1)

Taking a Gaussian prior on the unknown � , that is independent of w, implies that

E.� j�/ D E.�/ C

�
1 �

�2

Var.�/

�
.� � E.�//;(2)

the bivariate-normal conditional expectation formula. While, by definition of condi-
tional expectation, E.� j�/ is the best estimator of � in the sense of mean-squared
error, it cannot be implemented directly as the first two moments of � are unknown.2

Stein’s paradox now amounts to the fact that “good” substitutes for E.�/ and Var.�/

are available only in higher dimensions; precisely, when � 2 Rp with p > 2.
Formula .2/ extends easily to themultivariate3 case andmotivates the estimator

�.c/ D m C c.� � m/(3)

where m is an estimate (or guess) of the expected value of � 2 Rp and c 2 .0; 1/ is
a shrinkage parameter. In words, .3/ attempts to center the entries of �, shrinks the
resulting entries and recenters at m. Assuming � is known and p > 2, setting

c D 1 �
�2

s2.�/

�p � 2

p

�
(4)

where s2.�/ D
Pp

iD1.�i �mi /
2=p yields the James-Stein estimator. Remarkably, any

fixed m 2 Rp (e.g., Stein (1956) considers the origin)4 results in an estimator .3/ with
a strictly smaller mean-squared error than � (Efron & Morris 1975, Section 1). While

1A fewexamples include theGaltonian regression perspective promoted by Stigler (1990), the purely
frequentist development of the estimator in Gupta & Peña (1991) and the geometrical explanation in
Brown & Zhao (2012) that builds on Stein’s original heuristic argument (Stein 1956, Section 1).

2Often, � is assumed to be known but estimates O� can also be used as done in James & Stein (1961).
3See formulas in Anderson (2003, Section 2.5) which can be used to design James-Stein estimators

of an unkown � 2 Rp when w has a general covariance † as in Bock (1975).
4A natural choice for m takes the sample mean of � in each entry, referred to as shrinkage toward

the “grand mean”. However, this would require p > 3 (Efron &Morris 1975)).
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three is provably the critical dimension5, Stein (1956, Section 1) heuristically argued
for higher performance in higher dimensions and for relaxing the normality.

The James-Stein estimator has inspired a rich literature on the theme of “shrink-
age” in statistics. Just a small sampling of examples includes ridge regression (Hoerl
& Kennard 1970), the LASSO (Tibshirani 1996), the Ledoit-Wolf covariance estima-
tor (Ledoit & Wolf 2004) and the Elastic Net (Zou & Hastie 2005). Excellent text-
book treatments of the ideas behind the Stein paradox and James-Stein shrinkage
include Gruber (2017) and Fourdrinier, Strawderman & Wells (2018). In this paper,
we leverage these ideas to develop and analyze a James-Stein estimator for the first
principal component of a sample covariance matrix. The results again prove the effi-
cacy of James-Stein estimation, and do so for one the cornerstone methods in high-
dimensional statistics, principal component analysis (Jolliffe & Cadima 2016).

Consider a p � p sample covariance matrix S that is based on n observations of
some random vector y 2 Rp . Without loss of generality, we write

S D s2
phh>

C G(5)

for G D S � s2
p hh> and h, the sample eigenvector with the largest eigenvalue, i.e.,

Sh D s2
p h and s2

p D max
j´jD1

h´; S´i :(6)

By convention h has unit length and corresponds to a direction along which the vari-
ance of S (i.e., s2

p) is maximum (i.e., the first principal component). A substantial and
rapidly growing literature exists to study the (p and/or n) asymptotic behavior of the
eigenpair .s2

p; h/ and the remaining eigenstructure in order to quantify either the esti-
mation or the empirical error. SeeWang & Fan (2017) for recent results and a system-
atic discussion of this literature. The topic of shrinkage estimators arises naturally
in this context and was raised by Stein (1986), who suggested improving the usual
estimate S via eigenvalue shrinkage. Indeed, there is by now a large literature on es-
timators that adjust the eigenvalues of sample covariance matrices to improve their
performance with respect to some loss function (Donoho, Gavish & Johnstone 2018).

In this paper, we develop and analyze a James-Stein estimator for the first princi-
pal component of a high-dimension and low-sample (HDLS) data set.6 The recipe for
the estimator begins with h and s2

p in .6/ and the next .q � 1/ largest sample eigen-
values s2

p�1; : : : ; s2
p�qC1 (min.n; p/ > q) corresponding to a model with q spikes.7

Step 1. Set� D sph, compute the sample statisticsm.�/ D
Pp

iD1 �i=p

and s2.�/ D
Pp

iD1.�i � m.�//2=p, and define

c D 1 �
O�2

s2.�/
where O�2

D

� tr.S/ � .s2
p C � � � C s2

p�qC1/

min.n; p/ � q

�
=p:

5The theme of a critical dimension is encountered frequently in statistics and probability. Brown
(1971), for example, derives a close mathematical relationship between the admissibility of the James-
Stein estimator and the transience of the Brownian motion in Rp , which also requires p > 2.

6TheHDLS framework, as introduced in Hall, Marron &Neeman (2005) and Ahn, Marron, Muller &
Chi (2007), is increasingly relevant for data science (Aoshima, Shen, Shen, Yata, Zhou &Marron 2018).

7Roughly speaking q is the number of factors (or spikes) in the data, after which a sufficiently large
eigengap (between the qth and the next eigenvalue) is observed (see Fan, Guo & Zheng (2020)).
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Step 2. Return the estimator (corrected principal component)8

h JS
D

1
p

p

�
m.�/ C c .� � m.�//p

m2.�/ C c2 s2.�/

�
:

Thevectorh JS is the James-Stein estimator of the first principal component of the
data. The numerator contains the shrinkage formula .3/while the divisor normalizes
the shrunk vector to a unit length (by convention). The relationship to the shrinkage
parameter c in .4/ is evident by treating p as large. The estimate O�2 corresponds to
the bulk of the eigenvalue spectrum, and may be viewed the “noise” in the context of
a signal-to-noise ratio that plays a prominent role of the results in Sections 2 & 3.

It is reasonable to suspect that a James-Stein type shrinkage of the principal com-
ponent h, a high dimensional vector, could improve either the convergence rate or
accuracy of the limit in some appropriate asymptotic regime. However, the standard
orthonormal transformation and the eigengap partition of the sample eigenvectors,
that is typically leveraged by their asymptotic analyses (e.g., Paul (2007), Shen, Shen,
Zhu & Marron (2016) and Wang & Fan (2017)), can obscure the systematic nature of
the sample bias. As sensibly pointed out byWang& Fan (2017) in reference to the par-
tition of the sample eigenvector, the “two parts intertwine in such a way that correction
for the biases of estimating eigenvectors is almost impossible.” However, in the original
(untransformed) coordinate system and the HDLS asymptotic regime, the bias can
in fact be identified, characterized and (partially) corrected. This program was car-
ried out in Goldberg, Papanicalaou & Shkolnik (2021), who adopt a factor model in an
HDLS regime and utilize a portfolio theory application to motivate their analysis.

The main results of this paper rederive the adjustment of Goldberg et al. (2021)
but within a James-Stein type framework. In particular, we establish identity .1/ in
which � D sph and � is related to the associated population eigenvector. From here,
the James-Stein shrinkage acts on the perturbation w so that the estimator h JS out-
performs h on the mean-squared error and angle metrics as p " 1. The theoretical
guarantees provided here are new and their proofs rely on a different set of mathe-
matical tools than Goldberg et al. (2021). In particular, the new approach leverages
Weyl’s inequality and the Davis-Kahan theorem from matrix perturbation theory to
give simpler proofs and potentially expand the scope of applicability of the resulting
estimator. The HDLS regime, in which the number of variables p grows to infinity,
and the number of observations n to be fixed, plays a crucial role in the analysis.

The paper is organized as follows. Section 2 defines the spiked covariance model
underlying our results. Section 3 develops the James-Stein estimatorh JS and Section 4
proves the theoretical guarantees for this estimator. Appendix A contains proofs of
the auxiliary results. The following notation is used throughout. Let hu; vi denote the
standard inner product of u; v 2 Rd so that juj D

p
hu; ui and m.u/ D hu; ei=d

where e D .1; : : : ; 1/> are the length and mean. Set s2.u/ D ju � m.u/j2=d and
cov.u; v/ D hu � m.u/; v � m.v/i=d (see the notation of footnote 8). We use a
subscript 1 � p � 1 to highlight the dependence on p of various quantities, e.g.,
m.�/ D mp.�/ for � 2 Rp and m1.�/ is the limit limp"1 mp.�/ when it exists.

8With a slight abuse of the notation, u � x D .u1 � x; : : : ; up � x/ for u 2 Rp and x 2 R.
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2. A scarcely sampled spiked model. We use a spiked covariance model, bor-
rowed from the HDLS literature. We also restrict ourselves to a single unbounded
spike in the “boundary case” (see Jung, Sen&Marron (2012))wherein the largest eigen-
value of the covariancematrix grows linearly inp. In particular, consider amean-zero
(w.l.o.g.) random vector y 2 Rp with a p � p covariance matrix † D Var.y/ and let,

† D � C ˇˇ>(7)

for a symmetric, positive-semidefinite p � p matrix � and vector ˇ 2 Rp . The fol-
lowing affirms that b D ˇ=jˇj is an eigenvector of † with eigenvalue hˇ; ˇi.

Assumption 2.1 (w.l.o.g.). �b D 0 and mp.b/ � 0 for any p.

To state our additional assumptions on the model, we project the data vector
y 2 Rp onto the eigenvectors of †. More precisely, define

§p D hˇ; yi=hˇ; ˇi :(8)

It is immediate that E.§p/ D 0 and Var.§p/ D 1. For every eigenvalue ’i of � , let

¥i D h”; yi where ” 2 Rp
W � ” D ’i ” :(9)

Note, E.¥i / D 0 and Var.¥i / D ’i . As the dimension p grows we obtain a
sequence f¥igi�1. As a technical remark, ¥i D ¥i;p and ’i D ’i;p depend on p. We
consider a sequence of models .7/ constructed from sequences fˇigi�1 and f�pg.

Assumption 2.2. For constants � 2 R and �; • 2 .0; 1/ as p " 1 we have:

(i) m1.ˇ/ D � and s2
1.ˇ/ D �2.

(ii) §1 D limp"1 §p exists as a R-valued random variable almost surely.

(iii) m1.¥/ D m1.'/ D 0 almost surely for f'igi�1 with 'i D 'i;p D ¥ipm.”i /.

(iv) s2
1.¥/ D m1.’/ D •2 almost surely.

Condition (i) imposes regularity on the sequence fˇigi�1 and implies that the
largest eigenvalue of† (i.e., hˇ; ˇi) grows linearly with p. The random variable§1 in
(ii) is closely related to a principal component score (in the limit p " 1), and it cap-
tures the randomness along the first (population) principal component. Conditions
(iii) and (iv) are related to certain requirements on ameasure of sphericity of themodel
(e.g., tr.†/2=.tr.†2/p/) and summarize the conclusions of Jung &Marron (2009,The-
orem 1). In particular, (iii) may be viewed as laws of large numbers for f¥igi�1 and
f'igi�1 and suggests pm.”i / � 1 whereas (i) implies the first principal component
has

p
pm.b/ � 1. This highlights that the spike eigenvector b differs from those of

� both in terms of the magnitude of its eigenvalue as well as the structure of the vec-
tor itself. According to (iv), the average eigenvalue of � (unlike the spike eigenvalue
hˇ; ˇi) is bounded in p, and per (iii), the eigenvectors ”i do not have entries biased
towards a nonzeromean

p
pm.”i /, unlike b (an exception is� D 0, which is the case

when the James-Stein estimator will turn out to be ineffective; see Remark 2.8).
The following assumption is a standard one in statistical data analysis but may

be (and often is) relaxed in the HDLS setup (e.g., Jung et al. (2012)).
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Assumption 2.3. There are a fixed n � 2 i.i.d. observations of y 2 Rp .

Our forthcoming results hold evenwhen only 2 observations are available, hence,
a scarcely sampled model. Let Y be the p � n data matrix with the kth column con-
taining the kth observation of y , and define the sample covariance matrix S by

S D YY>=n:(10)

We let h 2 Rp denote the eigenvector of S with the largest eigenvalue s2
p (see .6/). It

is unique only up to sign (and jhj D 1), motivating the following (c.f. Assumption 2.1).

Assumption 2.4 (w.l.o.g.). mp.h/ � 0 for any p.

We write S D G C ��> in analogy to .7/ (taking G D S � ��>) and set

� D sph:(11)

Next, define the following measure of finite-sample distortion,

�2
n D hX;Xi=n and X D lim

p"1

Y>ˇ

hˇ; ˇi
:(12)

The latter limit exists by Assumption 2.2 while Assumption 2.3 implies that X 2 Rn

has i.i.d. entries (distributed as §1). Consequently, we have �2
n ! 1 as n " 1.

We can measure the error in any estimator � of � by the mean-squared error, as
would be consistent with the James-Stein framework.

MSEp.� j�/ D h� � �; � � �i=p(13)

Proposition 2.5. Let � D �nˇ and suppose Assumptions 2.1–2.4 hold. Then,

MSE1.� j�/ D
•2

n
:(14)

Remark 2.6. If � D ˇ then the right side would be multiplied by the factor, 1 C

SNR2

r21

�
�n�1

�n

�2
where we define a signal-to-noise ratio SNR and signal-incoherence r1 as

SNR D

��

•

�
�n

p
n and r1 D

1p
1 C .�=�/2

:(15)

For SNR, we regard ��n as a distorted signal, and •=
p

n as noise that vanishes as n grows
(also, ��n ! � ). The signal-incoherence r1 is the limit of rp D rp.ˇ/ D sp.ˇ/=jˇj (per
Assumption 2.2) determined by the signal-to-noise ratio �=� of the vector ˇ. A large value
of r1 corresponds to more variation, or “incoherence” in the entries fˇigi�1

A more standard way to evaluate the goodness of a sample eigenvector h is via
its angle away from its population counterpart b D ˇ=jˇj. To this end, let

SPHp.h jb/ D SPHp.� j�/ D sin2
�
arccos

h�; �i

j�jj� j

�
:(16)

Proposition 2.7. Let � D �nˇ and suppose Assumptions 2.1–2.4 hold. Then,

SPH1.� j�/ D
r21

r21 C SNR2
:(17)

Remark 2.8. Clearly, .17/ also holds with � D ˇ.
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3. James-Stein estimation of sample eigenvectors. Having established that the
sample eigenvector corresponding to the spike (i.e., the largest eigenvalue) carries fi-
nite sample error, it is natural to ask whether James-Stein shrinkage can improve this
“usual” estimator. The key to this question is the (to be established) identity

� D � C w and � D �nˇ(18)

for a random vector w 2 Rp specified in .27/ of Section 4.1. As in definition .11/, we
have � D sph where h is the sample eigenvector with the largest eigenvalue, s2

p . The
perturbationw of � turns out to be such that the shrinkage of � is effective. We remark
that the recipe of Section 1 extends our derivation of the James-Stein estimator below
to the case of multiple (there, q) spikes in a natural way. This extension is effective
because the eigenvectors corresponding to the spikes are mutually orthogonal, but it
is suboptimal. An optimal estimator in the multi-spiked setup is left for future work.

3.1. The JS estimator. Equation .18/ establishes a relationship between the sam-
ple andpopulation eigenvectors that suggests a James-Stein estimatormaybe derived.
An informal derivation proceeds as follows. Consider the shrinkage parameter

c D 1 �
O�2

s2.�/
(19)

based on .4/ with O�, an estimate of the “noise”. It is reasonable to assign the latter to
be the average of the non-spiked, non-zero eigenvalues of S. That is,

O�2
D

� tr.S/ � s2
p

n � 1

�
=p .p � n/;(20)

where the scaling by p turns out to be necessary due to the counterintuitive behavior
of the HDLS asymptotics. When p < n the divisor n � 1 must be replaced by p � 1.

This paves the way for the James-Stein sample eigenvector estimate,

� JS
D m.�/ C c .� � m.�//

of the unnormalized eigenvector and by convention, we take unit length version,

h JS
D

� JS

j� JSj
D

1
p

p

�
m.h/ C c .h � m.h//p

m2.h/ C c2 s2.h/

�
(21)

as the James-Stein estimator of the population eigenvector b D ˇ=jˇj.
The following James-Stein type theorems characterize the improvement due to

shrinkage in the original mean-squared sense as well as in the angle metrics.

Theorem 3.1. Suppose Assumptions 2.1–2.4 hold. Then, almost surely,

MSE1.� JS
j�/ D c1MSE1.� j�/

where c1 2 .0; 1/ is the limit of cp D c in .19/ with SNR defined in .15/ and

c1 D
SNR2

1 C SNR2
:(22)
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Theorem 3.2. Suppose Assumptions 2.1–2.4 hold. Then, almost surely,

SPH1.� JS
j�/ D SPH1.h JS

jb/ D d1SPH1.h jb/

where d1 2 Œc1; 1� where c1 is in .22/ and with SNR and r1 in .15/, we have

d1 D c1 C
r21

1 C SNR2
:(23)

Related results may be found in Goldberg, Papanicolaou, Shkolnik & Ulucam
(2020) and Goldberg et al. (2021) but the metrics there are motivated by solutions of
certain quadratic programs that are useful in finance and portfolio theory.

Remark 3.3. Note, d1 D 1 (i.e., no improvement in angle) if and only if � D 0.

3.2. The geometry of Stein’s paradox. We shed insight into the James-Stein estima-
tor in .21/ by deriving general conditions under whichTheorems 3.1 and 3.2 hold. Our
analysis adopts the pure frequentist perspective in Gupta & Peña (1991) and supple-
ments it by illustrating the Euclidean and the spherical geometry of the estimator. The
two geometries reflect the definitions of the error (MSE and SPH) in the two theorems.

Lemma 3.4. Let � D � Cw for �; w 2 Rp . Then, the solutions of the optimizations
minc2R MSE.�.c/ j�/ and minc2R SPH.�.c/ j�/ (see .13/ and .16/) are given by

cMSE
D

cov.�; �/

s2.�/
and cSPH D

m.�/

m.�/
cMSE :(24)

The next assumptions may be viewed as laws of large numbers in the random
setting or regularity conditions in a deterministic one. They concern the sequences
f�ig

1
iD1 and fwig

1
iD1, and allow for dependence on p (i.e., �i D �

.p/
i and wi D w

.p/
i ).

Assumption 3.5. For constants m 2 R and �; Ÿ 2 .0; 1/ as p " 1, we have:

(i) m1.�/ D m and s2
1.�/ D Ÿ2,

(ii) m1.w/ D 0 and s2
1.w/ D �2,

(iii) cov1.�; w/ D 0 ,

(iv) there exists an estimator O� D O�p for each p with O�1 D � .

The following identities follow by direct calculation.

Lemma 3.6. Suppose f�ig and fwig satisfy Assumption 3.5 and �i D �i C wi .
Then (almost surely), m1.�/ D m, cov1.�; �/ D Ÿ2 and s2

1.�/ D Ÿ2 C �2.

We define the signal-to-noise ratio SNR and the signal-incoherence r1 as

SNR D
Ÿ

�
and r1 D

1p
1 C .m=Ÿ/2

;(25)

which are compatible with .15/ upon taking � D �nˇ and � D •=
p

n. The following
result establishes the conclusions of Theorems 3.1 and 3.2 in our abstract setting.

8



Proposition 3.7. Let � D � C w where �; w 2 Rp and an estimator O� satisfy
Assumption 3.5. Then, for c1 and d1 defined in .22/ and .23/ but with SNR and r1 in
.25/ the estimate �.c/ D � C c.� � m.�// with parameter c D 1 �

O�2

s2.�/
satisfies

MSE1.�.c/ j�/ D c1MSE1.� j�/ and SPH1.�.c/ j�/ D d1SPH1.� j�/:

Moreover, the optimal parameters cMSE and cSPH in .24/ converge as p " 1 to c1.

Figure 1 illustrates the geometry of the estimator �.c/ of the vector � .

Figure 1. Illustration of the estimator �.c/ in low (top left), high (top right), and
limiting (bottom left) dimensions, relative to the shrinkage target m 2 Rp , the
vector with all entries equal to m.�/. The open circle marks the estimator with the
optimal shrinkage parameter cMSE. In Euclidean geometry, the estimator �.c/ is
located anywhere on the ray originating at the observation � and passing through
m, because c � 1 while �.1/ D � and �.0/ D m. The spherical geometry (bottom
right) presents the limiting (p D 1) analog of the illustration in the bottom left.
There, b D �=j� j, h D �=j�j and ´ D m=jmj and the contour describes all vectors
with mean entry m.b/, which highlights the difference between the two geometries.
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4. Proofs the main results. We proceed by the following three main steps.

(1) We establish the key identity � D � C w with � D �nˇ per .18/ in Section 4.1.

(2) We derive the convergence properties in the HDLS regime of the eigenvalues
and eigenvectors of S under our spiked covariance model setting in Section 4.2.

(3) We verify that �; w in (1) and O� in .20/ satisfy the conditions of Assumption 3.5,
which leads to the guarantees for James-Stein shrinkage in Proposition 3.7.

Theorems 3.1 and 3.2 and then corollaries of Proposition 3.7, which is proved in
Appendix A. We will make use of two classic results in matrix perturbation theory.

Theorem (Weyl). Let A and .A C �/ be (real) symmetric n � n matrices with
eigenvalues ’1 � � � � � ’n and �1 � � � � � �n respectively. Then,

max
1�j �n

j’j � �j j � j�j :

For a proof see Horn & Johnson (2013) (also Weyl (1912)).

Theorem (Davis-Kahan). Let A and .A C �/ be (real) symmetric n � n matrices
with Aaj D ’j aj and .A C �/bj D “j bj for eigenvectors aj ; bj 2 Rn and eigen-
values ’j ; “j 2 R. Suppose ’1 � � � � � ’n and “1 � � � � � “n with the convention
’0 D 1 D �’nC1 and assume ”j D minf’j �1 � ’j ; ’j � ’j C1g > 0. Then,

jaj
� bj

j �
3

”j
j�j provided (w.l.o.g.) haj ; bj

i � 0:

This result is proved in Yu, Wang & Samworth (2015, Corollary 1).

4.1. Establishing the key identity. Akey tool for randommatrix theory in theHDLS
regime is the dual sample covariance matrix. This is n � n matrix (n � 2 is fixed),

L D Y>Y=p:(26)

The next result is well known and relates the spectra of S D YY>=n and L.

Lemma 4.1. Let Lu D `2u where `2 2 .0; 1/ and u 2 Rn. Then, Sv D s2v

where v D Yu=.
p

p`/ and s2 D `2p=n. Conversely, let Sv D s2v where s2 2 .0; 1/

and v 2 Rp . Then, Lu D `2u where u D Y>v=.
p

ns/ and `2 D s2n=p.

Proof. Multiplying the identity Lu D `2u by Y from both sides, we obtain

YLu D `2Yu ) SYu D

�`2p

n

�
Yu:

Note, .Yu/>.Yu/ D .u>Lu/p D `2p, so v D .Yu/=.
p

p`/ has unit length. Dividing
by

p
p` yields Sv D s2v as required. The converse has an identical argument. ■
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Thespikemodel† D �Cˇˇ> has a full basis of eigenvectors givenbyb D ˇ=jˇj

and f”ig
p�1
iD1 , the latter corresponding to the nonzero eigenvalues f’g

p�1
iD1 of � . Thus,

y D hb; yib C
Pp

iD1h”i ; yi”i
D ˇ§ C –

where – D
Pp

iD1¥i”
i 2 Rp and § D §p D hˇ; yi=hˇ; ˇi as in .8/. Consequently,

letting Y denote the p � n matrix of i.i.d. observations of y 2 Rp , we have

Y D ˇX>
C E :

where X D Y>ˇ=hˇ; ˇi 2 Rn consists of i.i.d. observations of § and E is a p � n

matrix with i.i.d. columns consisting of the observations of – as defined above.
By orthogonality, we obtain that L D Y>Y=p D .hˇ; ˇi=p/XX> C EE>=p. Let

xp be the eigenvector of L with the largest eigenvalue, `2
p , and x1 D X=�n 2 Rn (the

unit length normalization ofX), whereX and �n are defined in .12/. By Lemma 4.1,

h D
Yxp

p
p p̀

D
.ˇX> C E/x

p
p p̀

D ˇ
�nhxp; x1ip

p=n p̀

C
Exp

p
p p̀

D ˇ
��n

sp

�
C ˇ

��n

sp

�
hxp; xp � x1i C

Exp
p

nsp

We deduce that � D sph D �nˇ C w as required by .18/ where

w D �nˇ hxp; xp � x1i C
Exp
p

n
:(27)

4.2. Convergence of the eigen- values/vectors. It is not difficult to establish that
limit of L D L.p/ as p " 1 (in any norm on Rn�n) takes the following form

L.1/
D .�2

C �2/.n�2
n/ x1x>

1 C •2I :

Thefirst term is the limit of .hˇ; ˇi=p/XX> underAssumption 2.2 (note that hˇ; ˇi D

s2.ˇ/Cm2.ˇ/) and thedefinitions ofXandx1 above. ByAssumption2.3, the columns
of E are i.i.d. copies of –with E.–/ D 0p by definition, the strong law of large numbers,
confirms the that the off-diagonal entries of the second term are zero. That •2 deter-
mines all the diagonal entries is again a consequence of Assumption 2.2. This entails
proving that h–; –i=p converges almost surely to •2 as is done in Section 4.3 item (ii).

The matrix L.1/ has an easily described spectrum. Its largest eigenvalue is given
by `2

1 D .�2 C �2/.n�2
n/ C •2 and has the eigenvector x1. All remaining eigen-

values equal •2. Since L.p/ converges (in any norm) to L.1/, the largest eigenvalue `2
p

converges to `2
1 almost surely. All the remaining eigenvalues converge to •2.

ByWeyl’s inequality, setting A D � and B D .L� �/ so that ACB D L, we have

j`2
p�iC1 � ..�2

C �2/.n�2
n/1fiD1g C •2/j � jL.p/

� L.1/
j 1 � i � n:(28)

We immediately deduce (by Lemma 4.1) the following result, variants of which
appear in Jung et al. (2012), Shen et al. (2016) and Goldberg et al. (2021). Let s2

p�iC1

denote the i th largest eigenvalue of S ( for i > min.p; n/ all eigenvalues are zero).
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Proposition 4.2. Fix n � 2 and suppose Assumptions 2.1, 2.2 and 2.3 hold. Then,
limp"1 s2

p�iC1=p D 1fiD1g�
2
n.�2 C �2/ C •2=n almost surely for fixed 1 � i � n.

Next, by the Davis-Kahan theorem with L.p/ D L1 C � and � D L.p/ � L.1/,
for xp and x1 the eigenvectors of L.p/ and L.1/ with largest eigenvalues respectively,

jxp � x1j �
3

•2
jL.p/

� L.1/
j :(29)

Note the condition hxp; x1i � 0 is without loss of generality as the orientation of the
eigenvectors is always arbitrary. The following result follows immediately.

Proposition 4.3. Fix n � 2 and suppose that Assumptions 2.1, 2.2 and 2.3 hold.
Then, we have jxp � x1j ! 0 as p " 1 almost surely.

4.3. Verifying Assumption 3.5. Wemakeuse ofAssumptions 2.1–2.2. There are four
items to verify for � D �nˇ and w in .27/. Take, m D �n�, Ÿ D �n� and � D •=

p
n.

(i) We have m1.�/ D �n� and s2
1.�/ D �2

n �2 by Assumption 2.2 part (i).

(ii) To see that m1.w/ D 0, we compute m.w/ using .27/ which gives

m.w/ D �nm.ˇ/hxp; xp � x1i C m.Exp/=
p

n

The first term vanishes by Proposition 4.3 since jhxp; xp � x1ij � jx1 � xpj

and m1.ˇ/ and �n are finite almost surely by Assumption 2.2 part (ii). The
second term vanishes because m.Exp/ may be written as a linear combination
of a fixed n realizations of m.–/ with coefficients being the entries of xp , and
jx1j is bounded. To this end, m.–/ D mp.–/ D

Pp
iD1¥im.”i / D mp.'/

which tends to zero as p " 1 (almost surely) by Assumption 2.2 part (iii).

Similarly, to verify that s2
1.w/ D �, we use .27/ again to calculate that

s2.w/ D �2
n.hˇ; ˇi=p/hxp; xp � x1i

2
C hExp;Expi=.pn/ � m2.w/

where we have used the fact that hˇ;Ei D 0n by Assumption 2.1. Since �n

and the limit �2
n.�2 C �2/ of hˇ; ˇi=p, as above, by Proposition 4.3 the first

term tends to zero as p " 1. For the second term, we note that hExp;Expi

may be written as convex combination of a fixed n realizations of h–; –i with
coefficients being the entries of xp squared, and jxpj2 D jx1j2 D 1. We have
h–; –i=p D

Pp
iD1 ¥2

i =p D s2.¥/ C m2.¥/ as the f”ig
p
iD1 are orthonormal. By

Assumption 2.2 parts (iii) and (iv), we have s2
1.¥/ D •2 and m1.¥/ D 0. It

follows that the second term converges to •2jx1j2=n D •2=n D �2. The last
term tends to zero since m1.w/ D 0 as above, and the claim now follows.

(iii) We have cov.�; w/ D h�; wi=p � m.�/m.w/ and since m1.�/ is finite, the
second termvanishes asm1.w/ as above. Again by .27/ and since hˇ;Ei D 0n,

h�; wi=p D �2
n.hˇ; ˇi=p/hxp; xp � x1i

which vanishes in the limit by the same arguments as in (ii) above.

(iv) To see that O� D O�p in .20/ is an asymptotically exact estimate of � D •=
p

n,
we use Proposition 4.2. Since .tr.S/ � s2

p/=p D
Pn

iD2 s
2
p�iC1=p, under the

hypotheses of Proposition 4.2 converges almost surely to •2.n � 1/=n, O�1 D �.

12



A. Auxiliary proofs. As shown in Section 4.3, the hypotheses of Proposition 2.5
andProposition2.7 (i.e., Assumptions 2.1 –2.4) guarantee that the conditions on f�igi�1

and fwigi�1 in Assumption 3.5 are satisfied. Consequently the proofs of these two re-
sults, as well as that of Proposition 3.7 which requires Assumption 3.5 directly, reduce
to the calculations below. The proof of Lemma 3.6 is omitted as it is elementary and
that of Lemma 3.4 is a direct consequence of some of the expressions below.

For any c 2 R and �.c/ D m.�/ C c.� � m.�//, by direct calculation

MSE.�.c/ j�/ D .m.�/ � m.�//2
C s2.�/ C c2s2.�/ � 2ccov.�; �/:

When c D 1 for which �.1/ D � and applying Lemma 3.6 yields

MSE1.� j�/ D Ÿ2
C .Ÿ2

C �2/ � 2Ÿ2
D �2

D •2=n

which proves Proposition 2.5. The sine of the angle squared metric is computed as

SPH.�.c/ j�/ D 1 �

�
h�.c/; �i

j�.c/jj� j

�2

D 1 �

�
m.�/m.�/ C ccov.�; �/

�2

.m2.�/ C c2s2.�//.m2.�/ C s2.�//
:

Using the raw estimate � D �.1/ for which c D 1 we deduce by Lemma 3.6 that

SPH1.� j�/ D 1 �
m2 C Ÿ2

m2 C Ÿ2 C �2
D

�2

Ÿ2 C m2 C �2
D

r21
SNR2 C r21

which establishes Proposition 2.7 with SNR and r1 in .15/ (c.f. .25/).
Note that minimizing the expressions forMSE.�.c/ j�/ and SPH.�.c/ j�/ above

over c 2 R yields the cMSE and cSPH in .24/ proving Lemma 3.4. The limits as p " 1

of these quantities is easily verified as c1 D
SNR2

1CSNR2 in .22/ using Lemma 3.6. This
establishes the last part of Proposition 3.7. To prove the first part, we again apply
Lemma 3.6 to deduce that c D cp D 1 �

O�p

s2p.�/
� 1 �

�2

Ÿ2C�2 D c1 as above. Also,

MSE1.�.c/ j�/ D Ÿ2
C c2

1.Ÿ2
C �2/ � 2c1Ÿ2

D Ÿ2
C c1Ÿ2

� 2c1Ÿ2

D Ÿ2.1 � c1/

D
Ÿ2

1 C SNR2
D c1�2

D c1MSE1.� j�/

as required. Similarly, by Lemma 3.6, we derive that

SPH1.�.c/ j�/ D 1 �
.m2 C Ÿ2c1/2

.m2 C c2
1.Ÿ2 C �2//.�2 C �2/

D .1 � c1/r21

D .1 � c1/.SNR2
C r21/SPH1.� j�/

D

�
SNR2 C r21
1 C SNR2

�
SPH1.� j�/ D d1SPH1.� j�/

for d1 as in .23/. This concludes the proof of Proposition 3.7.
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