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1 Introduction

Since Harry Markowitz launched modern finance in 1952 by constructing port-
folios with mean-variance optimization, active research has focused on deter-
mining appropriate estimates for expected security returns and covariances.
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Practical considerations often limit the pool of relevant data, rendering a sam-
ple covariance matrix unfit for use in optimization. Prescriptions for empir-
ically sound, well-conditioned covariance matrix estimates required by opti-
mization vary, and the nature of their errors and their impact on optimized
portfolios can be obscure.

A standard approach to return covariance matrix estimation begins with
a factor model. This is consistent with empirically observed correlations in
financial returns and it reduces dimension, leading to conditioning sufficient
to stabilize optimization. Principal component analysis (PCA) can be used to
identify factors that explain correlation, for example in the arbitrage pricing
theory developed by Stephen Ross in 1976. The factor loadings are sample
eigenvectors, linear combinations of security returns that maximize in-sample
variance.

When securities are numerous and observations are scant, however, sample
eigenvectors are poor estimates of their population counterparts. As building
blocks of covariance matrices intended for optimization, sample eigenvectors
lead to optimized portfolios with variance that is substantially higher than it
needs to be.

We address this problem in the setting of a single-factor model that incor-
porates the most salient features of equity markets in simplest form. We de-
velop high-dimensional covariance matrix estimates that generate low-variance
optimized portfolios. Extending recent research that sheds light on how estima-
tion error is transmitted via optimization, the factor underlying the rank-one
component of our estimate is obtained by applying James-Stein shrinkage to
the leading sample eigenvector, yielding a James-Stein for eigenvectors (JSE)
estimate of the leading population eigenvector.

We advance the literature in three ways. First, we provide easy-to-code
formulas for factor-based covariance matrices that are tailored to specific
quadratic optimization problems. When input to optimization, these matri-
ces generate low-variance instances of portfolios that satisfy optimization con-
straints. The low variance stems from JSE shrinkage of the leading sample
eigenvector toward the target subspace generated by optimization constraint
vectors. JSE stochastically dominates the leading sample eigenvector as an es-
timate of ground truth, and neutralizes a significant component of estimation
error that arises in optimization.

The second advancement is a formula for improvement of JSE over the
sample leading eigenvector that depends only sample eigenvalues and the an-
gle between the leading population eigenvector and the target subspace. The
third advancement concerns the nature of JSE shrinkage. In previous studies,
JSE shrinkage is in a specific direction. For the problems considered in this
article, the ideal shrinkage target is the projection of the leading population
eigenvector, which is unobservable, onto the target subspace. We show that a
data-driven shrinkage target obtained by projecting the leading sample eigen-
vector onto the constraint subspace is sufficient to guarantee reduced variance
of the optimized portfolio.



Portfolio optimization via strategy-specific eigenvector shrinkage 3

In Section 2, we review some background and literature relevant to our
results. In Section 3, we set up the problem of finding a low-variance solu-
tion to mean-variance optimization with linear constraints when the covari-
ance matrix is estimated. Readers interested in the bottom-line formulas for
implementation will find them summarized in Section 4, while Section 5 pro-
vides a detailed mathematical discussion of the construction and describes its
asymptotic properties. Numerical experiments illustrating our results are in
Section 6, and Section 7 contains concluding thoughts. Mathematical proofs
are in the Appendix, Section 8.

2 Context and related literature

Our results about JSE draw on factor models and optimization, random matrix
theory and James-Stein shrinkage. We extend the connection between eigen-
vector shrinkage and estimation of minimum variance to a large collection of
optimization problems: minimum variance with linear constraints.

2.1 Factor models and optimization

The vast literature on the estimation of covariance matrices for use in portfolio
construction begins with Markowitz [32] and [33]. We do not attempt to survey
that literature here, but highlight Sharpe [38], who developed a one-factor or
“single index” model. Rosenberg [36] builds on Sharpe’s idea, establishing
Barra’s industry standard fundamental factor models.

A statistical approach to factor models, based on the Arbitrage Pricing
Theory in Ross [37] and developed in Chamberlain and Rothschild [6], Connor
[7], Connor and Korajczyk [11] and [9], is an antecedent of the material in this
article. Connor [8] and Connor and Korajczyk [10] review roles of different
types of factor models in finance.

2.2 Random matrix theory and covariance matrix estimation

Empirical analysis of public equities in US and Global markets suggests that
the leading eigenvalue of a sample stock or bond return covariance matrix
tends to grow in proportion to the number of securities in the pool. This
means that the widely-studied single-spiked covariance model, introduced in
Johnstone [26] may be an appropriate basis for estimating covariance matrices
for portfolio optimization. That paper brings random matrix theory (RMT)
to bear on the problem of covariance matrix estimation, with special attention
to the limiting spectrum of eigenvalues in the high dimension high sample size
(HH) regime, where the number of variables p and the number of observations
n tend to infinity in proportion. This type of analysis, launched by Wigner
[43], [44] and Marcenko and Pastur [31] in the 1950s and 1960s, has spawned
another vast literature. Applications of this work to financial covariance matrix
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estimation is in Menchero et. al.[34], Ledoit and Wolf [29], [30], El Karoui
[15], [16], and Wang and Fan [42], to name a few examples. Donoho et. al.
[12] study the effect of different objective functions on the optimal covariance
matrix estimate, given that the eigenvectors of the estimate match the sample
eigenvectors.

The results in this article rely on a different, less studied branch of RMT
concerning high dimension and low sample size (HL), in which the number of
variables tends to infinity while the number of observations stays fixed. The
relevance of the HL regime to the analysis of scientific data was pioneered in
Hall et. al. [23] and Ahn et. al. [1], and results are surveyed in Aoshima et. al.
[2]. Data analysis in the HH and HL regimes, as well as the low dimension
high sample size (LH) regime of classical statistics, is discussed in Jung and
Marron [27].

2.3 James-Stein shrinkage for averages and for eigenvectors

Stein [40] and James and Stein [24] show that in dimension greater 3 or greater,
the sample average is inadmissible: there is another estimator with lower mean-
squared error. That superior estimator is known as James-Stein, and it is
obtained by shrinking sample averages toward their collective mean. This work
was extended by replacing the grand mean with arbitrary initial guesses in
Efron and Morris[13], and popularized by Efron [14]. An overview of James-
Stein type shrinkage estimation is in Foudrinier et al. [17].

Recent literature, including Sholnik [39] and Goldberg et al. [18], develop
James Stein for eigenvectors (JSE). Structurally parallel to James-Stein for
averages, JSE improves almost surely on the sample leading eigenvector as
an estimate of ground truth when data follow a one-factor spiked model. The
theory rests on strong laws of large numbers, and therefore is free of any special
distributional assumptions other than boundedness of the fourth moments.
Alternative approaches may be constructed with concentration of measures
arguments, described in Ball [3] and applied in Bar and Wells [4].

2.4 JSE and mean-variance optimization

Estimation error in a covariance matrix leads to optimized portfolios that are
sub-optimal. A manifestation is excess variance in an optimized portfolio; see,
for example, Klein andn Bawa [28], Jobson and Korkie [25], Michaud [35] and
Bianchi et al. [5].

JSE was developed in Goldberg et al. [20], Goldberg et al. [19] and Gur-
dogan and Kercheval [22] for the purpose of improving optimized minimum
variance portfolios. The development rests on a novel analysis of the way es-
timation error in a spiked covariance model is transmitted via mean-variance
analysis. Those articles show that excess dispersion in the leading sample eigen-
vector contributes material errors in estimated minimum variance and its risk
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forecasts, and that JSE reduces those errors in the HL regime. In the present
article, we show that the original results are a special case of a more gen-
eral phenomenon. A constrained optimization exacerbates estimation error in
the leading sample eigenvector in the direction of the subspace spanned by
constraint vectors. By shrinking the sample leading eigenvector toward that
subspace, we correct the leading eigenvector in a way that is tailored to the
constrained optimization problem, leading to improved results.

2.5 Multi-factor models

While a one-factor model has played an important role in the historical de-
velopment of portfolio covariance estimation, practitioners usually require the
factor models with several or many factors. Our analysis focuses on the case
of a one-factor model driving returns in order to draw out the theory most
explicitly in its simplest version.

However, similar methods are also known to work, so far with less complete
theory, in at least some multi-factor contexts. Goldberg et al. [19] describe the
results of simulation experiments showing that JSE, applied to the leading
sample eigenvector only, improves risk forecasts in a four-factor model frame-
work.

3 The portfolio optimization problem

We specify the central problem addressed in this article: finding low-variance
solutions to variance-minimizing optimization when inputs are corrupted by
estimation error.

In a universe of p securities, we specify a portfolio by a p-vector of weights
w. The entries of w are the fractions of portfolio value invested in different
securities. Alternatively, we can think of w in an active framework, as the
difference between portfolio weight and benchmark weight. The second per-
spective reduces to the first when the benchmark is cash. Here, we explore a
widely used framework for quantitative portfolio construction.

Let Σ denote the p× p-dimensional covariance matrix of security returns,
assumed non-singular. Consider an optimization problem with k > 0 linear
constraints,

minw
1

2
w⊤Σw (1)

subject to C⊤
1 w = a1

C⊤
2 w = a2

...

C⊤
k w = ak
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where the jth constraint coefficient vector Cj is a p-vector, and the jth con-
straint target value aj is a scalar. Typical constraints demand full investment,
total and active return targets, and factor tilts, and in general are chosen to
reflect an investor’s specific investment strategy.

A simple, explicit formula provides the unique solution to (1) when the
inputs to the problem are known. In finance, however, the covariance matrix
Σ is never known, so the explicit formula provides a solution that is sub-
optimal. In what follows, we illuminate the mechanism by which estimation
error in a covariance matrix corrupts optimized portfolios, provide estimates
of Σ tailored to instances of (1) leading to optimized portfolios that have
relatively low variance.

We work in a setting where the number of securities p is larger than the
number of observations n, which is commonplace for investors. In this situa-
tion, the sample covariance matrix S is singular, leading to non-unique solu-
tions to quadratic programs such as (1). As a synthesis of information from
data, however, S can serve as a source of spare parts for estimated empirically
reasonable covariance matrices that can be used in optimization.

4 A JSE prescription for a customized, optimization-friendly
estimate of Σ

This section contains a brief summary of our prescribed estimate of the return
covariance matrix Σ that is tailored to mitigate estimation error in the op-
timization problem (1). The centerpiece of the prescription is an estimate of
Σ’s leading eigenvector, which is obtained by applying James-Stein shrinkage
to the sample leading eigenvector. Shrinkage improves on the sample leading
eigenvector as an estimate of ground truth by an amount that we calculate.

In Section 5, we discuss in more detail the good asymptotic properties of
both the leading eigenvector estimate and the optimal portfolio estimate when
returns follow a one-factor model.

4.1 Structure from a factor model

The persistent, substantial correlations observed across financial returns have
led researchers to use factor models to estimate return covariance matrices. In
the simplest example of a one-factor model, the true (population) covariance
matrix has the structure

Σ = η2bb⊤ + δ2I, (2)

where b is a leading unit eigenvector of Σ with eigenvalue η2+δ2. A derivation
of (2), repeated as (15), is in Section 5.1.1.

We don’t observe Σ, but see instead a time series of n realized values of
the returns p-vector r, which determine a sample p × p covariance matrix S
of rank at most n < p. We estimate the parameters of Σ, two variances, η2

and δ2, and the unit vector of factor loadings b, with functions of eigenvalues
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and eigenvectors of S in a way that leads to a relatively low variance solution
to (1). We show in Section 5 that the last of these three estimates is the most
consequential.

4.2 A strategy-specific estimator of the vector of factor loadings

For our minimum variance problem, a strategy refers to the choice of constraint
vectors C1, C2, . . . , Ck and constraint values a1, a2, . . . , ak. With tr(S) denot-
ing the trace of the sample covariance matrix S and λ2 denoting its leading
eigenvalue, define

ℓ2 =
tr(S)− λ2

n− 1
, (3)

the average of the non-zero eigenvalues of S that are less than λ2, and

ψ2 =
λ2 − ℓ2

λ2
, (4)

the average leading relative eigengap.
Let C denote the span of the constraint vectors C1, C2, . . . , Ck from (1)

and let hC denote the orthogonal projection of the leading sample eigenvector
h onto the subspace C. Now define the JSE shrinkage constant

cJSE =
ℓ2

λ2(1− |hC |2)
(5)

and define

HJSE = cJSEhC + (1− cJSE)h. (6)

The James-Stein for eigenvectors (JSE) estimate of the true eigenvector b is
the unit vector

hJSE = HJSE/|HJSE|. (7)

Formula (6) above is equivalent to formula [6] of [18]. That article and [39] ex-
pose the strong parallel between JSE and classical James-Stein. Formulas (5),
(6) and (7) are identical to formulas (29), (30) and (31) in Section 5.1.4.

Setting λ2 − ℓ2 and (n/p)ℓ2 as estimates of factor variance η2 and specific
variance δ2, and hJSE and an estimate of b, an estimate of (2) is given by

ΣJSE = (λ2 − ℓ2)hJSEhJSE
⊤
+ (n/p)ℓ2I. (8)

Formula (8) is the one-factor covariance matrix designed for use in quadratic
optimization (1). Note that the dependence of ΣJSE on C is through the factor
loadings hJSE and not through the estimates of factor and specific variance.

We will see, under the assumptions described in Section 5, that |hC |2 is
strictly less than 1 for large p, so that cJSE is well-defined, and cJSE is strictly
between 0 and 1 for large p, so that HJSE is a proper convex combination of
h and hC .



8 Lisa R. Goldberg et al.

4.3 The true variance of an optimized portfolio

The benefits of this construction are realized in the portfolio wJSE generated
by (1) when Σ is set to ΣJSE.

Let ΣPCA be the covariance matrix obtained by replacing hJSE with the
sample leading eigenvector h in (8), and let wPCA denote the portfolio gener-
ated by (1) when Σ is set to ΣPCA.

We will see in Theorem 4 that the ratio of the true variances wJSE and
wPCA,

V(wJSE)

V(wPCA)
, (9)

tends to zero as the number of assets grows. When returns to securities in
a sufficiently large investment universe are governed by a one-factor model,
wJSE is an improvement on wPCA by an arbitrarily large factor as measured
by true variance.

5 JSE stochastically dominates PCA

The formulas in Section 4 prescribe the construction of a strategy-specific
covariance matrix based on JSE for use in portfolio construction. Here, we
describe in more detail the theory asymptotically guaranteeing that JSE im-
proves eigenvector estimates and lowers variance of optimized portfolios, rela-
tive to PCA.

In our asymptotic analysis, we will consider n fixed and p tending to in-
finity. Therefore we will need to consider a sequence of models of increasing
dimension. The variables in question may have a superscript (p) to emphasize
the presence of the asymptotic parameter p.

In section 5.1 we show that the JSE estimator asymptotically dominates
the PCA estimator in our one-factor setting, in the sense that it is strictly
closer, almost surely, to the true unknown leading eigenvector. We provide a
formula for the angular improvement. In section 5.2, we apply these results to
estimating the variance of a portfolio obtained by minimizing variance under
finitely many linear constraints. We obtain an asymptotic formula for the true
variance of the portfolio obtained using an estimated covariance matrix, and
show that the JSE estimator strongly dominates the PCA estimator for almost
all choices of the constraint values.

5.1 JSE theorem for high-dimensional targets

We develop the JSE family of corrections of a leading sample eigenvector and
provide a formula for their improvement as estimates of ground truth b when
data follow a one-factor model. An estimate hJSE is obtained by shrinking the
sample leading eigenvector toward an observable linear subspace, the shrinkage
target C, by a specified optimal amount. The estimate depends on the choice of
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shrinkage target, and the asymptotic degree of improvement provided increases
as the angle b and C decreases.

In our one-factor context, the improvement due to a JSE correction depends
only on two quantities:

– The angle between the leading population eigenvector b and the shrinkage
target C, and

– The relative gap between the leading sample eigenvalue and the average of
the lesser, nonzero sample eigenvalues.

5.1.1 A one-factor model of returns

For p > 1 we will develop an estimated p-dimensional covariance matrix as-
suming returns follow a latent one-factor model:

r = µ+ βf + z, (10)

where r = r(p) is a random p-vector that is the sole observable, µ = µ(p) is
a mean returns vector, β = β(p) is a p-vector of factor loadings, the random
scalar f is a mean-zero common factor through which the observable variables
are correlated, and z = z(p) is a mean-zero random p-vector of variable-specific
effects that are not necessarily small but are uncorrelated with f .

For the problems we consider in this article, returns are used only to es-
timate a sample covariance matrix. In practice, this involves subtracting ex-
pected return estimates from the observations, and it introduces expected
return estimation noise into the sample covariance matrix. To focus on corre-
lation estimation error that is not related to expected return, we assume mean
zero, µ = 0, and study the model

r = βf + z. (11)

Replacing r with r − µ does not affect the covariance matrix, and amounts
to the strong assumption that expected returns µ are known, and only the
variances and correlations need to be estimated.

Standing Assumptions.

A1. The random variable f is non-zero almost surely, has mean zero, finite
fourth moment, and variance σ2 > 0.

A2. The random variables {z(p)i : i = 1, 2, . . . , p; p > 1} are i.i.d. and have mean
zero, finite fourth moment, and variance δ2 > 0.

A3. The vector sequence {β(p) : p > 1} satisfies the following asymptotic non-
degeneracy conditions:
a. The entries βi of β are uniformly bounded:

sup
i,p

{|β(p)
i | : i = 1, 2, . . . , p; p > 1} <∞, (12)

and
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b. the sequence |β(p)|2/p tends, as p→ ∞, to a positive finite limit,

lim
p→∞

|β(p)|2/p = B2 > 0. (13)

We make no parametric assumptions, Gaussian or otherwise, on the distri-
butions of f or z. This level of generality holds for all the asymptotic results
in the prior literature on JSE. Here, we relax JSE assumptions in previous ar-
ticles by removing the requirement that the βs are drawn from a fixed, infinite
list with a limiting non-zero mean and dispersion. Instead, we make weaker
assumptions A3.a and A3.b. Together, these two properties guarantee that the
factor loadings β are diversifying, in other words, they do not concentrate in
a few dimensions for large values of p.

Because β and f appear in the model (11) only as a product βf , their
respective scales |β| and σ cannot be separately identified from observations
of r. Therefore we introduce a single combined scale parameter

η = ηp = σ|β(p)|,

and rescaled model parameters b = β/|β|, a unit vector, and x = f/σ, a
random variable with mean zero and unit variance, and rewrite the factor
model as

r = ηbx+ z. (14)

With this formulation, the Standing Assumptions on β(p) are equivalent to
the conditions

A3’.a supi,p{p|b
(p)
i |2 : i = 1, . . . , p; p > 1} <∞, and

A3’.b η2p/p tends to a positive limit σ2B2 as p→ ∞.

The population covariance matrix is a sum of a factor component, η2bb⊤, and
a specific component, δ2I:

Σ = η2bb⊤ + δ2I. (15)

Formula (15) is identical to formula (2) in Section 4.1, the starting point of
the prescription.

5.1.2 The leading sample eigenvector as an estimate of the leading population
eigenvector

Fix n ≥ 2, assume p > n, and consider a sequence of n independent observa-
tions r1, r2 . . . , rn of the p-vector r of security returns with factor structure (14)
and hence, covariance matrix Σ given by (15). Denote by Y the resulting p×n
matrix whose columns are the observations ri. The p × p sample covariance
matrix S = Y Y ⊤/n has a spectral decomposition given by:

S = λ2hh⊤ + λ22v2v
⊤
2 + λ23v3v

⊤
3 · · ·+ λ2pvpv

⊤
p (16)

in terms of non-negative eigenvalues

λ2 > λ22 ≥ · · · ≥ λ2n > λ2n+1 = · · · = λ2p = 0
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and orthonormal eigenvectors {h, v2, . . . , vp} of S. We assume the generic con-
ditions that the leading eigenvalue λ2 has multiplicity one and S has rank
n.

Our interest is in the leading sample eigenvalue λ2 and its corresponding
leading unit eigenvector h, with sign chosen, when needed, so that the inner
product ⟨h, b⟩ is positive.

The eigenvector h of S is a commonly used estimate of the leading pop-
ulation eigenvector b: it is a consistent estimate of b, up to sign, in the LH
regime, in the sense that it converges to b for fixed p as n→ ∞. However, for
fixed n, the following proposition states that h stays away from b with high
probability when p >> n.

Recall

ψ2
p =

λ2 − ℓ2

λ2
. (17)

Proposition 1 Under assumptions A1 - A3, almost surely, the limits

θPCA = lim
p→∞

∠(h, b) and ψ2
∞ = lim

p→∞
ψ2
p (18)

exist and
cos θPCA = ψ∞ ∈ (0, 1). (19)

This means there is a positive limiting angle between h and b almost surely.
The random variable ψ∞ can be expressed in terms of the relationship

between the relative eigengap and the parameters of the factor model (14).
Decomposing, from (14), the p × n data matrix of returns Y into a sum of
unobservable components, we have

Y = ηbX⊤ + Z, (20)

where X = (X1, X2, . . . , Xn)
⊤ is the n-vector of independent realizations of x

and Z is the p × n matrix whose columns are the n independent realizations
of the random vector z. Since x is a mean-zero random variable with unit
variance and finite fourth moment, |X|2 is a noisy estimate of n. The following
proposition is a simple consequence of Lemma 4 stated later.

Proposition 2 The relative eigengap ψ∞ is related to the parameters of the
factor model by

ψ2
∞ = lim

p→∞
ψ2
p = lim

p→∞

λ2 − ℓ2

λ2
=

σ2B2|X|2

σ2B2|X|2 + δ2
≈ pσ2B2

pσ2B2 + pδ2/n
. (21)

The term ψ2
∞, asymptotically equal to the square of the inner product

⟨h, b⟩, is a measure of the asymptotic PCA estimation error when using h to
estimate b. It is random because |X|2 is random, but does not depend on the
random matrix Z. The approximation symbol ≈ in (21) is justified by the fact
that E[|X|2/n] = 1 and |X|2/n → 1 almost surely as n → ∞. (Although we
do not assume the model factor x is normal, if it were, the quantity |X|2 would
be chi-squared distributed with n degrees of freedom.)
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The term pσ2B2 appears in the numerator and denominator on the right
hand side of (21). It is the trace of the factor component of the population
covariance matrix Σ, specified in (15), and can be viewed as the variance in
the system attributable to the factor. The term pδ2 is the trace of the specific
component of Σ, and can be viewed as the variance in the system attributable
to specific effects.

If we think of factor variance as signal and specific variance as noise, then
Proposition 2 says that the relative eigengap ψ2

∞ is approximated by a ratio
of signal to signal plus (1/n)-scaled noise. The ratio on the right hand side
of (21) cannot be observed, but it can be estimated in terms of the relative
eigengap of S.

A consequence of Proposition 2 is that the term ψ2
∞ tends to 1 as n→ ∞.

Therefore,

lim
n→∞

lim
p→∞

|h− b| = 0. (22)

As a result, the defect in the PCA estimate h in applications where p >> n can
be viewed as arising from limitations on the size of n. As n grows, the need
for correction diminishes. Measured in radians, the asymptotic angle θPCA

between h and b is, for large n, approximately

θPCA ≈ 1√
n

δ

σB
. (23)

For a typical value δ/(σB) = 4, this means the angular error θPCA will remain
significant even for n as large as 1000 or more, well above the typical values
seen in portfolio optimization.

5.1.3 Insight about the relationship between h and b from the perspective of
an external reference subspace

Fix k ≥ 1. For each p > k, let C = C(p) be a p × k matrix of rank k. When
there is no risk of confusion, we use C to denote either the matrix or its
k-dimensional column space in Rp.

Notation: We use subscripts to denote orthogonal projection of a vector
onto a linear subspace: hC is the orthogonal projection of h onto C.

For any nonzero vectors x, y ∈ Rp, we denote the smallest angle between
the sub-spaces span(x) and span(y) by ∠(x, y), with 0 ≤ ∠(x, y) ≤ π/2. The
angle ∠(x,C) between a vector x and a subspace C is equal to ∠(x, xC).

Theorem 1 Suppose the angle ∠(b, C) between b and C tends, as p→ ∞, to
a limit

Θ = lim
p→∞

∠(b, C). (24)

Then under assumptions A1 – A3, the limit

Θh = lim
p→∞

∠(h,C) (25)
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exists almost surely, and

cosΘh = cos θPCA · cosΘ = ψ∞ · cosΘ. (26)

In particular, if 0 < Θ < π/2, then

0 < cosΘh < cos θPCA (27)

and

0 < cosΘh < cosΘ. (28)

This theorem is a generalization of Theorem 3.1 of [20]. It implies, asymptot-
ically almost surely, that h is not orthogonal to C if b is not, but the angle
∠(h,C) is greater than both ∠(b, C) and ∠(h, b). Intuitively, this suggests that
shrinking h toward C might bring it closer to b. This turns out to be correct,
as described next.

5.1.4 Shrinkage improves on the leading sample eigenvector h as an estimate
of the leading population eigenvector b

We will use the notation h = hPCA when emphasizing the contrast between
PCA and JSE estimates. Next, we explore the properties of hJSE, which
stochastically dominates hPCA as an estimate of ground truth in the limit
as p→ ∞ under Standing Assumptions A1–A3.

Recall the JSE shrinkage constant cJSE and estimator hJSE are defined by

cJSE =
ℓ2

λ2(1− |hC |2)
, (29)

HJSE = cJSEhC + (1− cJSE)h, (30)

and

hJSE = HJSE/|HJSE |. (31)

Formulas (29), (30) and (31) are identical to formulas (5), (6) and (7) in
Section 4.2.

We can show that

lim
p→∞

cJSE =
1− ψ2

∞
1− ψ2

∞ cos2Θ
=

δ2

σ2B2|X|2 sin2Θ + δ2
. (32)

(If now n is taken to infinity, cJSE tends to zero and both h and hJSE converge
to b.)

We normalize hJSE for convenience; all that matters is the 1-dimensional
subspace it spans, as an estimate of the eigenspace span(b). The angle between
these subspaces is our measure of error.

Define

ϕ2∞ ≡ ψ2
∞

1− ψ2
∞

=
σ2B2|X|2

δ2
= lim
p→∞

λ2 − ℓ2

ℓ2
. (33)
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Theorem 2 Suppose the limit

Θ = lim
p→∞

∠(b, C) (34)

exists.
Then, under the standing assumptions A1 - A3, the limits

θJSE = lim
p→∞

∠(hJSE, β) and θPCA = lim
p→∞

∠(hPCA, β) (35)

exist almost surely, and the asymptotic improvement of hJSE over hPCA as an
estimate of the leading population eigenvector is

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
≥ 0. (36)

In particular, JSE is never worse asymptotically than PCA, and:

– if Θ < π/2, then θJSE < θPCA almost surely,
– if Θ = 0, then hJSE converges to b and JSE is a consistent estimator, and
– if Θ = π/2 then hJSE converges to hPCA and θJSE = θPCA.

The right hand side of (33) is the ratio of the factor variance to the specific
variance in (14). The formula highlights the relationship between the relative
eigengap and the factor model parameters. Taken together, (21) and (33) imply

ψ2
∞ =

ϕ2∞
1 + ϕ2∞

. (37)

One consequence of Theorem 2 is that the angle between hJSE and h is
strictly positive in the limit when Θ < π/2. Notice also that this theorem is
independent of any optimization problem.

The true asymptotic improvement cos2(θJSE)−cos2(θPCA) cannot be com-
puted from finite data because it depends on the unobservable vector b. An
observable indicator I is:

I(∠(h,C), ϕ2p) =
cos2 ∠(h,C)

(ϕ4p + ϕ2p) sin
2 ∠(h,C)

. (38)

It follows from equations (26) and (36) that

lim
p→∞

I(∠(h,C), ϕ2p) = cos2(θJSE)− cos2(θPCA) (39)

almost surely.
The k-dimensional target space C may arise in different ways. If chosen at

random independently of b, we expect C to be asymptotically orthogonal to b
as the dimension p tends to infinity (see, for example, Hall et al. [23] and Ahn
et al. [1]). In this Θ = π/2 case, JSE provides no advantage.

The condition Θ < π/2 has a Bayesian interpretation in which C represents
some mild prior information about the direction of b: namely, that b is not
orthogonal to C.
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This condition arises naturally in financial applications when C enters as
the span of k constraint vectors. An often used constraint is the full investment
condition, w⊤e = 1, where e = (1, 1, 1, . . . , 1)⊤. Since β will typically have
positive mean in equity applications, we obtain

cos∠(b, C) ≥ ⟨b, e/|e|⟩ = 1

|β|√p
∑

βi =

√
p

|β|

(
1

p

∑
βi

)
> 0 (40)

asymptotically, and so Θ < π/2 and JSE will improve on PCA by (36).

5.2 Estimating Constrained Minimum Variance

We return to the optimization problem (1),

minw
1

2
w⊤Σw (41)

subject to C⊤w = a,

introduced in Section 1, where we have written the constraints in matrix nota-
tion. The columns of the p×k matrix C are the k constraint vectors C1, . . . , Ck
and a = (a1, . . . , ak) ∈ Rk is the non-zero vector of constraint values, fixed for
all p. As before, the symbol w = w(p) ∈ Rp is a vector of weights defining the
portfolio holdings.

We apply the results in Section 5.1 to estimate a p × p covariance matrix
Σ = ΣJSE for use in (41). The matrix ΣJSE depends on the constraint matrix
C; its core is hJSE, the leading eigenvector of the sample covariance matrix,
shrunken by a prescribed amount in the direction of C. To avoid visual clutter,
we suppress the dependence of ΣJSE and hJSE on C when possible, but the
dependence of ΣJSE on C is a central idea of this section.

When data follow the factor model (14), the solutions to (41) with the
estimates ΣJSE form a sequence (in p) of optimized portfolios wJSE whose
true variance tends to 0 almost surely as p tends to infinity, a property shared
by the optimal solution to (41).

5.2.1 Constraints

We assume without loss of generality that the constraint matrix C has full
rank, and the entries of a are non-negative, with at least one positive entry.

We are interested in asymptotic estimation of the constrained minimum
variance as p tends to infinity with the number k of constraints fixed. When
it is required for clarity, dependence on p is indicated with a superscript. To
engage the theory of the previous sections, we accept the standing assumptions
A1 - A3 on the underlying factor model described there. In addition, we wish
to avoid degeneracy of the constraints C⊤w = a in the asymptotic limit, so
we add the following two natural assumptions:
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A4. For each j = 1, . . . , k, the columns C
(p)
j of C(p) ∈ Rp×k satisfy:

a. supp≥1 |C
(p)
j |∞ <∞, where |.|∞ denotes the maximum norm, and

b. the sequence |C(p)
j |2/p tends to a positive finite limit as p→ ∞.

A5. The constraint matrix C does not become singular in the high dimensional
limit:

lim inf
p→∞

det(C⊤C)/pk > 0. (42)

Assumption A4 is similar to A3, and says that the average squared entry
of the columns doesn’t tend to zero or infinity with p. Assumptions A4 and A5
mean that the angle between any two columns of C is bounded above zero, and
the singular values of C are bounded above and below by positive constants
times p.

The simplest example is the case of the fully invested portfolio, where
k = 1, there is a single constraint e⊤w = 1, where e is the column of 1’s, and
C is the column matrix e. Since |e|2 = p, A4 is satisfied; C⊤C is equal to the
1× 1 matrix with determinant p, so A5 is satisfied.

5.2.2 Estimating ΣJSE

The constraint matrix C and vector of constraint values a in the optimiza-
tion (41) are known to the user, but the covariance matrix Σ must be esti-
mated. When data follow the one factor model (11), the population covariance
matrix Σ takes the form specified in (15):

Σ = η2bb⊤ + δ2I. (43)

As a consequence of this structure, an estimate of Σ amounts to estimates of
two positive scalars, η2 and δ2, and a unit-length p-vector b. The estimates we
develop are in terms of the sample covariance matrix S of n observed returns
to p securities. We build our estimates from the trace of S, tr(S), the leading
eigenvalue λ2 of S, and its corresponding leading eigenvector h.

Our estimates of η2 and δ2 are guided, under our standing assumptions, by
the relationships between the eigenvalues of S and the factor model structure
in the HL regime. These relationships have been identified in numerous sources;
as described in Lemma 4 below, they are summarized by the almost sure limits

lim
p→∞

(λ2 − ℓ2)/p = σ2B2|X|2/n (44)

and

lim
p→∞

ℓ2/p = δ2/n. (45)

Recall from assumption A3’.b that η2/p→ σ2B2 as p→ ∞, and, while X
itself is not observed, we know E[|X|2/n] = 1. Therefore we estimate η2 with
λ2−ℓ2. Noting (45), we estimate δ2 with nℓ2/p. Both λ2 and ℓ2 are observable
from the eigenvalues of the sample covariance matrix S. We therefore have an
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true parameter estimate(s)
η2 λ2 − ℓ2

δ2 nℓ2/p
b v, h, hJSE

Table 1: Parameters of a covariance matrix in a one-factor model.

estimated covariance matrix, depending on the choice of unit vector v, of the
form

Σv = (λ2 − ℓ2)vv⊤ + (n/p)ℓ2I. (46)

It remains to specify an estimator v of b. We examine two competing estimates
of Σv: ΣPCA and ΣJSE obtained by setting v to h and hJSE, respectively. These
estimates differ only in the leading eigenvector. A summary of our parameter
estimates is in Table 1.

5.2.3 Variance and the optimization bias

For any choice of principal unit eigenvector v, let wv denote the unique mini-
mizer of w⊤Σvw subject to the known constraint C⊤w = a. We are interested
in the true variance Vv = (wv)⊤Σwv of the optimized portfolio wv.

The unique solution wv is obtained via the first order conditions for the
Lagrangian

L(w,Λ) = (1/2)w⊤Σvw + (a⊤ − w⊤C)Λ, (47)

where Λ ∈ Rk is the vector of Lagrange multipliers (“shadow prices”). We
have

Λv = (C⊤(Σv)−1C)−1a (48)

wv = (Σv)−1CΛv = (Σv)−1C(C⊤(Σv)−1C)−1a. (49)

We use the notation ∠(v, C) to denote the angle between v and col(C),
cos(v, C) to denote the cosine of that angle, and similarly for other trigono-
metric functions of the angle.

Since C has rank k, the k × k matrix C⊤C is invertible, so we may define
the k×p pseudo-inverse C† by (C†)⊤ = C(C⊤C)−1, also of full rank. Therefore
(C†)⊤a is nonzero whenever a ∈ Rk is nonzero.

Definition 1 For any nonzero a ∈ Rk and unit vector v ∈ Rp satisfying

|vC | = cos(v, C) < 1, (50)

define the unit vector

α =
(C†)⊤a

|(C†)⊤a|
(51)

and define the optimization bias associated to v, C, and a by

Ep(v, C, a) =
⟨b, α⟩ (1− |vC |2)− ⟨b, v − vC⟩ ⟨v, α⟩

1− |vC |2
, (52)

where, as usual, b denotes the leading population unit eigenvector.
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The optimization bias does not depend on the magnitude of a, but only on
α and the subspace col(C), and is equal to zero when v = b:

E(b, C, a) = 0. (53)

As described below, the optimization bias represents a measure of the variance
error when v is used in place of the true principal eigenvector b.

In the simplest example of the fully invested portfolio, k = 1, a = 1 and
C is the column vector e of ones, so that e⊤w = 1. If we choose v = h, the
leading sample eigenvector, a computation shows

Ep(h, e, 1) =
⟨b, e/|e|⟩ − ⟨b, h⟩ ⟨h, e/|e|⟩

1− ⟨h, e/|e|⟩2
, (54)

which agrees with the optimization bias originally introduced for this case in
Goldberg et al. [20].

Proposition 3 Let C, h be as above and let hC denote the orthogonal projec-
tion of h onto C. If 0 < Θ < π/2, then

lim sup
p→∞

|hC | < 1 (55)

and

lim sup
p→∞

|(hJSE)C | < 1. (56)

Theorem 3 Under assumptions A1-A5 above, let v ∈ Rp be a unit vector for
each p and satisfying

lim sup
p→∞

|vC | < 1. (57)

Then, for n, k fixed,

0 < lim sup
p→∞

η2|(C†)⊤a|2 <∞, (58)

and the true variance V(wv) of the estimated portfolio wv is

V(wv) ≡ (wv)
⊤
Σwv = η2|(C†)⊤a|2Ep(v, C, a)2 +O(1/p) (59)

asymptotically as p→ ∞.

Because of Proposition 3, Theorem 3 applies to both v = h and v = hJSE.
When v = b, the optimization bias is zero and the true minimum variance is
asymptotically O(1/p). Otherwise, the limiting value of the optimization bias
E2
p controls the large-p variance of the estimated portfolio.

The next theorem states that ΣJSE dominates ΣPCA as measured by the
value of the true variance of the estimated portfolios wJSE and wPCA.
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Theorem 4 Under assumptions A1-A5 above, suppose also that the angle
between b and col(C) is asymptotically between 0 and π/2.

In addition, assume (by passing to a subsequence if needed) that

lim
p→∞

cos(∠(b, (C†)⊤a)) = lim
p→∞

⟨b, α⟩ ≡ ⟨b, α⟩∞ exists. (60)

Then, almost surely,
lim
p→∞

Ep(hJSE, C, a)2 = 0. (61)

Moreover, if ⟨b, α⟩2∞ > 0, then

lim
p→∞

Ep(h,C, a)2 > 0. (62)

Consequently, if ⟨b, α⟩2∞ > 0, the true variance ratio

V(wJSE)

V(wPCA)
(63)

tends to zero asymptotically.

The previous two theorems tell us that V(wTRUE) and V(wJSE) tend to zero
as p→ ∞, but V(wPCA) usually has a positive limit. This means the variance
of wPCA is an arbitrarily large factor greater than the optimal variance as p
grows. The following lemma shows that the condition ⟨b, α⟩∞ ̸= 0 will typically
be satisfied when the vector a is unrelated to the other problem parameters.

Lemma 1 Assume A1-A5 and that the limiting angle Θ is less than π/2.
Suppose a does not belong to the orthogonal complement of the unit vector

lim
p→∞

C†b

|C†b|
∈ Rk. (64)

Then ⟨b, α⟩∞ is not zero.

6 Numerical examples

In this section, we describe the results of simulation experiments supporting
the results stated above. First, we illustrate (36), which asserts the stochas-
tic dominance of the improvement of hJSE over hPCA as an estimate of the
leading population eigenvector. Then we illustrate the assertion that the ratio
of variances of portfolios wJSE and wPCA tends to zero asymptotically almost
surely.

These experiments serve two purposes. The first is to show that the asymp-
totic properties described in the theorems, such as equation (36), are approx-
imately realized when the dimension p has realistic values much less than
infinity. The results reported here are for p = 3000, but we have observed
similar outcomes for p as low as 40.
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parameter value(s) description

cos θ 0.969, 0.707, 0.174 cosine of the angle between β and 1
β∗ N(cos θ, sin2 θ) factor loadings
σ 0.16 annualized factor volatility
δ 0.60 annualized specific volatility
f N(0, σ2) factor return
z mean 0, st dev δ specific return

cosΘ 0.97, 0.75, 0.49 cosine of the angle between β and C
p 3000 number of securities
n 24 number of observations
k 2 number of constraints
µ 0.01 (β +N(0.5, 2)) 3000× 1 vector of expected returns
C (1, µ) 3000× 2 matrix of constraint vectors
m 0.01 monthly expected target return

a (1,m)⊤ constraint target vector

Table 2: Simulation parameters

Second, the variance experiments described in Section 6.3 illustrate the
observed strength of the effect of JSE on the variance ratio for this particular
choice of parameters. Since we do not have theoretical results about the asymp-
totic rate of convergence of the true variance ratio, these experiments confirm
that JSE can be of material use in at least some reasonable circumstances for
a realistic choice of dimension.

6.1 Calibration

We specify the parameters of the return generating process (11), repeated here
for convenience,

r = βf + z, (65)

the p× k matrix of constraint vectors C and k vector of constraint targets a.
We construct β so that the angle θ with 1 is a prescribed value and |β|2/p =

1. First draw the components of a vector β∗ from the normal distribution
N(cos θ, sin2 θ). Let m = m(β∗) be the realized mean of the entries of β∗, and
s = s(β∗) the realized standard deviation. Define

c1 =
sin θ

s
and c2 = cos θ − sin θ

s
m, (66)

and let
β = c1β

∗ + c21. (67)

Making use of the identity

|β|2 = p(m(β)2 + s(β)2), (68)

a calculation shows that |β|2/p = 1 and the angle between β and 1 is exactly θ.
Even though the factor loadings β are deterministic in our model, we specify
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them by drawing from a normal distribution as described next. The calibration
of the factor model generating returns is completed by setting the factor return
f to be normally distributed with mean 0 and annualized standard deviation
σ to be 16%, and specific return z to be normally distributed with mean 0 and
annualized standard deviation δ to be 60%. The observed qualitative results
do not depend on the choice of normal distribution for specific returns; we
observe similar outcomes for heavier-tailed specific returns, including double
exponential and student-t distributions.

Next, we construct an expect return vector µ so that

µi = βi + ϵi

where ϵi is drawn from a normal distribution with mean 0.5 and variance 2.0,
N(0.5, 2.0). Thus, securities with higher betas tend to have higher expected
returns. The target expected return is m = 0.01.

The two-dimensional shrinkage target C is the span of p-vectors µ and 1.
The angle Θ between β and C is determined by the specification of β and µ.
The 2-vector of constraints targets is a = (1,m)⊤.

Simulation parameters are listed in Table 2.

6.2 Stochastic dominance of hJSE over hPCA

Under Standing Assumptions A1–A3, formula (36) provides an exact expres-
sion for the difference between the squared cosines of θPCA and θJSE:

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
. (69)

This magic formula for the limiting difference between angles ∠(β, hPCA) and
∠(β, hJSE) as p → ∞ is positive almost surely when Θ < π/2. It is expressed
in terms of two quantities: the angle between the leading eigenvector and the
shrinkage target, Θ = ∠(β,C), and the relative eigengap ϕ2.

How well does the asymptotic guidance provided by the magic formula
work for finite p? For p = 3000, we report

cos2(∠(hJSE, b))− cos2(∠(hPCA, b))

as well as the asymptotic limit of that difference as p tends to infinity, given
by the magic formula. The results of 10,000 simulations are shown in Figure 1
for small, medium and large angles, cos(Θ) = 0.969, 0.707 and 0.174.

In all 10,000 simulations, the improvement was positive, and it declined as
the angle Θ increased. This is consistent with the asymptotic guidance given
by the magic formula, which is decreasing in Θ.
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Fig. 1: Boxplots for p = 3000 of 10,000 simulations of the difference between
cos2

(
∠(hPCA, b)

)
and cos2

(
∠(hJSE, b)

)
(finite difference), the asymptotic limit

of this difference (magic formula) as well as the path-by-path difference be-
tween them (difference). The small, medium and large panels correspond to
cosΘ = 0.969, 0.707 and 0.174, Return data follow (11) with parameters spec-
ified in Table 2.

6.3 Stochastic dominance of wJSE over wPCA

We report ratios of variances of portfolios wPCA, wJSE and wTRUE optimized
with (1) where Σ is set to ΣPCA, ΣJSE and ΣTRUE = Σ, the true (population)
covariance matrix. The portfolio wTRUE and covariance matrix ΣTRUE are
independent of state.

The blue and red boxplots in Figure 2 illustrate the variance comparison of
PCA and JSE portfolios: those estimated using ΣJSE have substantially lower
true variance for small and medium angles between b and C. As expected,
improvement is best when the angle between b and C is small, and declines as
this angle increases toward π/2. (In the limit where b is orthogonal to C, we
expect no improvement.)

These results are displayed for p = 3000; they are consistent with the
asymptotic guarantees that V(wJSE)/V(wPCA) and V(wTRUE)/V(wPCA) tend
to 0 almost surely as p tends to infinity.
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Fig. 2: Boxplots for 10,000 simulations of ratios of variances of optimized and
optimal portfolios, wPCA, wJSE and wTRUE, for p = 3000. The small, medium
and large panels correspond to cosΘ = 0.969, 0.707 and 0.174. The expected
return target is m = 0.01. Return data follow (11) with parameters specified
in Table 2.

The asymptotic behavior of V(wTRUE)/V(wJSE) is not known theoretically,
but related experiments suggest it may be close to 1 when the angle Θ between
b and C is small.

7 Conclusion

In this paper, we extend the literature on James-Stein for eigenvectors (JSE),
a data driven method for improving the accuracy of a high-dimensional, noisy
leading sample eigenvector. For a spiked factor model, prior work guarantees
that JSE shrinkage toward a one-dimensional target improves on the leading
sample eigenvector as an estimate of ground truth. We show those guaran-
tees persist when we shrink toward a target of dimension greater than one.
This generalization greatly enlarges the range of applications of JSE, which
can now be used to be build strategy-specific covariance matrices suitable
for quadratic optimization with any number of linear constraints. We provide
easy-to-code formulas for these covariance matrices as well as a theoretical
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guarantee that they lead to relatively low-variance solutions to the optimiza-
tion. The connection between JSE and the variance of optimized portfolios
is via the optimization bias, which was formulated for minimum variance in
earlier work and extended to take account of arbitrary linear constraints in
this article. The optimization bias asymptotically controls the variance of op-
timized portfolios, and it tends to zero as the number of securities tends to
infinity under JSE optimization.

Also new in this article is a formula for the degree of improvement of JSE
over the sample leading eigenvector. The formula depends only on sample
eigenvalues and the angle between the leading population eigenvector and the
target subspace. Simulations suggest that the asymptotic guarantees apply in
situations of practical relevance.

Our research opens a range of intriguing possibilities and questions. These
include the use of JSE to generate low-variance solutions to quadratic opti-
mization in a multi-factor setting, which has been shown effective in numerical
experiments. Another direction forward is to pursue the theoretical connec-
tions between JSE and concentration of measure in high dimensional spheres,
understanding of which may provide new, deeper perspectives on these pow-
erful and often counter-intuitive results.
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8 Appendix: Proofs

We provide mathematical arguments verifying the results stated above. We
begin with some preliminary results needed for the subsequent proofs.

Lemma 2 (Triangular Strong Law of Large Numbers, Tao [41])

Let (Xi,p)i,p∈N,i≤p be a triangular array of scalar random variables such
that for each p, the row X1,p, . . . , Xp,p is a collection of independent random
variables. For each p, define the partial sum Sp = X1,p + . . . +Xp,p. Assume
all the Xi,p have mean µ.

– If supi,pE|Xi,p|2 <∞, then Sp/p converges in probability to µ.
– If supi,pE|Xi,p|4 <∞, then Sp/p converges almost surely to µ.

Lemma 3 Let {zi : i ∈ N} be a sequence of independent mean-zero random
variables with bounded fourth moments, and let Z(p) = (z1, . . . , zp) ∈ Rp for

each p. Let u(p) ∈ Rp, p ∈ N, be a sequence of unit vectors and let u
(p)
i denote

the i-th coordinate of u(p).

Assume

sup
i,p

{p|u(p)i |2 : i = 1, . . . , p; p ∈ N} <∞. (70)
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Then
u(p)⊤Z(p)

√
p

→ 0 (71)

almost surely as p→ ∞.

Proof of Lemma 3. Apply Lemma 2 with Xi,p =
√
pu

(p)
i zi and Sp = X1,p+

. . .+Xp,p. By the assumptions, theXi,p have mean zero and uniformly bounded
fourth moments. By Lemma 2 with µ = 0,

u(p)⊤Z(p)

√
p

=
1

p
Sp (72)

converges to zero almost surely. ⊓⊔
The following is a version of Proposition 5.2 in Gurdogan and Kercheval

[21], which remains true with a similar proof under our slightly adapted hy-
potheses:

Proposition 4 Under assumptions A1 - A3, let L = Lp ⊂ Rp be a sequence
of linear subspaces with constant dimension and independent of the random
variables z. Then

1. lim
p→∞

(
⟨h, hL⟩ − ⟨h, b⟩2 ⟨b, bL⟩)

)
= 0,

2. lim
p→∞

(
⟨b, hL⟩ − ⟨h, b⟩ ⟨b, bL⟩)

)
= 0, and

3. lim
p→∞

|hL − ⟨h, b⟩ bL| = 0.

In particular, part 3 implies that ∠(hL, bL) → 0 as p→ ∞.

8.1 Proof of Proposition 1

Proposition 1. Under assumptions A1 - A3, the limits

θPCA = lim
p→∞

∠(h, b) and ψ2
∞ = lim

p→∞
ψ2
p (73)

exist almost surely, and

cos θPCA = ψ∞ ∈ (0, 1). (74)

Recall that we have the sample covariance matrix S = Y Y ⊤/n with unit
leading eigenvector h, choosing the sign so that ⟨h, b⟩ > 0, and leading eigen-
value λ2.

Define χ = χp ∈ Rn such that h and χ are the left and right singular
vectors of Y/

√
n, respectively, with singular value λ > 0. We take |χ| = 1

and specify the sign of χ so that (χ,X) > 0. The vector X ∈ Rn does not
depend on p, and for simplicity in the notation we suppress the dependence
of h, b, λ, χ, Z, Y on p.
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Since h, χ, and Y are related by

λh = Y χ/
√
n, (75)

by equation (20) we have

λh =
ηbX⊤χ+ Zχ√

n
. (76)

Taking the dot product of both sides with b and λh/p yields the following
identities:

⟨h, b⟩ =
(
ηX⊤χ

λ
√
n

)
+

(
b⊤Z
√
p

)(
χ
√
p

λ
√
n

)
, (77)

λ2/p =
η2(X⊤χ)2

np
+
χ⊤Z⊤Zχ

np
+ 2(X⊤χ)

(
b⊤Z
√
p

)(
ηχ

n
√
p

)
. (78)

Applying the independence and distributional assumptions on Z with the
strong law of large numbers, we may deduce that Z⊤Z/p tends almost surely
to δ2I as p → ∞. This fact, the boundedness of η2/p, and Lemma 3 applied
to b in equation (78) show that λ2/p is eventually bounded between zero and
infinity almost surely. Applying Lemma 3 to b in the last term of equation
(77), we obtain

⟨h, b⟩∞ = lim
p→∞

(
ηX⊤χ

λ
√
n

)
(79)

provided the limit in (79) exists almost surely.
Recall ℓ2p is the average of the non-zero sample eigenvalues less than λ2. The

proof of the following Lemma is essentially identical to the proof of Lemma
A.2 of Goldberg, et. al.[20]:

Lemma 4 Under assumptions A1 - A3 and notation as above, we have the
following limits almost surely:

lim
p→∞

λ2/p = σ2B2|X|2/n+ δ2/n, (80)

lim
p→∞

χp = X/|X|, and (81)

lim
p→∞

ℓ2p/p = δ2/n. (82)

Applying Lemma 4 to (79), we obtain

⟨h, b⟩∞ = lim
p→∞

ηXTχ

λ
√
n

= lim
p→∞

(
η
√
p

)(√
p

λ

)(
X⊤χ√
n

)
(83)

= σB

(
1√

σ2B2|X|2/n+ δ2/n

)(
|X|√
n

)
(84)

=

√
σ2B2|X|2

σ2B2|X|2 + δ2
∈ (0, 1). (85)
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By Lemma 4,

ψ2
p =

λ2 − ℓ2p
λ2

, (86)

converges to

ψ2
∞ =

σ2B2|X|2

σ2B2|X|2 + δ2
(87)

and hence ⟨h, b⟩∞ = ψ∞. This completes the proof of Proposition 1.

8.2 Proof of Theorem 1

Theorem 1. Suppose the angle ∠(b, C) between b and C tends, as p → ∞, to
a limit

Θ = lim
p→∞

∠(b, C). (88)

Then under assumptions A1 – A3, the limit

Θh = lim
p→∞

∠(h,C) (89)

exists almost surely, and

cosΘh = cos θPCA · cosΘ = ψ∞ · cosΘ. (90)

In particular, if 0 < Θ < π/2, then

0 < cosΘh < cos θPCA (91)

and

0 < cosΘh < cosΘ. (92)

Proof. We apply Proposition 4(1) with L = C, noting that ⟨h, hC⟩ =
cos∠(h,C) and ⟨b, bC⟩ = cos∠(b, C). Since ⟨h, b⟩ → ψ∞ from Proposition 1
and cos∠(b, C) → cosΘ by hypothesis, equation (90) follows immediately. ⊓⊔

8.3 Proof of Theorem 2

Theorem 2. With notation as above, suppose the limit

Θ = lim
p→∞

∠(b, C) (93)

exists.
Then, under the standing assumptions A1 - A3, the limits

θJSE = lim
p→∞

∠(hJSE, β) and θPCA = lim
p→∞

∠(hPCA, β) (94)
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exist almost surely, and the asymptotic improvement of hJSE over hPCA as an
estimate of the leading population eigenvector is

cos2(θJSE)− cos2(θPCA) =

(
1

ϕ2∞ + 1

)
cos2Θ

ϕ2∞ sin2Θ + 1
. (95)

If Θ = π/2, then hJSE converges to hPCA, θJSE = θPCA and there is
no improvement, while if Θ = 0 then hJSE converges to b. In other cases,
θJSE < θPCA almost surely, with the improvement given by (36).

Proof. The existence of the limit θPCA has already been established in
Proposition 1. The JSE estimator hJSE relative to the subspace C is an example
of the “MAPS” estimator defined and studied in Gurdogan and Kercheval [22].
We make further use of some results in that paper, first defining for each p,
the oracle estimator ho = ho(C) as follows. Let

U = span(h,C),

and define the unit vector

ho =
bU
|bU |

. (96)

The oracle ho is the normalized orthogonal projection of b onto the linear
subspace spanned by h and C. We use the name “oracle” because, unlike
hJSE, it is not observable from the data, but requires knowledge of b, precisely
the quantity we are trying to estimate.

The proof of the following proposition is a simpler version of the proof of
Theorem 5.1 of Gurdogan and Kercheval [22], for slightly adjusted assump-
tions:

Proposition 5 Under assumptions A1 - A3,

lim
p→∞

|ho − hJSE| = 0 (97)

almost surely.

Next, let

u =
h− hC

||h− hC ||
Then U ≡ span(h,C) = span(u,C) and u is a unit vector orthogonal to C
(assuming, with probability one, that h does not belong to C). Hence

bU = bC + ⟨b, u⟩u,

and so

⟨ho, b⟩2 =
〈
bU
|bU | , b

〉2
= |bU |2 (98)

= |bC |2 + ⟨u, b⟩2 (99)

= |bC |2 + (⟨h,b⟩−⟨hC ,b⟩)2
1−|hC |2 . (100)



Portfolio optimization via strategy-specific eigenvector shrinkage 29

All the terms in the right hand side have previously been show to have
limits as p→ ∞:

|bC |2 → cos2Θ, (101)

|hC |2 → ψ2
∞ cos2Θ, (102)

⟨h, b⟩ → ψ∞ = cos θPCA, (103)

⟨hC , b⟩ → ψ∞ cos2Θ. (104)

Therefore limp→∞ ⟨ho, b⟩2 exists and by Proposition 5,

lim
p→∞

⟨ho, b⟩2 = lim
p→∞

〈
hJSE, b

〉2
= cos2 θJSE. (105)

Writing ψ2
∞ = ψ2 and ϕ2∞ = ϕ2 for the remainder of this proof only, and

recalling

ψ2 =
ϕ2

1 + ϕ2
, (106)

in the limit,

cos2 θJSE − cos2 θPCA = cos2Θ + ψ2(1−cos2 Θ)2

1−ψ2 cos2 Θ − ψ2 (107)

= (1− ψ2)2 cos2 Θ
1−ψ2 cos2 Θ (108)

=
(

1
ϕ2+1

)
cos2 Θ

ϕ2 sin2 Θ+1
. (109)

This is positive when Θ < π/2. In case Θ = π/2, Theorem 1 implies that
hC tends to zero and hJSE tends to h = hPCA, so θJSE = θPCA and JSE
provides no improvement over PCA.

If Θ = 0, it follows from equation (107) that θJSE = 0 and so hJSE tends
to b itself.

⊓⊔

8.4 Proof of Proposition 3

Proposition 3. Let C, h be as above and hC denote the orthogonal projection of
h onto C. If 0 < Θ < π/2, then

lim sup
p→∞

|hC | < 1 (110)

and

lim sup
p→∞

|(hJSE)C | < 1. (111)
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Proof From part 3 of Proposition 4 with L = C, we have, in the asymptotic
limit,

|hC |2 = ⟨h, b⟩2∞ |bC |2 = ψ2
∞|bC |2. (112)

This establishes the first statement. For the second, it suffices to show that
the angle ∠(hJSE, C) is positive in the limit.

We can write

hJSE =
Γph+ hC
|Γph+ hC |

(113)

where

Γp =
ψ2
p − |hC |2

1− ψ2
p

. (114)

Since ∠(hJSE, C) = ∠(hJSE, hC), it suffices to show that

lim inf
p→∞

Γp > 0. (115)

This follows from equation (112) and the standing assumption that the angle
between b and C is asymptotically strictly between 0 and π/2.

8.5 Proof of Theorem 3

As a reminder, our assumptions regarding our factor model r = βf + z and
our linear constraints C⊤w = a are:

A1. The random variable f is non-zero almost surely, and has mean zero, finite
fourth moment, and variance σ2 > 0.

A2. The random variables {z(p)i : i = 1, 2, . . . , p; p > 1} are i.i.d. and have mean
zero, finite fourth moment, and variance δ2 > 0.

A3. The vector sequence {β(p) : p > 1} satisfies the following asymptotic non-
degeneracy conditions:

a. supi,p{|β
(p)
i | : i = 1, 2, . . . , p; p > 1} <∞, and

b. the sequence |β(p)|2/p tends to a finite limit B2 > 0 as p→ ∞.
A4. The constraint matrix C ∈ Rp×k satisfies the following asymptotic non-

degeneracy conditions:
a. suppmax{|Cij | : 1 ≤ i ≤ p, 1 ≤ j ≤ k} <∞, and
b. the sequence |Cj |2/p tends to a finite limit as p→ ∞, for j = 1, . . . , k.

A5. the constraint matrix C does not become singular in the high dimensional
limit: det(C⊤C)/pk tends to a finite positive constant as p→ ∞.

Theorem 3. Under assumptions A1-A5 above, let v ∈ Rp be a unit vector
for each p and satisfying

lim sup
p→∞

|vC | < 1. (116)

Recall that wv denotes the unique vector in Rp minimizing w⊤Σvw subject to
the constraint C⊤w = a.
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Then, for n, k fixed, the true variance of the estimated portfolio wv is

V(wv) ≡ (wv)⊤Σwv = η2|(C†)⊤a|2Ep(v, C, a)2 +O(1/p) (117)

asymptotically as p→ ∞.
Furthermore,

0 < lim sup
p→∞

η2|(C†)⊤a|2 <∞. (118)

Proof. Recall that

Σv = (λ2 − ℓ2)vv⊤ + (nℓ2/p)I,

and define

κ2 =
nℓ2/p

λ2 − ℓ2
,

noting that κ2 = O(1/p).
A computation making use of the Woodbury identity shows that

wv =
(
I +

(vC − v)v⊤

1 + κ2 − |vC |2
)
(C†)⊤a. (119)

Let C = UZV be the singular value decomposition of C, where V is k× k
orthogonal, Z is a k × k diagonal matrix with entries equal to the singular
values of C, and U is a p × k matrix with orthonormal columns. This means
(C†)⊤ = UZ−1V .

Assumptions A4 and A5 imply that the squared singular values of C are
bounded above and below by a constant times p. Therefore the singular values
of C† are bounded above and below by a constant times 1/

√
p. Since η2 = O(p),

this implies
0 < lim sup

p→∞
η2|(C†)⊤a|2 <∞,

which establishes the last assertion of the theorem.
To obtain an expression for true variance, first notice that

V(wv) = (wv)⊤Σwv = η2 ⟨wv, b⟩2 + δ2|wv|2. (120)

For the second term, it follows from A4 and C⊤wv = a that |wv|2 ≤
O(1/p). It remains to analyze the first term.

Making use of equation (119) and recalling

α = (C†)⊤a/|(C†)⊤a|, lim sup
p→∞

|vC | < 1, and κ2 = O(1/p), (121)

we have

η2 ⟨wv, b⟩2 = η2|(C†)⊤a|2
(
⟨b, α⟩ − ⟨b,v−vC⟩⟨v,α⟩

1+κ2−|vC |2
)2

(122)

= η2|(C†)⊤a|2
( ⟨b,α⟩(1−|vC |2)−⟨b,v−vC⟩⟨v,α⟩

1−|vC |2
)2

+O(1/p) (123)

= η2|(C†)⊤a|2Ep(v, C, a)2 +O(1/p). (124)

⊓⊔
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8.6 Proof of Theorem 4

Theorem 4. Under assumptions A1-A5 above, suppose also that the angle be-
tween b and col(C) is asymptotically between 0 and π/2.

In addition, assume (by passing to a subsequence if needed) that

lim
p→∞

cos(∠(b, (C†)⊤a)) = lim
p→∞

⟨b, α⟩ ≡ ⟨b, α⟩∞ exists. (125)

Then, almost surely,

lim
p→∞

Ep(hJSE, C, a)2 = 0. (126)

Moreover, if ⟨b, α⟩2∞ > 0, then

lim
p→∞

Ep(h,C, a)2 > 0. (127)

Consequently, if ⟨b, α⟩2∞ > 0, the true variance ratio

V(wJSE)

V(wPCA)
(128)

tends to zero asymptotically.
Proof. By Proposition 3, we know that

lim sup |vC | < 1 (129)

for both v = h and v = hJSE. Hence the denominator of

Ep(v, C, a) =
⟨b, α⟩ (1− |vC |2)− ⟨b, v − vC⟩ ⟨v, α⟩

1− |vC |2
, (130)

stays away from zero in both cases. For the first statement (126) of the theorem,
it then suffices to show that the numerator

⟨b, α⟩ (1− |(hJSE)C |2)−
〈
b, hJSE − (hJSE)C

〉 〈
hJSE, α

〉
(131)

vanishes asymptotically. In light of Proposition 5, it suffices to show that
Ep(ho, C, a) = 0 for the oracle ho = bU/|bU | defined previously, where U =
span(h,C). This is a consequence of the fact that ⟨bC , α⟩ = ⟨b, α⟩ and following
straightforward identities:

⟨b, ho − (ho)C⟩ = |bU | − |bC |2
|bU | , (132)

⟨(ho)C , α⟩ = ⟨b,α⟩
|bU | , and (133)

|(ho)C |2 = |bC |2
|bU |2 . (134)

Turning to the second statement (127), first note that Proposition 4 applied
to the subspace L = span(α), implies, asymptotically, ⟨h, α⟩ = ⟨h, b⟩ ⟨b, α⟩,
where we omit the subscripts on ⟨h, α⟩∞, etc., to unclutter the notation. Also,
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setting L = C in the same proposition yields the asymptotic equalities |hC |2 =

⟨h, b⟩2 |bC |2, and ⟨b, hC⟩ = ⟨h, b⟩ ⟨b, bC⟩.
Making use of these facts and simplifying leads to

lim
p→∞

Ep(h,C, a) = ⟨b,α⟩(1−⟨h,b⟩2)
1−⟨h,b⟩2|bC |2 (135)

=
⟨b,α⟩(1−ψ2

∞)
1−ψ2

∞|bC |2 . (136)

When E(h,C, a) is positive but E(hJSE, C, a) tends to zero, equation (117)
implies that V(wPCA) remains bounded above zero while V(wJSE) tends to
zero. This establishes the last claim.

⊓⊔

8.7 Proof of Lemma 1

Lemma 1: Assume A1-A5 and that the limiting angle Θ is less than π/2.
Suppose a does not belong to the orthogonal complement of the unit vector

lim
p→∞

C†b

|C†b|
∈ Rk. (137)

Then ⟨b, α⟩∞ is not zero.
We express the singular value decomposition of C as

C(p) = U (p)Z(p)V (p), (138)

where Z = Z(p) is a k × k diagonal matrix with diagonal entries equal to the
positive singular values s1, s2, . . . , sk of C; V = V (p) is k × k orthogonal, and
U = U (p) is p× k orthonormal. Note (C†)⊤ = UZ−1V .

Assumptions A4 and A5 imply, for each j, that s2j/p is bounded away from
zero and infinity. By taking subsequences if necessary, we may assume that
(1/

√
p)Z(p) and V (p) tend to k× k limits Z∞ and V∞, respectively, where V∞

is orthogonal and Z∞ is diagonal with positive diagonal entries.
By taking a further subsequence if needed, we assume that the inner prod-

uct U⊤b tends to a non-zero limit (U⊤b)∞ ∈ Rk as p→ ∞.
A short calculation shows

|(C†)⊤a|2 =
〈
Z−2V a, V a

〉
(139)

and 〈
b, (C†)⊤a

〉
=
〈
C†b, a

〉
=
〈
Z−1U⊤b, V a

〉
. (140)

Hence 〈
b, (C†)⊤a

〉
|(C†)⊤a|

=

〈
Z−1U⊤b, V a

〉√
⟨Z−2V a, V a⟩

→
〈
Z−1
∞ (U⊤b)∞, V∞a

〉√〈
Z−2
∞ V∞a, V∞a

〉 . (141)

This limit is nonzero whenever a does not belong to the orthogonal com-
plement of the non-zero vector V ⊤

∞Z
−1
∞ (U⊤b)∞.

⊓⊔
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