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Abstract

We examine the behavior of mortgage borrowers over several economic cycles using

an unprecedented dataset of origination and monthly performance records for over 120

million mortgages originated across the US between 1995 and 2014. Our deep learning

model of multi-period mortgage delinquency, foreclosure, and prepayment risk uncovers

the highly nonlinear influence on borrower behavior of an exceptionally broad range of

loan-specific and macroeconomic variables down to the zip-code level. In particular,

most variables strongly interact. Prepayments involve the greatest nonlinear e↵ects

among all events. We demonstrate the significant implications of the nonlinearities for

risk management, investment management, and mortgage-backed securities.

⇤Sirignano (jasirign@illinois.edu) is from the University of Illinois at Urbana-Champaign. Sadhwani
(apaar@google.com) is from Google Brain, and Giesecke (giesecke@stanford.edu) is from Stanford University.
The majority of this work was completed while Sirignano and Sadhwani were doctoral students at Stanford.

†The authors gratefully acknowledge support from the National Science Foundation through Methodology,
Measurement, and Statistics Grant No. 1325031 as well as from the Amazon Web Services in Education
Grant award. We are very grateful to Michael Ohlrogge, Andreas Eckner, Jason Su, and Ian Goodfellow for
comments. Chris Palmer, Richard Stanton, and Amit Seru, our discussants at the Macro Financial Modeling
Winter 2016 Meeting, provided insightful comments on this work, for which we are very grateful. We are
also grateful for comments from the participants of the Macro Financial Modeling Winter 2016 Meeting, the
7th General AMaMeF and Swissquote Conference in Lausanne, the Western Conference on Mathematical
Finance, the Machine Learning in Finance Conference at Columbia University, the Consortium of Data
Analytics in Risk Symposium, and seminar participants at Columbia University, UC Berkeley, Northwestern
University, New York University, UT Austin, Imperial College London, Fannie Mae, Freddie Mac, Federal
Housing Finance Administration, Federal Reserve Board, International Monetary Fund, Federal Reserve
Bank of San Francisco, Morgan Stanley, J.P. Morgan, Georgia State University, Payo↵, Bank of England,
and Winton Capital Management. We are also grateful to Powerlytics, Inc. for providing access to income
data. Luyang Chen provided excellent research assistance, for which we are very grateful.

1



1 Introduction

The empirical mortgage literature identifies a number of variables that help predict mortgage

credit and prepayment risk, including borrower credit score and income, loan-to-value ratio,

loan age, interest rates, and housing prices.1 To ensure econometric tractability, researchers

often impose restrictions on the empirical models they use to study the role of various

risk factors. Importantly, the relationship between factors and mortgage performance is

typically constrained to be of a pre-specified form, with the standard choice being linear.

The mortgage performance data, however, do not support such restrictions. They indicate

the presence of nonlinear e↵ects. For example, Figure 1 highlights the complex relationship

that exists between the empirical prepayment rate and the prepayment incentive, given by

the initial mortgage rate minus the market rate.2 Consider the sensitivity of prepayment

rates to changes in incentive, which is a measure of the economic importance of the incentive

variable. The sensitivity varies significantly, both in magnitude as well as sign, depending

on the incentive. The widely-used linear empirical models can be mis-specified because they

pretend the sensitivity is a constant. The sensitivity estimates generated by these models can

therefore misrepresent the influence of risk factors. This can make it di�cult to draw valid

economic conclusions from these models regarding the influence on borrower behavior of key

variables such as interest rates, unemployment, and housing prices, which play a major role

in housing finance markets and the wider economy.

This paper proposes a nonlinear approach to address this important issue. We develop

a deep learning model of mortgage credit and prepayment risk in which the relationship

between risk factors and loan performance is not predicated on a pre-specified form as in

prior empirical models. In our approach, this relationship is entirely dictated by the data

themselves, minimizing model mis-specification and bias of variable sensitivity estimates.

Any type of behavior is permitted, including nonlinear behavior such as interactions between

multiple variables. An unprecedented dataset of over 120 million mortgages enables us to

accurately estimate this behavior. The data include prime and subprime loans in more

than 30,000 zip-codes across the nation, a wide range of mortgage products, and detailed

origination and monthly performance records for each loan. We study over 3.5 billion loan-

month observations that span 1995 to 2014, and examine the role of a broad set of novel

and conventional risk factors, including loan and borrower-specific variables as well as time-

varying macroeconomic and demographic variables down to the zip-code level (see Tables 1,

5, and 7 for a complete list of variables).

1See, for example, Campbell & Dietrich (1983), Cunningham & Capone (1990), Curley & Guttentag
(1974), Deng, Quigley & Van Order (2000), Gau (1978), Green & Shoven (1986), Schwartz & Torous (1993),
Titman & Torous (1989), Vandell (1978), Vandell (1992), von Furstenberg (1969), Webb (1982), and others.

2The figure is based on the extensive loan performance data set described in Section 2.
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Figure 1: Empirical monthly prepayment rate vs. prepayment incentive.

Our empirical analysis reveals that many variables have a highly nonlinear influence on

borrower behavior which prior work does not address. Variable interactions, including those

between more than two factors, are found to represent a significant component of the nonlin-

ear e↵ects. An interaction between variables occurs when the sensitivity of loan performance

to a variable depends on other variables. Consider, for example, the impact of state unem-

ployment rates, which we find to have significant explanatory power for borrower behavior.

Figure 2 shows fitted conditional prepayment probabilities versus state unemployment rates,

for a borrower with a FICO credit score of 630 (the median for subprime borrowers in our

data set) as well as a borrower with a FICO score of 730 (the median for prime borrowers).

The relationship between prepayment and unemployment is highly nonlinear, and strongly

depends on the borrower’s credit score, indicating an interaction between unemployment and

credit score. All else equal, high-FICO borrowers are estimated to prepay at significantly

higher rates than low-FICO borrowers in all unemployment scenarios. The “prepayment

gap” between high- and low-FICO borrowers tends to widen as unemployment grows. With

low unemployment between 5 and 7 percent, low- and high-FICO borrowers are equally sen-

sitive to changes in unemployment. However, with moderate unemployment between 7 and

11 percent, low-FICO borrowers are significantly more sensitive to changes in unemployment

than high-FICO borrowers. While high-FICO borrower prepayment is essentially flat in this

unemployment range, low-FICO borrower prepayment decreases significantly with unem-

ployment rising from 7 to 11 percent. The prepayment sensitivities of high- and low-FICO

borrowers converge as unemployment rises above 11 percent.
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Figure 2: Fitted monthly prepayment probability vs. state unemployment.

Unemployment is found to interact in nontrivial ways with a range of other variables

including loan-to-value ratios, mortgage rates, and house price appreciation. The e↵ects are

not limited to prepayment risk but also pertain to the credit risk of a mortgage borrower.

For example, Figure 3 shows fitted conditional delinquency probabilities versus zip-code level

house price appreciation since loan origination, for two state unemployment scenarios. As

expected, the probability of a borrower to fall behind payment drops when house prices

appreciate and borrower equity increases in value. However, the behavior is not linear as

hypothesized in prior work examining the relation between mortgage delinquencies and house

prices. We find that the sensitivity of the delinquency rate to changes in house prices strongly

depends on the appreciation already realized. The higher that appreciation, the smaller is

the reduction in the delinquency rate in response to additional price increases. Moreover,

the behavior of the delinquency rate as a function of house price appreciation strongly

depends on state unemployment (an interaction e↵ect). Unsurprisingly, the delinquency

rate increases with state unemployment. Interestingly, however, when state unemployment

is high, the delinquency rate drops much more in response to an appreciation in house

prices than when unemployment is low. The gap between delinquency rates in di↵erent

unemployment scenarios narrows as house prices increase, and vanishes completely when

prices have doubled. This means that labor market conditions hardly matter for borrower

behavior after house prices have su�ciently appreciated. This, in turn, suggests that home

equity can insulate borrowers from labor market shocks.
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Figure 3: Fitted monthly delinquency probability vs. house price appreciation.

These and many of the other nonlinear relationships we uncover have important im-

plications for mortgage risk measurement and hedging, investment management, and the

analysis of mortgage-backed securities (MBS). We first show that addressing the nonlin-

earities in the data can significantly improve the accuracy of out-of-sample mortgage risk

forecasts not just at the individual loan level, but also at the mortgage pool level. Linear

model mis-specification tends to significantly degrade predictive performance, especially for

prepayment events which involve the strongest nonlinearities. This, in turn, suggests that

MBS pricing errors can be significantly reduced by incorporating the nonlinear e↵ects when

generating mortgage pool cash flows for valuation purposes. Second, we demonstrate that

incorporating nonlinear e↵ects also boosts the out-of-sample performance of buy-and-hold

mortgage investment strategies, which capitalize on the ability of an investor to identify

loans with a high likelihood of remaining current during the holding period. Finally, we

show that the accuracy of hedge sensitivity estimates can be greatly improved by addressing

the nonlinearities in the data. To see why that is, consider the case of the unemployment rate

discussed above. A 10% drop in unemployment from 7% to 6.3% a↵ects a given borrower

di↵erently than one from 10% to 9%. Due to multiple variable interactions, the sensitivity

also varies significantly across the entire borrower population. A linear formulation entails

the same flat sensitivity for every borrower, and therefore implies biased hedge sensitivities

when nonlinearities are present. The bias can render hedges of mortgage positions ine↵ective,

leaving an investor exposed to movements in risk factors.
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Our results are based on a deep learning model for mortgage states over multiple periods.

The model harnesses the unprecedented size of our sample set and the large number of

risk factors we examine (272 in total). It distinguishes between multiple states, including

current, 30 days past due, 60 days past due, 90+ days past due, foreclosure, REO (real-

estate-owned), and prepaid. The model o↵ers likelihood estimators for the term structure

of the full conditional transition probability matrix for these seven states. The estimators

incorporate the significant time-series variation of the explanatory variables over the 20-

year sample period, as well as their future movements. Out-of-sample tests indicate the

ability of the deep learning model to capture the stand-alone risk of a loan as well as the

substantial correlation that exists between the loans in a portfolio. The model’s predictive

accuracy suggests its usefulness for several important applications, including the valuation

and hedging of mortgage-backed securities as in Curley & Guttentag (1977), Schwartz &

Torous (1989) and Stanton & Wallace (2011).3

Our deep learning model for mortgage state probabilities is a nonlinear extension of

the familiar logistic regression model, which is widely used in the empirical mortgage lit-

erature4 and beyond. It can be thought of as a logistic regression of recursively specified

basis functions that nonlinearly transform the explanatory variables and are learned from

the data. The model can also be represented by an interconnected set of input, output, and

“hidden” nodes, which is often called a neural network.5 The input nodes represent the vari-

ables while the output nodes represent the conditional probabilities of the di↵erent mortgage

states. The hidden nodes connect the input and output nodes, and represent the nonlinear

transformations of input variables. Given enough hidden nodes, a neural network can ap-

proximate arbitrarily well the true mapping between explanatory variables and conditional

mortgage state probabilities.6 This of course includes approximating nonlinear relations and

interactions such as the product and division of variables.

In particular, we examine deep neural networks, which have multiple layers of hidden

nodes. Deep architectures enable sparser representations of complex relationships than shal-

low networks with few hidden layers.7 Our fitting experiments with networks of di↵erent

3The valuations generated by our model would harness the detailed data available for each of the under-
lying loans. This contrasts with alternative “top-down” valuation approaches such as Schwartz & Torous
(1989), McConnell & Singh (1994) and Boudoukh, Whitelaw, Richardson & Stanton (1997), who directly
model the aggregate behavior of a pool without reference to the pool constituents.

4See Campbell & Dietrich (1983), Cunningham & Capone (1990), and more recently, Agarwal, Amromin,
Ben-David, Chomsisengphet & Evano↵ (2011), Agarwal, Chang & Yavaz (2012), Jiang, Nelson & Vytlacil
(2014), and Rajan, Seru & Vig (2015).

5For a broad introduction to deep learning, see White (1992) and Goodfellow, Bengio & Courville (2016).
6More precisely, a neural network can approximate arbitrarily well continuous functions on compact sets,

see Hornik, Stinchcombe & White (1989) and Hornik (1991).
7See Mallat (2016), Telgarsky (2016), Eldan & Shamir (2016), Bengio & LeCun (2007), and Montufar,

Pascanu, Cho & Bengio (2014).
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depth indicate a strong preference for deeper networks, highlighting the existence of highly

nonlinear relationships and variable interactions in the mortgage data. The optimal net-

work architecture, determined via cross-validation methods, has five layers of hidden nodes,

each having between 140 and 200 nodes. We develop computationally e�cient maximum

likelihood fitting algorithms that take advantage of recent advances in GPU parallel and

cloud computing. Overfitting is tightly controlled by regularization, dropout, and ensemble

modeling. Our out-of-sample analyses show that it is insignificant.

To our knowledge, this is the first study that realizes the potential of large-scale deep

learning methods in financial economics.

The remainder of the introduction discusses the related literature. Section 2 examines

our dataset and performs some exploratory analyses that will inform the specification of

our deep learning model in Section 3. Section 4 discusses likelihood estimation for the deep

learning model. Section 5 reports our empirical results. Section 6 explores the implications

of the nonlinear e↵ects we uncover. Section 7 o↵ers concluding remarks. There are several

technical appendices.

1.1 Related Literature

There is a substantial empirical literature on mortgage delinquency and prepayment risk.

In early work, von Furstenberg (1969) establishes the influence on home mortgage default

rates of variables such as income, loan age, and loan-to-value ratio. Gau (1978), Vandell

(1978), Webb (1982), Campbell & Dietrich (1983) and others examine additional variables.

Commercial mortgage default is studied by Titman & Torous (1989) and Vandell (1992),

among others. Curley & Guttentag (1974) is an early study of prepayment rates. Green

& Shoven (1986) and Richard & Roll (1989) examine the influence of interest rates on

prepayments. Cunningham & Capone (1990), Schwartz & Torous (1993), and Deng (1997)

analyze the influence on default and prepayment of several loan-level and macro-economic

variables, recognizing the “competing” nature of default and prepayment events. Deng

et al. (2000) analyze the extent to which option theory can explain default and prepayment

behavior. Schwartz & Torous (1989) pioneered the use of empirical pool-level prepayment

models for the pricing of agency mortgage-backed securities. More recently, Stanton &

Wallace (2011) use empirical models of default and prepayment to price private-label MBS.

Chernov, Dunn & Longsta↵ (2018) estimate market-implied risk-neutral prepayment rates

and relate them to various explanatory variables.

This study of borrower behavior represents a significant departure from earlier work.

First, we construct an unprecedented dataset of 120 million prime and subprime mortgages

observed over the period 1995–2014. Prior research has examined much smaller samples
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(tens to hundreds of thousands of loans), focusing on particular geographic regions, time

periods, economic regimes, loan products, borrower profiles, and a limited set of loan-level

and macro-economic risk factors. It is unclear to what extent the findings of these studies

can be generalized. Our dataset includes about 70 percent of all US mortgages originated

between 1995 and 2014, and is the most comprehensive mortgage data set studied to date.

It covers all product types, including fixed-rate, adjustable-rate, hybrid, balloon, and other

types of loans, and tracks their monthly performance during several economic cycles. With

samples spanning two decades and spread across over 30,000 zip codes, we are in a position

to study the joint influence on mortgage risk of a broad set of novel and conventional risk

factors that describe a variety of borrower and product characteristics as well as economic

and demographic conditions down to the zip-code level.

Second, the econometric model we propose accommodates any relationship that exists

between the risk factors and borrower behavior. Prior work has largely focused on linear re-

lationships. Most authors use logistic regression (Campbell & Dietrich (1983), Cunningham

& Hendershott (1986), Elul, Souleles, Chomsisengphet, Glennon & Hunt (2010), Agarwal

et al. (2011), and others) and Cox proportional hazard models (Green & Shoven (1986),

Deng et al. (2000), Stanton & Wallace (2011), and others).8 These models are also standard

in the empirical corporate credit literature, see Campbell, Hilscher & Szilagyi (2008), Du�e,

Saita & Wang (2007), Shumway (2001), and several others. The Cox models sometimes

include a nonparametric baseline hazard function that can capture a nonlinear influence

of loan age on mortgage risk. Both Cox and logistic regression models sometimes include

quadratic or other nonlinear transformations of certain variables. For example, Agarwal

et al. (2012) use the squared loan age as risk factor in addition to loan age itself, Elul et al.

(2010) discretize continuous variables such as the loan-to-value ratio, and Foote, Gerardi,

Goette & Willen (2010) include certain pairwise interaction terms. Unlike these extensions

of linear models, our deep learning model is inherently nonlinear. It identifies the “ground

truth,” which entails all nonlinear e↵ects, including variable interactions of any order, that

exist in the data. Our model eliminates bias due to linear model mis-specification, and

yields accurate estimates of variable sensitivities. Moreover, it eliminates the need for the

econometrician to identify and specify the nonlinearities ahead of time. The practice of

using certain nonlinear transformations in a linear model requires the identification of the

variables to be transformed and the specification of the transformations to be used. To this

end, the researcher must systematically explore a potentially very large number of possible

relationships between variables and outcomes as well as interactions that might exist be-

8Other approaches include Poisson regression (Schwartz & Torous (1993)), kernel methods (Maxam &
LaCour-Little (2001), LaCour-Little, Marschoun & Maxam (2002)) and radial basis function networks (Epis-
copos, Pericli & Hu (1998)). Poisson regression focuses on the number of events in a pool. Kernel methods
can only accommodate a small number of explanatory variables.
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tween variables. This approach is impractical with more than just a few variables. Our deep

learning model automatically identifies all nonlinearities that are present in the data, even

in high-dimensional settings with many risk factors.

Third, we analyze the behavior of borrowers at an unprecedented level of granularity. We

distinguish between multiple states, including current, 30 days behind payment, 60 days be-

hind payment, 90+ days behind payment, foreclosure, REO, and prepaid, and estimate the

full conditional transition probability matrix for these states. Earlier papers only consider

transitions from current to prepayment or default, usually meaning a severe delinquency

(such as 60 days or more late). However, this simplified treatment ignores important transi-

tions between other delinquency states such as 30 days late, 60 days late, 90+ days late, and

foreclosure. Our data indicates that transitions between these states are in fact frequent; see

Tables 8–10. For example, a meaningful number of loans enter foreclosure but eventually

return to current. Similarly, many loans are consistently behind payment but do not ever

enter foreclosure. This behavior often matters. For example, during periods of delinquency

Fannie Mae and Freddie Mac su↵er disruptions to the cashflow from a loan that need to

be considered when analyzing their capital needs (see Frame, Gerardi & Willen (2015)).

Our model enables an econometric treatment of this behavior and our empirical results o↵er

insights into the factors influencing it.

2 The Data

Our dataset includes data for over 120 million mortgages as well as local and national

economic factors. The mortgage dataset includes highly-detailed characteristics for each

loan and month-by-month loan performance. We complement this dataset with extensive

local economic data such as housing prices, incomes, and unemployment rates.

2.1 Loan Performance and Feature Data

The mortgage data was licensed from CoreLogic, who collects the data from mortgage orig-

inators and servicers. It is the most comprehensive mortgage data set studied to date. It

covers roughly 70% of all mortgages originated in the US and contains mortgages from over

30,000 zip codes across the US. The mortgages’ origination dates range from January 1995 to

June 2014. The dataset includes 25 million subprime and 93 million prime mortgages.9 The

9We adopt CoreLogic’s designation of loans as subprime vs. prime. These designations are based on
their categorizations by the originators and servicers who provide the mortgage data to CoreLogic. Loan
characteristics such as FICO score, documentation status, and product features such as negative amortization
are often used in practice to distinguish between subprime and prime loans. Our approach reflects the way
that these loans are viewed by the key economic actors in the mortgage market.
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loan data is divided into (1) loan features at origination and (2) performance data, which

we describe below.

Each mortgage has a number of detailed features at origination, such as borrower FICO

score, original loan-to-value (LTV) ratio, original debt-to-income (DTI) ratio, original bal-

ance, original interest rate, product type, type of property, prepayment penalties, zip code,

state, and many more. Many of the variables are categorical with many categories (some

with up to 20 categories). Table 1 provides a complete list of the features we consider.

Only relatively small subsets of these variables have been considered in prior work. Tables

2 through 4 provide summary statistics for FICO score, original LTV ratio, original interest

rate, and original balance. The median FICO score of subprime borrowers is 630, while that

of prime borrowers is 730. The median interest rate of subprime loans is 7.8 percent, while

that for prime loans is 5.8 percent.

Month-by-month performance for each mortgage is reported between 1995 and 2014. This

includes how many days behind payment the mortgage currently is, the current interest rate,

current balance, whether the mortgage is real estate owned (REO), is in foreclosure, or has

paid o↵. It also includes variables representing borrower behavior over the recent past, such

as the familiar burnout factor and novel factors such as the number of delinquencies (30 days

late, 60 days late) over the past 12 months, which have not been considered before. Table 5

provides the full list of performance features.

The dataset covers various mortgage products including, for example, fixed rate mort-

gages, adjustable rate mortgages (ARMs), hybrid mortgages, and balloon mortgages.10 Table

6 lists the fraction of mortgages in each product category. The vast majority of the prime

mortgages are fixed-rate (86%), followed by ARMs (9%) and hybrids (4%). 48% of the

subprime mortgages are fixed-rate, 29% are ARMs, and 9% are hybrids. Prior work has

typically focused on a particular product such as fixed-rate loans.

Every monthly observation from each of the loans constitutes a data sample. After clean-

ing the data as described in Appendix A, there are roughly 3.5 billion monthly observations

remaining. 90% of the samples are for prime mortgages and the remaining are for subprime.

The samples cover the period January, 1995 to May, 2014. Each sample (i.e., monthly obser-

vation) has 272 explanatory variables as well as the outcome for that month (i.e., if the loan

is current, 30 days delinquent, 60 days delinquent, etc.). Of these explanatory variables, 234

are loan-level feature and performance variables, 25 are indicators for missing features (see

Appendix A), and 13 are economic variables which are introduced next.

10A fixed rate mortgage has constant interest and principal payments over the lifetime of the mortgage.
An ARM has interest payments which fluctuate with some other index interest rate (such as the Treasury
rate) plus some fixed margin. A hybrid mortgage has a period with a fixed rate followed by a period with
an adjustable rate. Hybrid mortgages can also have other features such as interest rate caps. A balloon
mortgage only partially amortizes; a portion of the loan principal is due at maturity.
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2.2 Local and National Economic Factors

We complement the loan-level data described above by data for local and national economic

factors which may influence loan performance. Table 7 lists the factors we consider. We use

a mortgage’s zip code to match a mortgage with local factors such as the monthly housing

price in that zip code. Housing prices are obtained from Zillow and the Federal Housing

Administration (FHA). Zillow housing prices are at the five-digit zip code level and cover

roughly 10,000 zip codes. In order to cover less populated areas not covered by the Zillow

dataset, we also include FHA housing prices which cover all three-digit zip codes. The

monthly national mortgage rate is obtained from Freddie Mac, is also included as a factor.11

Unemployment rates at the county level for each year and state unemployment rates for each

month are obtained from the Bureau of Labor Statistics.12 Our data also includes the yearly

median income in each zip code, which was acquired from the data provider Powerlytics.

Finally, the granular geographic data is used to construct the lagged default and prepayment

rates in each zip code across the US, using the historical data for all mortgages. The inclusion

of these rates allows us to capture a potential contagion e↵ect where defaults of mortgages

increase the likelihood of default for nearby surviving mortgages. Such a feedback mechanism

has been supported by several recent empirical papers; see Agarwal, Ambrose & Yildirim

(2015), Anenberg & Kung (2014), Campbell, Gigli & Pathak (2011), Harding, Rosenblatt &

Yao (2009), Lin, Rosenblatt & Yao (2009), Towe & Lawley (2013), and others.

2.3 Mortgage States and Transitions

Mortgages are allowed to transition between 7 states: current, 30 days delinquent, 60 days

delinquent, 90+ days delinquent, foreclosed, REO, and paid o↵. X days delinquent simply

means the mortgage borrower is X days behind on their payments to the lender. We use

the standard established by the Mortgage Bankers Association of America for determining

the state of delinquency. A mortgage is determined to be 1 month delinquent if no payment

has been made by the last day of the month and the payment was due on the first day of

the month. REO stands for real estate owned property. When a foreclosed mortgage does

not sell at auction, the lender or servicer will assume ownership of the property. Paid o↵

can occur from a mortgage prepaying, maturing (this is very rare since the mortgages in the

dataset are almost entirely originated in the 2000s), a shortsale, or a foreclosed mortgage

being sold at auction to a third party (this is again rare in comparison to prepayments,

11The monthly national mortgage rate used in this paper is an average of 30 year fixed rates for first-lien
prime conventional conforming home purchase mortgages with a loan-to-value of 80 percent.

12We match counties and zip codes in order to associate each mortgage with a particular county.
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which form the bulk of the paid o↵ events in the dataset).13

The state transition matrix for the monthly transitions between states are given in Tables

8, 9, and 10 for subprime, prime, and all mortgages, respectively. The state transition matrix

records the empirical frequency of the di↵erent types of transitions between states. For the

calculation of these transition matrices and the remainder of the paper, REO and paid o↵

are treated as absorbing states.14 That is, we stop tracking the mortgage after the first

time it enters REO or paid o↵. The transition matrices highlight that mortgages frequently

transition back and forth between current and various delinquency states. Disruptions in

cashflow to the lender or servicer are common due to the mortgage being behind payment.

Similarly, even loans that are extremely delinquent may return to current; the transition

from foreclosed back to current is actually a relatively frequent occurrence.15 A foreclosure

could get cured via paying the outstanding balance, there could be a pre-auction sale that

covers all or some of the amount outstanding, or there could be a sale at the foreclosure

auction that covers all or some of the amount outstanding. Any of these will register as a

foreclosure to paid o↵ transition. Mortgages can also transition directly from current, 30

days delinquent, 60 days delinquent, or 90+ days delinquent to REO via a “deed in lieu of

foreclosure”.16

2.4 Nonlinear E↵ects

The relationships between state transition rates and explanatory variables (i.e., loan-level

features and economic factors) are often highly nonlinear. For instance, Figure 1 shows the

empirical monthly prepayment rate versus the “incentive to prepay”, initial interest rate

minus national mortgage rate.17 A higher interest rate on the loan (as compared to the

national mortgage rate) should encourage the borrower to seek better terms by refinancing

the loan, implying that an upward trend should be observed in the graph. The observed

data, however, point to more complicated underlying mechanisms, such as the presence of

prepayment penalties or the lack of refinancing options due to other factors such as low FICO

scores. For example, a low initial interest rate may have been facilitated by prepayment

13A foreclosed loan sold at auction may or may not be sold for a loss. The CoreLogic dataset makes no
distinction between the two events.

14In some states in the USA there are laws that allow the mortgage borrower to reclaim their mortgage
even after it has entered REO. However, such events are exceedingly rare.

15Many servicers follow a “dual path servicing approach” where they foreclose on the borrower as a threat
in order to force the borrower to become current on payments.

16A “deed in lieu of foreclosure” is when the loan is in default and the borrower gives ownership of the
property directly to the lender, thereby forgoing foreclosure.

17A more accurate proxy for the incentive to prepay would be the current interest rate minus the mortgage
rate. However, a large portion of the mortgages in the dataset are missing the current interest rate so the
initial interest rate was used instead to achieve greater coverage.
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penalties or points upfront, which will be disincentives to prepaying. Figure 4 shows the

empirical monthly prepayment rate versus the FICO score. The propensity to prepay is less

for borrowers with lower FICO scores but it plateaus once the score crosses a threshold of

about 500 points. Figure 5 shows the empirical monthly prepayment rate versus the time

since origination. Several spikes in the rate occur at 1, 2, and 3 years. These might be due

to the expiration of prepayment penalties or adjustable rate and hybrid mortgages having

rate resets. Many of the subprime mortgages started with low teaser rates and would later

jump to higher rates; borrowers would refinance to avoid these rate jumps. Figure 6 plots

the empirical monthly prepayment rate versus the loan-to-value (LTV) ratio. One should

expect this curve to have a downward slope since a loan with high LTV will have lesser

opportunities to refinance due to a large loan amount relative to the value of the asset.

Each of these charts displays significant nonlinear relationships between the variable and the

empirical prepayment rate. This reinforces the need for a loan performance model that is

capable of addressing such relationships.

3 Deep Learning Model

We propose a dynamic nonlinear model for the performance of a pool of mortgage loans

over time. We adopt a discrete-time formulation for periods 0, 1, . . . , T (e.g., months).18 We

enumerate the possible mortgage states (current, 30 days delinquent, etc.), and let U ⇢ N
denote the set of these states. The variable Un

t 2 U prescribes the state of the n-th mortgage

at time t after origination. A mortgage will transition between the various states over its

lifetime. For instance, a trajectory of the state process might be:

Un
0 = 1 (current), Un

1 = 2 (30 days late), Un
2 = 1 (current), Un

3 = 5 (paid o↵).

We allow the dynamics of the state process to be influenced by a vector of explanatory

variables Xn
t 2 RdX which includes the mortgage state Un

t . In our empirical implementation,

Xn
t represents the original and contemporary loan-level features in Tables 1 and 5, and the

contemporary local and national economic factors in Table 7.19 We specify a probability

transition function h✓ : U ⇥ RdX ! [0, 1] satisfying

P[Un
t = u | Ft�1] = h✓(u,X

n
t�1), u 2 U , (1)

where ✓ is a parameter to be estimated. Equation (1) gives the marginal conditional prob-

18We fix a probability space (⌦,F ,P) and an information filtration (Ft)t=0,1,...,T .
19As usual, categorial variables are encoded in terms of indicator functions (dummy variables).
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ability for the transition of the n-th mortgage from its state Un
t�1 at time t � 1 to state

u at time t given the explanatory variables Xn
t�1. The family of conditional probabilities

give a conditional transition probability matrix, which is the conditional counterpart of the

empirical transition matrix reported in Table 10. Note that the conditional probabilities will

be correlated across loans if Xn
t�1 includes variables that are common to several loans. This

formulation allows us to capture loan-to-loan correlation due to geographic proximity and

common economic factors.

We propose to model the transition function h✓ by a neural network. Let g denote the

standard softmax function:

g(z) =

 
ez1

PK
k=1 e

zk
, . . . ,

ezK
PK

k=1 e
zk

!
, z = (z1, . . . , zK) 2 RK , (2)

where K = |U|.20 The vector output of the function g is a probability distribution on U .
The specification h✓(u, x) = (g(Wx+ b))u, where W 2 RK ⇥ RdX , b 2 RK , and Vu is the

u-th element of the vector V , gives a logistic regression model.21 Here, the link function

g takes a linear function of the covariates x as its input. The output h✓(u, x) varies only

in the constant direction given by W . A standard approach to achieve a more complex

model with greater flexibility is to replace x in the specification with a nonlinear function

of x. Let � : RdX ! Rd� and set h✓(u, x) = (g(W�(x) + b))u, where W 2 RK ⇥ Rd� and

b 2 Rd� . This is a logistic regression of the basis functions � = (�1, . . . ,�d�). For instance,

polynomials, step functions, or splines could be chosen as the basis functions. It is important

to recognize that, even if the basis functions are nonlinear in the input space, the logistic

regression model remains a link function of a model which is linear in the parameters ✓. The

logistic model may perform poorly if the chosen basis functions are not appropriate for the

problem. Instead of fixing a set of basis functions � ahead of time, a neural network learns

these feature functions directly from the data. The function � is replaced by a parameterized

function �✓ where ✓ is estimated from data. A neural network is composed of a sequence of

nonlinear operations (or “layers”). Each operation takes the output from the previous layer

and applies (1) a linear function and then (2) an element-wise nonlinearity. As a whole, a

neural network is a flexible function, highly nonlinear in the parameters, which can learn the

best feature functions �✓ for the problem.

Define the nonlinear transformation �✓(x) as h✓,L�1(x). A multi-layer neural network

20Certain transitions are not allowed in the dataset (e.g., current to 60 days delinquent). Although such
a transition is theoretically allowed in the formulation (2), the transition probabilities of transitions which
do not occur in the dataset will be driven to zero during training.

21Campbell & Dietrich (1983), Cunningham & Hendershott (1986), Elul et al. (2010), Agarwal et al.
(2011), and many others use logistic regression models to analyze mortgage performance.
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repeatedly passes linear combinations of learned basis functions through simple nonlinear

link functions to produce a highly nonlinear function. Formally, the output h✓,l : RdX ! Rdl

of the l-th layer of the neural network is:

h✓,l(x) = gl(W
>
l h✓,l�1(x) + bl), (3)

where Wl 2 Rdl ⇥ Rdl�1 , bl 2 Rdl , and h✓,0(x) = x. For l = 1, . . . , L � 1, the nonlinear

transformation gl(z) = (�(z1), . . . , �(zdl)) for z = (z1, . . . , zdl) 2 Rdl and gL(z) is given by

the softmax function g(z) defined in (2). Note that dL = K = |U|. The function � : R ! R
is a simple nonlinear link function; typical choices are sigmoidal functions, tanh, and rectified

linear units (i.e., max(x, 0)). The final output of the neural network is given by:

h✓(u, x) = (h✓,L(x))u = (g(W>
L h✓,L�1(x) + bL))u. (4)

The parameter specifying the neural network is

✓ = (W1, . . . ,WL, b1, . . . , bL), (5)

where L is the number of layers in the neural network. At each layer l, the output h✓,l(x) is

a simple nonlinear link function gl of a linear combination of the nonlinear basis functions

h✓,l�1(x), where the nonlinear basis function h✓,l�1(x) must be learned from data via the

parameter ✓. The output h✓,l(x) from the l-th layer of the neural network becomes the basis

function for the (l + 1)-th layer.

The layers between the input at layer l = 0 and the output at layer l = L are referred

to as the hidden layers. Thus, the neural network h✓ has L � 1 hidden layers. A neural

network with zero hidden layers (L = 1) is a logistic regression model. More hidden layers

allow for the neural network to fit more complex patterns. Each subsequent layer extracts

increasingly nonlinear features from the data. Early layers pick up simpler features while

later layers will build upon these simple features to produce more complex features. The

l-th layer has dl outputs where each output is an a�ne transformation of the output of layer

l � 1 followed by an application of the nonlinear function �. This composition of functions

is called a hidden unit, or simply, a unit, since it is the fundamental building block of neural

networks. The number of units in the l-th layer is dl and the complexity of any layer (and the

complexity of the features it can extract) increases with the number of units in that layer.

Thus, increased complexity can be achieved by increasing either the number of units or the

number of layers. Given enough units, a neural network can approximate arbitrarily well

continuous functions on compact sets (Hornik 1991). This of course includes approximating

arbitrarily well interactions such as the product and division of features. The advantage of
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more layers (as opposed to simply adding more units to existing layers) is that the later

layers learn features of greater complexity by utilizing features of the lower layers as their

inputs. Moreover, deep neural networks, i.e., networks with three or more hidden layers,

typically need exponentially fewer units than shallow networks or logistic regressions with

basis functions; see Bengio & LeCun (2007) and Montufar et al. (2014).22

(1) is a dynamic model and therefore gives transition probabilities between the states

over multiple periods (2 month, 6 month, 1 year, etc.). The transition probability matrix for

1-month ahead transitions is specified by the transition function in (1). The transition prob-

ability matrix for t-months ahead is simply the expectation of the product of the transition

probability matrices at months 0, 1, . . . , t� 1. Note that the transition probability matrices

at months t = 1, 2, . . . , t� 1 are random due to their dependence on the random covariates

Xn
t . To compute these expectations, a time-series model for Xn

t needs to be formulated

and Monte Carlo samples from Xn
t need to be generated. An alternate approach, which is

advantageous for reducing the computational burden and can be accurate for shorter time

horizons, is that the economic covariates in Xn
t are frozen at t = 0. That is, only the state

of the mortgage and deterministic elements of Xn
t (e.g., the balance of a fixed rate mortgage

and time to maturity) are allowed to evolve over time. Then, the transition probability

matrix for a horizon t > 1 is the product of the deterministic transition probability matrices

at months 0, 1, . . . , t� 1. The two approaches are implemented in Section 5.23

Our formulation captures loan-to-loan correlation due to geographic proximity and com-

mon economic factors. Pool-level quantities, such as the distribution of the prepayment rate

for a given pool, can also be computed via standard Monte Carlo simulation. The cashflow

from a pool is the sum of the cashflows from the individual loans. Thus, one simply needs

to simulate all of the individual loans based on the fitted model and then aggregate the

individual cashflows.24 If the economic covariates are frozen at time t = 0, the pool-level

distribution can be approximated in closed-form via a Poisson approximation or the central

limit theorem. Such approximations are accurate (for the distribution where covariates are

frozen) even for pools with only a few hundred loans.

We have considered alternative model architectures. For instance, one could individually

model transitions from each particular initial state with a neural network; such an approach

would require fitting K di↵erent neural networks. Another approach would be to have

22The number of layers and the number of neurons in each layer, along with other hyperparameters of the
model, are chosen by the standard approach of cross-validation. Section C provides the details.

23An alternative approach to the dynamic model (1) is to fit a model for each di↵erent time horizon, as
in Campbell et al. (2008). Many static models could be fitted for each of the time horizons (1 month, 2
months, 6 months, 1 year, 1.5 years, 2 years, etc.). Fitting so many models is computationally expensive
and the two approaches mentioned above do not incur this cost.

24Large portfolios can be rapidly simulated using methods from Sirignano & Giesecke (2015). Fast optimal
selection of loan portfolios can be performed using methods from Sirignano, Tsoukalas & Giesecke (2016).
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separate models for each product (fixed-rate vs. ARM, etc.) or borrower class (prime

vs. subprime). Clearly, our neural network architecture is more parsimonious, which is a

desirable characteristic. However, in addition to parsimony, there is a statistical motive for

our architecture. Neural networks learn via their hidden layers recognizing, and abstracting,

nonlinear features from the data (i.e., nonlinear functions of the initial input). Di↵erent

transitions may strongly depend upon the same nonlinear features. Similarly, di↵erent types

of products are likely to depend on some of the same nonlinear features. For instance, it is

likely that there are many similar factors driving the transitions current ! paid o↵ and 30

days delinquent ! paid o↵. In our neural network architecture, all transitions are modeled

by the same neural network, which has the advantage that more data can be used to better

estimate the nonlinear factors which drive multiple types of transitions.

4 Likelihood Estimation

This section discusses the estimation of the parameter (5) specifying the deep learning model

by the method of maximum likelihood.

4.1 Estimators

We are given observations of Xt = (X1
t , . . . , X

N
t ) at each time t = 0, . . . , T where N is the

number of mortgages which are observed. We let Xn
t = (Un

t , L
N
t , V

n
t ), where Un

t 2 U is the

state of the n-th mortgage, and Ln
t includes the lagged default and prepayment rates in the

zip code of the n-th mortgage.25 The vector V n
t 2 RdY includes the remaining contemporary

local and national economic factors in Table 7, as well as the original and contemporary

loan-level features in Tables 1 and 5. We make the standard assumption26 that the variables

V n
t are exogenous in the sense that the law of V = (V0, . . . , VT ), where Vt = (V 1

t , . . . , V
N
t )

does not depend on the parameter ✓ specifying the law of the observed mortgage states

U = (U0, . . . , UT ), where Ut = (U1
t , . . . , U

N
t ). Therefore, the likelihood problem for V can be

treated separately from that for U .

Although the model framework (1) is a dynamic model where the function h✓ may assume

a very complicated form, the likelihood of the observed states U takes an analytical form.

The likelihood of U depends only on the observed value of V and is independent of V ’s

exact form or parameterization since V is exogenous. Letting L = (L0, . . . , LT ) and writing

25In general, Ln
t could include any variables describing the aggregate lagged performance of the mortgages.

26See Du�e et al. (2007), Campbell et al. (2008), and many others.
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informally, the log-likelihood function for ✓ given V is

LT,N(✓) = logP✓

⇥
U,L|V

⇤
= logP✓

⇥
L|U, V

⇤
P✓

⇥
U |V

⇤
= logP✓

⇥
U |V

⇤
,

where we use the fact that P✓

⇥
L|U, V

⇤
= 1 since Lt = (L1

t , . . . , L
N
t ) is a deterministic function

of U0, . . . , Ut. Under the standard assumption that the variables U1
t , . . . , U

N
t are conditionally

independent given Xt�1, we have27

LT,N(✓) =
TX

t=1

logP✓

⇥
Ut

��Ut�1, Vt�1

⇤
=

TX

t=1

NX

n=1

logP✓

⇥
Un
t

��Un
t�1, V

n
t�1

⇤

=
NX

n=1

TX

t=1

log h✓(U
n
t , X

n
t�1).

A maximum likelihood estimator (MLE) ✓̂ = ✓T,N for the parameter ✓ satisfies

✓T,N 2 argmax
✓2⇥

LT,N(✓). (6)

The asymptotic properties of the MLEs have been studied before. Under certain conditions,

the estimators are consistent and asymptotically normal; see White (1989a) and White

(1989b). Sussmann (1992) and Albertini & Sontag (1993) study identifiability.

4.2 Addressing Overfitting

Neural networks tend to be low-bias, high-variance models. We use several methods to

address overfitting, including regularization, dropout, and ensemble modeling. Therefore,

overfitting is not an issue, as our out-of-sample analyses in Sections 4.4 and 6 show. A

standard `2 regularization term is included in the objective function in addition to the

log-likelihood LT,N(✓). The `2 term represents the sum of the squares of the parameters.

Secondly, we use dropout in each of the layers. Dropout is a widely-used technique in

deep learning that has proven to be very successful; see Srivastava, Hinton, Krizhevsky &

Sutskever (2014). During fitting, hidden units are randomly removed from the network. This

prevents complex “fictitious” relationships forming between di↵erent neurons since neuron

i cannot depend upon neuron j being present. Finally, we also build an ensemble of neural

networks. This simply means that we fit a set of randomly initialized neural networks

on datasets obtained by bootstrapping from the original datasets. Typically, each neural

network reaches a di↵erent local minimum due to each being trained with a di↵erent random

27This expression assumes that every mortgage is originated at time t = 0. The modification for the case
where mortgages have di↵erent origination dates is straightforward.
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initial starts and random sequence of bootstrapped samples. Variance (i.e., overfitting) of an

individual neural network’s prediction can be reduced by taking the prediction as the average

of the neural networks’ predictions. The averaged prediction, or ensemble prediction, has

lower variance since the idiosyncratic variance for each neural network is averaged out.

4.3 Implementation

Appendix B discusses the implementation of the MLE. We develop fitting algorithms that

can deal very e�ciently with the large number of samples and explanatory variables we

observe. The algorithms harness recent advances in GPU parallel computing and run on a

cluster of Amazon Web Services nodes.

Appendix C details our cross-validation approach to the selection of the hyperparameters,

which include the number of layers and number of neurons per layer, the type of the activation

function �, the size of the regularization penalty, and several other parameters governing the

fitting algorithm (see Appendix B). The optimal network architecture has five hidden layers,

with 200 units in the first hidden layer and 140 units in each subsequent one. The rectified

linear unit activation function �(x) = max(0, x) was found to yield better performance and

faster convergence than the sigmoid �(x) = 1/(1 + e�x).

The training set includes all the data before May 1, 2012. The validation set, which is

used for the selection of hyperparameters (see Appendix C), is May 1, 2012 until October

31, 2012. Once the hyperparameters are chosen, the model is re-fitted on the combined

training and validation sets. The final trained model is then tested out-of-sample on the

test set, which is from November 1, 2012 until May 31, 2014. All continuous variables are

normalized by their means and standard deviations (which are calculated using data only

from the training set).

4.4 Goodness-of-Fit

We use the negative average log-likelihood, � 1
NLT,N(✓̂), which is also known as the cross-

entropy error or loss, as a measure of the overall goodness-of-fit of the deep learning model

across all possible state transitions. Table 11 reports the in- and out-of-sample loss for

models with 0, 1, 3, 5, and 7 hidden layers, as well as an ensemble model composed of eight

5-layer models. The results indicate the behavior of the goodness-of-fit as a function of the

depth of the network. As expected, the more complex the network the better the in-sample

fit. However, deeper networks do not always yield better out-of-sample fit due to higher

model capacity; there are several other factors at play, such as over-fitting and di�culty in

estimating the model, that a↵ect the out-of-sample performance. We also observe that the

use of dropout significantly improves out-of-sample fit for networks with greater depths. This
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shows that dropout provides e↵ective regularization and addresses over-fitting for networks

with larger numbers of layers. The characteristic U-shaped behavior of the out-of-sample

loss in Table 11 suggests that the optimal number of hidden layers (in the sense of out-of-

sample goodness-of-fit) is five when using dropout and three when dropout is not applied.28

The goodness-of-fit optimality of deep networks provides strong evidence for the existence

of complex nonlinearities in the mortgage data.

We also observe that the ensemble model, which is composed of eight 5-layer networks,

outperforms all other formulations in terms of fit. Figure 7 shows the out-of-sample loss

versus the number of models in the ensemble. Including just eight networks in the ensem-

ble significantly improves out-of-sample fit, indicating that ensemble modeling e↵ectively

reduces over-fitting. Although larger ensembles lead to marginal improvements in fit, the

computational cost (which increases linearly with the number of neural networks used) may

not justify using larger ensembles in practice. Henceforth, we only consider ensembles of

eight independently fitted networks.

Finally, Table 11 reports test statistics for likelihood ratio tests of 0- vs. 1-layer mod-

els, 1- vs. 3-layer models, 3- vs. 5-layer models, and 5- vs. 7-layer models. All tests are

highly significant (with p-values of less than 0.01). Moreover, the behavior of the test statis-

tic suggests that the most significant improvement of model fit is obtained by permitting

nonlinear relationships between borrower behavior and explanatory variables. Going from a

linear model (0-layer network) to the simplest nonlinear model (1-layer network) generates

the most significant improvement in the test statistic, which provides additional evidence for

the existence of nonlinear relationships in the data.

5 Empirical Analysis

The fitted deep learning model is used to understand the relationship between explanatory

factors and borrower behavior. Our analysis shows that many highly nonlinear relationships

exist. Furthermore, borrower behavior is found to have nontrivial dependencies on the

nonlinear interaction between multiple factors.

5.1 Economic Significance of Variables

We begin by analyzing the economic significance of the di↵erent explanatory factors for bor-

rower behavior. The economic significance of a given variable is measured by the magnitude

of the derivative of a fitted transition probability with respect to the variable. In order to

incorporate the potential dependence of the derivative on the explanatory factors, we average

28See Goodfellow et al. (2016) for an excellent discussion of the optimal depth and number of hidden units.
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the derivative over a representative sample of the factors drawn from the dataset. Specifi-

cally, we calculate the sensitivity (with respect to j-th variable) of the fitted probability for

a transition from state u to v as:

E
�� @

@xj
h✓̂(V,X)

��
����V = v, U = u

�
. (7)

A sensitivity of value z for a given variable means that the probability for a transition from

state u to v will approximately change (in magnitude) by z� if that variable is changed by a

small amount �. As explained in Appendix D, the sensitivity (7) can be estimated directly

from the dataset and the fitted model.

Table 12 reports sensitivities for a transition from current to paid o↵ (i.e., prepayment).

The sensitivities indicate the strong economic significance for prepayment of original and

current outstanding loan balance. Other economically significant variables include origi-

nal interest rate, interest rate di↵erentials, house price appreciation, loan age, FICO score,

lagged prepayment rates, and state unemployment. The importance of loan balance vari-

ables is interesting in light of earlier studies of prepayment such as Green & Shoven (1986),

Cunningham & Capone (1990) and Richard & Roll (1989). These studies focus on the influ-

ence of interest rate di↵erentials, premium burnout, loan age, LTV ratio and several other

variables, all of which are included in our analysis. Our results indicate that loan balance

variables in fact overshadow all those previously considered variables in terms of economic

significance. Our results also firmly establish the economic significance of unemployment, a

variable which earlier studies such as Cunningham & Capone (1990) and Foote et al. (2010)

found to have no significant influence on prepayment.29

Table 13 reports sensitivities for a transition from current to 30 days delinquent.30 What

stands out is the significant role of variables that describe borrower behavior over the recent

past. These variables include the number of delinquencies (30, 60, and 90+ days late) over

the past year as well as the number of times current over the past year. The number of

times the borrower was 30 days delinquent in the last year dominates all other variables

in terms of economic significance for a transition from current to 30 days delinquent. The

strong influence of these variables indicates that borrower behavior is highly path dependent.

Prior work on mortgage default risk such as von Furstenberg (1969), Gau (1978), Vandell

(1978), Webb (1982), Campbell & Dietrich (1983), Elul et al. (2010), Foote et al. (2010)

has not analyzed the influence of path-dependent borrower behavior variables, and instead

focused on the role of standard loan and borrower characteristics such as FICO score, interest

rates, and LTV ratios. Our results suggest that these standard variables are less influential

29Note that these earlier studies are based on much smaller samples and shorter sample periods.
30The sensitivities for other transitions are available upon request.
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predictors of mortgage delinquency than previously thought.

The results in Table 13 suggest that the loan-to-loan delinquency correlation due to

the exposure of borrowers to common or correlated economic factors such as interest rates,

housing prices, and unemployment rates can be substantial. This source of loan-to-loan

correlation is distinct from the contagion channel studied by Anenberg & Kung (2014),

Campbell et al. (2011), Towe & Lawley (2013), and others.31 Contagion entails a foreclosure

having negative spillover e↵ects on neighboring properties that increase the likelihood of

additional delinquencies and foreclosures. We control for the contagion channel by including

the lagged default rate for prime and subprime borrowers at the zip-code level as explanatory

variables (see Section 2.2). The results in Table 13 suggest that these variables are influential,

which is consistent with the existence of a contagion channel. The fact that variables such as

interest rates play a role even after controlling for the contagion channel provides evidence

for the prevalence of additional loan-to-loan correlation due to the exposure of borrowers to

common (or correlated) risk factors.

5.2 Nonlinear E↵ects

This section studies nonlinear relationships between borrower behavior and variables. In par-

ticular, we examine the “one-dimensional” relationships between borrower behavior and the

most influential real-valued variables that were identified above. The interactions between

multiple variables and borrower behavior will be analyzed in subsequent sections.

5.2.1 Prepayment Behavior

Figures 2 and 8 show the relationship between prepayment and some of the most influen-

tial variables. In each plot, the fitted prepayment probability’s dependence on a particular

variable is examined, keeping all other variables constant. The other covariates are fixed at

their average values in the dataset, thus representing the “average borrower/loan.” Most of

the relationships in Figures 2 and 8 are highly nonlinear. They reveal new and important

patterns in borrower behavior. Having discussed the significant e↵ects associated with un-

employment already in Section 1, below we focus on the relationship between prepayment

and some of the other influential variables identified in Table 12, including loan balance

variables, interest rates and interest rate di↵erentials, and house price appreciation.

The fitted prepayment probability is a decreasing function of the current outstanding

balance, which is the most influential variable for prepayment. Borrowers with relatively low

current balances are quite likely to prepay, with prepayment probabilities topping 60% for

the smallest balances. This could suggest that borrowers prefer closing out their mortgages

31See Azizpour, Giesecke & Schwenkler (2018) for a discussion of the sources of loan-to-loan correlation.
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towards the end of the lifetime of the loan, when they have the means to do so, rather than

continue making monthly payments until maturity. The prepayment probability decreases

very quickly to about 10% with the current balance increasing to about $8, 000. The like-

lihood of prepayment decreases at a much slower rate for balances increasing beyond that

amount, and is relatively flat for balances larger than $15, 000. This means that borrower

behavior is relatively insensitive to changes in the current outstanding balance for su�ciently

high balances. Borrower behavior changes very significantly once the balance reaches a level

of about $8, 000.

The behavior of the fitted prepayment probability as a function of original loan balance

is markedly di↵erent. The prepayment probability is non-monotonic with regards to the

original loan balance, which is the second most influential variable for prepayment. The

probability increases roughly linearly until the original loan balance reaches a level of about

$350, 000. The rate of change then decreases, with the probability peaking at around 5% for

original loan balances around $600, 000. It then levels o↵ and finally decreases for very large

original loan balances. Large loan balances may be harder to refinance, and borrowers with

large balances may not care much about the benefits of a refinancing in light of the e↵ort it

takes to close the transaction (assuming it is optimal to refinance).

The current interest rate minus the national mortgage rate indicates the incentive of

the mortgage holder to prepay, and is another highly influential variable for prepayment.

The prepayment probability is highly nonlinear as a function of this quantity. For negative

values, the probability is almost 0 as the mortgage holder has no incentive to prepay. Near

to 0%, the probability suddenly jumps to 3%. In the range 2.5�5%, the probability linearly

increases. Then, for values greater than 5%, the probability increases at a much faster rate.

Above the threshold of 5%, the advantage of prepaying may outweigh prepayment penalties

that certain mortgages have.

The fitted prepayment probability is an approximately piece-wise linear function of house

price appreciation in a borrower’s zip-code since origination. After home prices double a

borrower is 50% more likely to prepay. This is consistent with a behavior where borrowers

sell to realize significant price gains and move into more expensive homes. The sensitivity of

borrowers to additional price appreciation is somewhat lower. The likelihood of prepayment

levels o↵ for price appreciation beyond 250%.

5.2.2 Delinquency Behavior

Figures 3 and 9 show the relationship between delinquency and some of the most influential

variables. In each plot, the fitted probability of a transition from current to 30 days delin-

quent is plotted versus a particular variable, keeping all other variables fixed at their average

values in the dataset. The plots reveal that many of the variables have a highly nonlinear
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influence on delinquency. They point to several new and interesting patterns in delinquency

behavior. Having discussed the role of house price appreciation already in Section 1 (see

Figure 3 and the attendant discussion), below we focus on the relationship between delin-

quency and some of the other influential variables identified in Table 13, including variables

that describe recent borrower behavior.

The fitted delinquency probability is an increasing function of the number times a bor-

rower was 30 days delinquent during the past year, which is the most influential variable for

delinquency. (The behavior of delinquency with respect to the number of times a borrower

was 60 days delinquent is similar.) Without delinquencies during the past year, the likelihood

of a delinquency is under 0.5%. With a single delinquency, the likelihood increases to about

4%, which represents a very significant percentage increase in borrower credit risk. With two

delinquencies during the past year, the likelihood increases to about 7%, and with three the

likelihood stands at 12%. This behavior indicates the path-dependent nature of mortgage

credit risk. It is consistent with borrowers “getting used” to being behind payment after

falling behind payment for the first time. Delinquency loses its stigma after the borrower

has fallen behind payment for the first time. The path-dependent behavior is also consis-

tent with the existence of borrowers who have a hard time making their monthly mortgage

payments and who fall behind payment multiple times a year.

The fitted delinquency probability is a decreasing function of the original loan balance.

For a $100, 000 loan, the likelihood of a delinquency is around 3.5% while for a $200, 000

loan, the likelihood is 1.5%. For loans of $300, 000 and larger, the likelihood of delinquency

is flat at around 0.1%, consistent with the fact that borrowers for larger loans are typically

better o↵ financially.

5.3 Interactions between Variables

Borrower behavior is a high-dimensional function of the explanatory variables. We wish to

understand how borrower behavior simultaneously depends upon multiple variables, i.e., how

di↵erent variables interact to influence a certain state transition. To this end we estimate

cross partial derivatives of the fitted transition probabilities, which measure how the e↵ect

of a shift in one variable depends on the size of the shift in another variable. Specifically,

we measure the economic significance of the interaction between covariates i and j for a

transition from state u to v by the derivative

E
��

2X

i,j=1

@2

@xi@xj
h✓̂(V,X)

��
����V = v, U = u

�
. (8)
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This derivative can be generalized to measure higher-order interactions. Appendix D provides

a finite-di↵erence estimator for (8) and a third-order extension.

5.3.1 Prepayment

Tables 14 and 15 present the most influential pairs of variables and triplets of variables

for prepayment. We see that original interest rate, state unemployment, loan balance vari-

ables, and FICO score, which we have identified above as the most influential variables for

prepayment on a stand-alone basis, also strongly interact.

To develop a detailed understanding of the interactions, in Figure 10 we present contour

plots describing the relationship between prepayment and some of the most influential pairs

of variables, and in Figure 11 we present contour plots describing the relationship between

prepayment and triplets of variables. The contour plots represent the joint e↵ects on pre-

payment of multiple variables. In our nonlinear framework, they replace the analysis of the

coe�cients of the dummy variables encoding variable interactions in a linear framework such

as Elul et al. (2010) and Foote et al. (2010). The contour plots uncover, for the first time in

the empirical mortgage literature, the complex interplay of many variables.

Consider the interaction between current outstanding balance and original loan balance,

which are the two economically most significant variables for prepayment. For any given

value of the original loan balance, the likelihood of prepayment is a decreasing function of

the current outstanding balance. However, the behavior strongly depends upon the original

loan balance. The higher the original loan balance, the larger the likelihood of prepayment,

for any given value of the current outstanding balance. Borrowers who took out relatively

large loans and whose current outstanding balance is relatively small are the most likely to

prepay. Those borrowers tend to be more creditworthy, and therefore can more easily obtain

refinancing for relatively small current outstanding loan balances (they have already paid

down a substantial portion of the loan).

Figure 10 also shows the relationship between current outstanding balance and the pre-

payment incentive, as measured by the current interest rate minus national mortgage rate.

For any given value of the incentive, prepayment becomes more likely as the current out-

standing balance decreases. For any given value of the current outstanding balance, as the

prepayment incentive increases, prepayment becomes more likely. For very large outstanding

balances, even if the prepayment incentive is large, borrowers do not prepay. This obser-

vation is consistent with the fact that larger loans are typically more di�cult to refinance.

For negative prepayment incentives, even if the outstanding balance is very small, borrowers

also do not prepay. While borrowers with low current balances might want to close out their

mortgage as argued in Section 5.2.1 above, even if they do have the required liquidity they

might recognize the disincentive to prepay. Borrowers with small outstanding balances and
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high prepayment incentives are the most likely to prepay.

The relationship between original term of the loan and the number of times that a

borrower was current during the last year is also shown in Figure 10. The prepayment

probability is an increasing function of the number of times current, for any loan term.

Borrowers with 30 year loans which were current during each of the past 12 months are the

most likely to prepay. Borrowers with 30 year loans which were not current at all during the

12 months are the least likely to prepay.

Three-dimensional interactions can be analyzed via the stacked contour plots in Figures

11. For example, consider Figure 12, which focuses on one of the panels in Figure 11. Fig-

ure 12 displays the three-dimensional interaction between the original interest rate, original

interest rate - national mortgage rate, and state unemployment rate. In favorable economic

scenarios when the unemployment rate is low (the bottom contour plot in the stack), pre-

payment probabilities strongly depend upon the original interest and the original interest -

national mortgage rate. Under adverse economic conditions, when the unemployment rate

is high (the top contour plot in the stack), the prepayment probability is very low and is in

fact insensitive to the original interest rate and original interest - national mortgage rate.

That is, very few borrowers will prepay no matter how great the financial incentive there is

for prepaying.

5.3.2 Delinquency

Tables 16 and 17 present the most influential pairs of variables and triplets of variables for

30-day delinquency. We find that original interest rate, interest rate di↵erentials, original

loan term, FICO score, loan balance variables, and past delinquency behavior, which we have

identified above as influential variables for delinquency on a stand-alone basis, also strongly

interact.

Figure 13 presents contour plots describing the relationship between delinquency and

di↵erent pairs of covariates. The plots o↵er insights into the joint e↵ects on delinquency be-

havior of multiple influential variables. Consider the relationship between past delinquency

behavior, current outstanding balance, and transitions to delinquency. The probability of a

transition from current to 30 days delinquent increases if the borrower has been delinquent

in the past. For example, if the borrower has been delinquent more than 8 times in the past

12 months, then a transition from current to 30 days delinquent occurs at an almost 20%

monthly rate. The behavior strongly depends upon the current outstanding balance. Specif-

ically, the probability of becoming delinquent increases as the current outstanding balance

increases. A larger outstanding balance places significant financial stress on the borrower.

Borrowers with large outstanding balances and who have frequently been delinquent in the

past are very likely to return to delinquency.
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Figure 13 also includes a contour plot describing the relationship between FICO score,

current outstanding balance, and transitions to delinquency. As the FICO score decreases, a

transition to delinquency becomes more likely. As the current outstanding balance increases,

a transition to delinquency also becomes more likely. This is to be expected since borrowers

will find it more di�cult to service larger loans. Even borrowers with high FICO scores have

a nontrivial probability of becoming delinquent for very large loans. Borrowers with low

FICO scores and large outstanding balances are very likely to become delinquent. In any

given month, a transition from current to 30 days delinquent occurs at a 10% rate for this

group of borrowers. In contrast, borrowers with high FICO scores and small outstanding

balances almost never become delinquent.

Another of the contour plots in Figure 13 describes interaction of original interest rate

and FICO score. There are several regimes; within each regime, the delinquency behavior is

very di↵erent. For very high FICO scores (> 800), borrowers rarely become delinquent no

matter how high the original interest rate is. That is, in the high FICO score regime, the

probability of delinquency is insensitive to the interest rate. For low FICO scores (< 650),

the probability of delinquency strongly depends upon the interest rate. In this regime, the

likelihood of delinquency increases as the interest rate increases. Notably, there is a nonlinear

relationship within the low FICO score regime. The sensitivity to the interest rate is smaller

in the low interest rate, low FICO score regime than in the high interest rate, low FICO

score regime.

Figure 14 displays the interactions between triplets of variables. Figure 15 focuses on one

of the panels of Figure 14. It displays the relationship between FICO score, original interest

rate, number of times current in last 12 months, and transitions to delinquency. When the

borrower is rarely current, the borrower’s FICO score is low, and the interest rate is high,

then the borrower is highly likely to fall behind payment again (the likelihood exceeds 25%

on a monthly basis). Furthermore, there is a very nonlinear relationship between FICO score

and interest rate, and this relationship strongly depends on the number of times current.

In the high FICO score regime (> 800), the probability of delinquency is insensitive to the

interest rate. For low FICO scores (< 650), the probability of delinquency strongly depends

upon the interest rate. If the loan is more frequently current, the probability of delinquency

decreases, across all FICO scores and original interest rates. Furthermore, the delinquency

probability quickly asymptotes to a small value as the FICO score increases or the original

interest rate decreases.
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6 Implications of Nonlinear E↵ects

This section uses an out-of-sample analysis to explore the implications of the nonlinear

relationships we have uncovered for mortgage risk measurement and hedging, investment

management, and the analysis of mortgage-backed securities.

6.1 Mortgage Risk Measurement

We show that addressing the nonlinearities in the data can significantly improve the accuracy

of mortgage risk forecasts at the individual loan level. We find that linear model mis-

specification tends to significantly degrade predictive performance, especially for prepayment

events. This has important implications for mortgage underwriting, servicing and post-

origination risk measurement, housing finance applications that critically depend on the

ability to accurately forecast future borrower behavior.

We consider Receiver Operating Characteristic (ROC) curve and Area Under Curve

(AUC), which are standard measures of predictive accuracy for a binary classifier. The

binary classifier generates an estimate of the probability that the input sample belongs to

the positive class (e.g., 30 days past due). The ROC curve plots the true positive rate versus

the false positive rate as the discriminative threshold is varied between 0 and 1. The AUC is

the area under the ROC curve and a higher value shows an improved ability of the classifier

to discern between the two classes (the maximum value of the AUC is 1, corresponding to

perfect forecasts). Alternatively, the AUC can be interpreted as the probability that the

model generates a larger value for a sample randomly chosen from the positive class than

for a sample randomly chosen from the negative class.

We consider the out-of-sample AUC for the ROC curve for the transition of a mortgage

between two states (paid o↵, current, 30 days delinquent, 60 days delinquent, 90+ days

delinquent, foreclosure, and REO). Specifically, the AUC for transition u ! v is the AUC for

the two-way classification of whether the mortgage is in state v or not in state v at a 1-month

horizon conditional on the mortgage currently being in state u. Figure 16 reports the AUCs

for networks with 0, 1, 3, and 5 hidden layers, and an ensemble of eight 5-layer networks.

It gives a complete picture of model performance in di↵erent states and for di↵erent types

of transitions. It also yields interesting insights into the behavior of the nonlinear e↵ects

associated with transitions.

We see that in general, the greater the depth of the network, the larger are the out-of-

sample AUCs (i.e., the more accurate are the risk forecasts). There are significant improve-

ments in performance (relative to the linear 0-layer formulation) for transitions from current

to current, as well as transitions out of foreclosure and severe delinquency, suggesting that

these events involve highly nonlinear e↵ects. The improvements in performance for transi-
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tions to paid o↵ (i.e., prepayments) are perhaps most striking. Table 18 reports the AUCs

for prepayment, and Figure 17 provides several of the corresponding ROC curves. The pre-

payment AUCs of the 1-layer neural network represent improvements between 3 percent (for

transitions from 30 days delinquent to paid o↵) and 30 percent (for transitions from 90+

days delinquent to paid o↵) over the AUCs of the linear 0-layer network. This suggests that

the nonlinear e↵ects associated with transitions from severe delinquency to prepaid are the

strongest among all transitions to prepaid.

6.2 Mortgage Investment Strategies

To analyze the implications of nonlinear e↵ects for investment management, we consider the

out-of-sample investment performance of mortgage portfolios constructed using models of

di↵erent depths. Consider an investor who seeks to design a loan portfolio with uninterrupted

cashflow. An example is a financial institution which originates loans and retains some

loans on their balance sheet. Another example is an asset manager who constructs a loan

investment portfolio. Delinquency often produces a loss of cashflow while prepayments lead

to early cashflows that might have to be reinvested at lower interest rates. Uninterrupted

cashflows require loans which are both unlikely to be delinquent and unlikely to prepay. This

is equivalent to designing a portfolio of loans which are highly likely to remain current. Given

an available pool of loans to select a portfolio from, loans can be ranked by a model-implied

likelihood that they remain current. For a portfolio of size N , one then chooses the N loans

with the highest probabilities of remaining current.

The above approach can be used to evaluate the importance for investment management

of capturing nonlinear e↵ects in mortgage state transitions. We form two portfolios of N

loans from an available pool of 100,000 mortgages (randomly chosen from the test dataset).

The first portfolio is chosen using the nonlinear 5-layer network and the second portfolio is

chosen using the linear 0-layer network. A portfolio is chosen by ranking the available loans

according to their probability of being current as predicted by the model and then choosing

the N loans mostly likely to be current.32

Figure 18 shows how the portfolios perform out-of-sample over 1 month and 1 year time

horizons.33 The portfolio generated by the nonlinear 5-layer network significantly outper-

forms the portfolio generated by the linear 0-layer model in terms of prepayment rates. This

finding is consistent with our earlier finding in Section 6.1 that prepayment events involve

32The same approach can be used to rank loans according to other criteria. For instance, if one wanted
to account for both the interest rate and the risk of the loan, the expected return for each loan could be
calculated for each model. Then, the loans could be ranked according to their expected returns.

33The 1 year transition probabilities are produced using the method described in Section 3 where the
time-varying covariates (e.g., unemployment rates) are frozen.
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strong nonlinear e↵ects, which the 0-layer model fails to capture. Table 19 (Table 20) reports

the percent of the two portfolios with size N = 20, 000 in each state (REO, paid o↵, etc.)

at a 1 month (1 year) time horizon. At a 1 year horizon, the 5-layer network portfolio has a

significantly lower prepayment rate than the 0-layer network portfolio. This feature of the

5-layer network portfolio directly translates into improved return for an investor. Conser-

vatively assume that prepayment results in a loss of 5% of notional, foreclosure and REO

produce losses of 40% of notional, and m months delinquent leads a loss of m
360 ⇥ 100% of

notional. Then, the 5-layer network portfolio has a 46% smaller loss than the 0-layer net-

work portfolio at a 1 year time horizon. These results indicate the significant importance

for investment management of capturing nonlinear e↵ects in borrower behavior, especially

prepayment.

6.3 Hedge Sensitivities

The nonlinearities in the data also have significant implications for the estimation of hedge

sensitivities for positions in mortgage and mortgage-backed securities. Accurate sensitivity

estimates are important for investors seeking to hedge their positions against movements in

macroeconomic risk factors such as interest rates and housing prices.

We return to the prepayment sensitivity estimates in Table 12 (see Section 5.1). To

appreciate these sensitivity estimates, note that in our deep learning model the sensitivity

(7) is governed by many model parameters that represent the nonlinear connections between

a variable and the prepayment probability. We compare that with the linear formulations

widely used in earlier studies of borrower behavior (see the references in Section 1.1). In the

case of a linear model, a single coe�cient governs the sensitivity. When nonlinear relations

are present, these coe�cients/sensitivities can severely misrepresent the true influence of

variables. To see this in a concrete example, consider the linear regression f(x;↵, �) = ↵+�x

fitted to data produced from the function y = x2 on x 2 [�1, 1]. The least-squares estimators

are ↵̂ = 1
3 and �̂ = 0. This suggests that there is no relationship between y and the covariate

x. However, clearly there is a very strong relationship, which would have been identified if

a nonlinear model (such as a neural network) was used for f .

We compare the sensitivities implied by the deep learning model in Table 12 with those

implied by the linear logistic regression model (i.e., a 0-layer network), which are given

in Table 21. The linear formulation significantly misrepresents the true sensitivities. For

example, it significantly overstates the sensitivity for the interest rate and interest rate

di↵erentials, and understates the sensitivity of unemployment rates and housing prices. This

implies that hedging strategies based on linear model sensitivities may be highly ine↵ective

and leave an investor significantly exposed.
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6.4 Pool-Level Risk and MBS

We turn to exploring the implications of the nonlinearities for pool-level risk, which is espe-

cially relevant to MBS investors. MBS investors are exposed to the delinquency or prepay-

ment risk from the individual loans in the underlying pool.

The expected delinquency rates, prepayment rate, and return of a mortgage pool is

easily calculated by simply summing the expectations of the individual mortgages. We

examine the pool-level predictions of the 5-layer network for 2,000 pools created from 2

million mortgages in our test dataset. Each pool contains 1,000 mortgages. Pools are

created by rank ordering the loans according to a given loan characteristic (e.g., the interest

rate) and then sequentially placing the loans in pools of size 1,000.34 This produces pools

with varying levels of risk. Four cases are examined. We create pools by rank ordering

according to FICO score, interest rate, LTV ratio, and the predicted probability that the

loan is current. Figures 19, 20, 21, and 22 show the out-of-sample pool-level prediction of

prepayment for a 1 year time horizon. The 1 year transition probabilities and the pool-level

prediction are produced using the method described in Section 3 where the time-varying

covariates are frozen. The diagonal line represents a perfect prediction. The prediction

generated by the nonlinear 5-layer model is fairly accurate. The prediction produced by the

linear 0-layer model, however, is systematically biased.35

Figures 23 and 24 show the out-of-sample pool-level distribution of prepayment for the

5-layer neural network for several di↵erent pools. Each pool has 10,000 mortgages and the

time horizon is 1 year. The national mortgage rate was simulated forward and all other

time-varying covariates were frozen. For illustrative purposes, we use a AR(4) model that

was fitted to historical data for the national mortgage rate obtained from Freddie Mac.36

This formulation accounts for correlated prepayment behavior due to the common exposure

of borrowers to future movements of the mortgage rate. Note that the actual observed

prepayments in Figures 23 and 24 falls in the center of the distribution generated by the 5-

layer network while it falls in the tail of the distribution of the linear 0-layer model, which is

included here for comparison. Thus, in these cases, the 5-layer network-produced prepayment

distribution accurately captured the out-of-sample outcome at pool-level.

To obtain a more comprehensive understanding of out-of-sample pool-level accuracy, we

34The loans with the top thousand highest interest rates are placed in the first pool, loans with the
1001-2000th highest interest rates are placed in the second pool, etc.

35This systematic upward bias is due to the predictions for all pools depending upon the same covariates.
For instance, if one prediction is biased upwards due to the realized value of the national mortgage rate, it
is likely that all pool predictions will be biased upwards since they all depend upon the same realization of
the national mortgage rate.

36The fitted parameters are [0.6687, 1.3514,�0.5131, 0.2410,�0.0838]. The lag was chosen using the partial
autocorrelation plot. Of course, more complex models could be chosen alternatively.
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consider 50 test portfolios with 10,000 mortgages each obtained by slicing a pool of 500,000

mortgages. Table 22 reports average statistics (over the 50 test portfolios) for the prepayment

distributions produced by the 5-layer neural network, and gives a sense of the out-of-sample

prediction error. The statistics for linear 0-layer model are included for comparison. The

5-layer network-produced distribution tends to have less variance with the mean of the

distribution closer to the observed number of prepayments, thereby predicting pool-level

prepayments more accurately. These pool-level results suggest that nonlinear e↵ects are not

only associated with individual borrower behavior but also influence correlated borrower

behavior, especially correlated prepayment events.

Our analysis indicates the significant boost in pool-level predictive performance that can

be achieved by addressing the nonlinear e↵ects in the data. That performance boost can

be translated into more accurate valuations for MBS. To do so, one would generate MBS

cash-flow scenarios using the deep learning model rather than a conventional linear model

as in Curley & Guttentag (1977), Schwartz & Torous (1989), Stanton & Wallace (2011), and

others.

7 Conclusion

This paper analyzes the behavior of mortgage borrowers using an unprecedented dataset

of origination and monthly performance records for over 120 million mortgages originated

across the US between 1995 and 2014. The analysis is based on a nonlinear deep learning

model of multi-period borrower state transitions that incorporates the influence on borrower

behavior of a large number of loan- and borrower-specific as well as macroeconomic variables

at national, state, county and zip-code levels.

Our empirical findings yield a range of important new insights into the behavior of mort-

gage borrowers. The relationship between borrower behavior and risk factors is found to be

highly nonlinear, which questions many linear models studied in prior work. Interaction ef-

fects, where the impact of a variable depends on the values of other variables, are ubiquitous.

We find evidence suggesting that prepayments are most a↵ected; they involve the strongest

nonlinear e↵ects among all events.

Our empirical results have significant implications for risk management, investment man-

agement, and mortgage securities. In an out-of-sample analysis, we show that addressing the

nonlinearities we find in the data significantly improves the accuracy of loan- and pool-level

risk forecasts, the investment performance of mortgage trading strategies, and the valuation

and hedging of mortgage-backed securities.
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A Data Cleaning

A fraction of the mortgages have missing data, including missing data for some of the key

features such as FICO, LTV ratio, original interest rate, and original balance. The missing

data is a result of reporting errors by the originator or servicer, or incomplete information

provided by the borrower at the time of origination. Key features that are missing are more

likely to be the result of reporting errors. For instance, original balance and original interest

rate are required details in any mortgage contract. If they are missing, it must be due to

a reporting error and not the borrower failing to provide this information. Similarly, FICO

score and LTV ratio are almost universally available for mortgage borrowers. Other features,

however, may simply not have been provided by the borrower at the time of origination. An

example is debt-to-income ratio, which is often not available for subprime borrowers. We

take the following approach towards missing data. We insist that any sample must have at

least FICO, LTV ratio, original interest rate, and original balance. Samples missing one of

these variables are removed. Missing data for other features, which are more likely to be due

to incomplete information provided by the borrower, are typically encoded as an additional

indicator variable (1 if it’s missing, 0 if it’s not missing). This standard approach eliminates

the need to remove the corresponding samples, and allows us to measure the implications of

missing features. For a discussion of this approach, see Gelman & Hill (2007, Chapter 25).

There are also certain events reported in the CoreLogic dataset which are errors. For

instance, monthly mortgage transitions from current to 60 days delinquent or from 30 days

delinquent to 90+ days delinquent are not possible. Errors of this type are very infrequent

in the dataset and we remove those samples where such errors occur. Mortgages can also

have their “servicing released” or their state may be reported as “unknown”, “status no

longer provided”, or “invalid data”. “Servicing released” means the servicer which previously

reported the data to CoreLogic for that particular mortgage no longer services that mortgage

and therefore no longer reports data for it. The mortgage state being “unknown”, “status

no longer provided”, or “invalid data” could be due to a range of clerical/software errors.

Whenever a mortgage is in any of these states or has its “servicing released”, we exclude any

subsequent monthly data from our sample.

B Implementation of MLE

There are significant computational hurdles to training models due to the large size of our

dataset as well as due to the size of the deep neural networks. The dataset includes the

individual characteristics of each loan as well as monthly updates on loan performance. We

include 272 features for each mortgage. Since our models are dynamic, there is a sample for

33



each month of data. In total, we train over roughly 3.5 billion samples, which is almost 2

terabytes of data, and only a fraction of the dataset can be loaded into (RAM) memory at

any one time. Further, many of the deep neural networks contain tens of thousands of free

parameters. Estimating these parameters in order to fit the model requires computing the

gradients using backpropagation, which is a time and memory intensive procedure. Fitting

just one such model on our data using typical computing resources (e.g., using MATLAB

or R on a desktop with conventional CPU) would require weeks of training time, which

makes fitting and iterating through models impractically slow. In contrast, we train up to

10 models simultaneously in a span of few days. This is made possible by using several tools

that harness both optimized hardware as well as computational tricks, which we describe in

the remainder of the section.

While training, every data sample undergoes the same series of transformations through

the layers of the neural network, which makes the procedure very amenable to paralleliza-

tion. Accelerated training can be achieved by employing Graphics Processing Units (GPU)

which enable performing several thousand simple operations, such as matrix multiplication,

simultaneously. We harness the power of GPUs, which provide more than a 10x speedup over

CPU, to address the problem of a large dataset. Moreover, to iterate faster it is important

to be able to train multiple models simultaneously. Therefore, we set up a cluster computing

environment where each model is trained independently on individual nodes (powered by

GPUs) and all nodes have access to a central data server. This avoids the need for repli-

cating data on individual nodes and enables e�cient training. We achieve this practically

by using Amazon Web Services (AWS), which is a cloud computing platform that allows

flexible scaling of compute resources. In our implementation, we use up to 10 single-GPU

nodes, where each GPU contains 1,536 CUDA cores and 4 GB of memory. The bandwidth

of the central data server allows up to 15 nodes to fetch data simultaneously to train their

models.

There are several other software optimizations that help make the training faster. We

use a specialized deep learning library Torch, which has been developed by Facebook and

Google and uses the Lua programming language. Such specialized libraries optimize the

commonly used operations for neural networks and have fast routines written in C that

speed up training by an order of magnitude. Further, we use single precision floating point

operations (instead of double precision) throughout our code. This has no practical e↵ect

on the parameter estimates and it halves the memory requirements and leads to substantial

speed up in the computations.

Gradient descent for fitting models is impractical due to the size of the data. We use

the standard machine learning method of minibatch gradient descent with momentum; see

Ngiam, Coates, Lahiri, Prochnow, Le & Ng (2011) for a discussion of minibatch gradient

34



descent for deep neural networks. In minibatch gradient descent, gradient steps are sequen-

tially taken using subsets of the dataset. A block of the data is loaded into memory and the

gradient of the objective function is calculated on this block of data. A step is then taken in

the direction of the minibatch gradient with the step size determined by the “learning rate”.

Another block of data is then loaded into memory and the process repeats. The size of this

block of data, referred to as the batch size, and the learning rate are optimized in order for

fast (but stable) convergence of the model parameters.

In order that the minibatch gradients are unbiased, blocks of data must be drawn at

random from the entire dataset. If gradients are biased, training may not converge and

accuracy may be lost. A typical issue with mortgage and other types of loan data is that

it is not stored randomly, but instead split into categories such as geographic region, time

period, and loan type. Due to the size of the data, randomly scrambling the data can

be computationally challenging. The original CoreLogic dataset needs to be reorganized

for model fitting. The original dataset provided by CoreLogic is divided into static data

(origination features) and dynamic data (monthly loan performance). The static data itself

is divided into separate geographic regions (e.g., Pacific, Northeast, Southeast). The dynamic

data is divided into geographic regions and then into months. In order to create a training

sample, one has to match the static data for a loan with all of the monthly updates for that

loan in the dynamic data files. In addition, one has to randomly order the training samples

such that there is no bias towards a particular origination time or geographic location.

Matching static data with the dynamic data via a search through these di↵erent subsets is

impractical due to the size of the dataset. In order join the static and dynamic data, we

create a hash table whose keys are the loan IDs and whose values are the destination folders

1, . . . , L (randomly chosen). This hash table is used to randomly distribute the loans to the

folders. Secondly, we use another hash table to match static data with dynamic data with

these destination folders in order to avoid a search.

C Hyperparameter Selection

Neural networks have a number of hyperparameters which need to be chosen. The standard

approach to choosing these hyperparameters is to cross-validate them via a validation set.

We train neural networks with di↵erent hyperparameters on the training set and compare

the log-likelihood on the validation set. In particular, we cross-validate the number of layers

and number of neurons per layer. The more layers and more neurons, the more complex

the neural network is and the better able it is to fit complex relationships. However, with

more complexity, there is also a higher chance of overfitting. We also cross-validate the size

of the `2 penalty, the learning rate schedule, batch size (see Appendix B), and the type of
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nonlinearity via a sparse grid search. For each grid point, we train a neural network and

record its validation error. We then choose the hyperparameters at the grid point with the

lowest validation error.

Several learning rate schedules were tested. The learning rate schedule is critical for

training the neural network. If the learning rate is too high, there can be large oscillations

that may drive the estimates away from the optimal value. If the learning rate is too low,

the neural network will learn very slowly. The chosen learning rate schedule is:

Learning rate =
LR0

1 + t/800
, (9)

where the initial learning rate LR0 = 0.1 and t is the epoch number. The half-life (i.e., the

number of epochs until the learning rate is reduced by half) is 800. Each epoch contains

approximately 1.5 million training samples. The batchsize is 4, 000, meaning approximately

375 gradient steps are taken per epoch.

Cross-validation leads to the choice of 5 hidden layers, with 200 units in the first hidden

layer and 140 units in each subsequent one. The rectified linear unit (ReLU) nonlinearity

(i.e., �(x) = max(0, x)) was found to yield better performance and faster convergence than

the sigmoid nonlinearity (�(x) = 1/(1 + e�x)).

D Finite-Di↵erence Approximation of Sensitivities

This appendix provides finite-di↵erence estimators for the sensitivities considered in in Sec-

tion 5.3. The sensitivity (7) can be estimated directly from the dataset using the formula

Sensitivity(u, v, j) =
1

|Mu|
X

(n,t)2Mu

����
@h✓̂(v, x)

@xj

����
x=Xn

t

(10)

where Mu = {(n, t) : Un
t = u, 1  t  T, 1  n  N}, xj is the j-th element of x, and ✓̂ is

the MLE. Here Xn
t and Un

t are the vector of explanatory variables and the state of mortgage

n at time t, respectively. Note that the quantity in (10) aggregates over only the relevant

mortgages and times, namely those in Mu. This allows computing the probability that this

mortgage attains state v at time t + 1, which in turn facilitates computing the sensitivity

for transition from state u to v. The formula (10) is the sensitivity across the entire dataset

rather than the sensitivity at a single representative point.

We now develop a finite-di↵erence approximation for the sensitivity (8). Importantly,

the finite-di↵erence formulas can be used to analyze the sensitivity of nonlinear functions
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which are piecewise linear (such as neural networks with ReLU units). Let

Interaction(u, v, i, j) =
1

|Mu|
X

(n,t)2Mu

����
�
h✓̂(v, ·, xi +�i, ·, xj +�j, ·)� h✓̂(v, ·, xi, ·, xj, ·)

�

�
�
h✓̂(v, ·, xi +�i, ·, xj, ·)� h✓̂(v, ·, xi, ·, xj, ·)

�

�
�
h✓̂(v, ·, xi, ·, xj +�j, ·)� h✓̂(v, ·, xi, ·, xj, ·)

�����
x=Xn

t

(11)

The formula (11) measures how much of the change in the fitted transition probability h✓̂

cannot be explained by independent shifts xi ! xi +�i and xj ! xj +�j. It is a second-

order sensitivity. If h✓̂ is smooth and �i = �j = � ⌧ 1, 2
�2 Interaction(u, v, i, j) is a

finite-di↵erence estimator for

E
��

2X

i,j=1

@2h✓̂

@xi@xj
(V,X)

��
����V = v, U = u

�
(12)

If there is no interaction (for example, loan performance depends linearly on the covariates),

Interaction(u, v, i, j) of course equals 0.

Similarly, the importance of the interaction between three covariates i, j, k for a transition

from state u to v is measured by:

Interaction(u, v, i, j, k) =
1

|Mu|
X

(n,t)2Mu

����
�
h✓̂(v, ·, xi +�i, xj +�j, xk +�k)� h✓̂(v, ·, xi, xj, xk)

�

�
�
h✓̂(v, ·, xi +�i, xj +�j, xk)� h✓̂(v, ·, xi, xj, xk)

�
�
h✓̂(v, ·, xi +�i, xj, xk +�k)� h✓̂(v, ·, xi, xj, xk)

�
�
h✓̂(v, ·, xi, xj +�j, xk +�k)� h✓̂(v, ·, xi, xj, xk)

�����
x=Xn

t

(13)

The formula (13) measures the third-order interactions. It detects interactions between three

covariates which are not explained by the sum of the pairwise interactions. If h✓̂ is smooth

and �i = �j = � ⌧ 1, 6
�3 Interaction(u, v, i, j, k) is a finite-di↵erence estimator for

E
��

X

↵+�+⇣=3

@3h✓̂

@x↵
i @x

�
j @x

⇣
k

(V,X)
��
����V = v, U = u

�
. (14)

If there are only pairwise interactions (for example, loan performance depends quadratically

on the covariates), Interaction(u, v, i, j, k) of course equals 0. If Interaction(u, v, i, j, k) 6= 0, it

indicates that there is significant nonlinearity beyond even a quadratic model. More impor-
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tantly, it indicates which triplets of covariates are interacting most strongly with each other.

The formula (13) can be generalized to measure even higher order interactions (fourth, fifth,

etc.); however, this paper only empirically investigates second- and third-order interactions.
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Feature Values

FICO score Continuous
Original debt-to-income ratio Continuous
Original loan-to-value ratio Continuous
Original interest rate Continuous
Original balance Continuous
Original term of loan Continuous
Original sale price Continuous
Buydown flag True, False
Negative amortization flag True, False
Occupancy Type Owner occupied, second home, non-owner occupied or investment prop-

erty, other
Prepayment penalty flag True, False
Product type See Table 6
Loan purpose Purchase, Refinance Cash-out, Refinance No Cash Out, Second mort-

gage, Refinance Cash Out Unkown, Construction Loan, Debt Consoli-
dation Loan, Home Improvement Loan, Education Loan, Medical Loan,
Vehicle Purchase, Reverse Mortgage, Other

Documentation Full documentation, Low or minimal documentation, No asset or income
verification, Other

Lien type 1st Position, 2nd Position, 3rd Position, 4th Position, Other
Channel Retail Branch, Wholesale Bulk, Mortgage Broker, Realtor Originated,

Relocation Corporate, Relocation Mortgage Broker, Builder, Direct
Mail, Other Direct, Internet, Other Retail, Mortgage Banker, Corre-
spondent, Other

Loan type Conventional Loan, VA Loan, FHA Loan, Other Government Loan, Af-
fordable Housing Loan, Pledged Asset Loan, Other

Number of units 1,2,3,4,5
Appraised value < sale price? True, False
Initial Investor Code Portfolio Held, Securitized Other, GNMA/Ginnie Mae, GSE
Interest Only Flag True, False
Margin for ARM mortgages Continuous
Periodic rate cap Continuous
Periodic rate floor Continuous
Periodic pay cap Continuous
Periodic pay floor Continuous
Lifetime rate cap Continuous
Lifetime rate floor Continuous
Rate reset frequency 1,2,3, . . . (months)
Pay reset frequency 1,2,3, . . . (months)
First rate reset period 1,2,3, . . . (months since origination)
Convertible flag True, False
Pool insurance flag True, False
Alt-A flag True, False
Prime flag True, False
Subprime flag True, False
Geographic state CA, FL, NY, MA, etc.
Vintage (origination year) <1995, 1995, 1996, . . . , 2014

Table 1: Loan-level features at origination (from CoreLogic).
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Feature Mean Median Min Max 25% Quantile 75% Quantile

FICO 634 630 300 900 580 680
Original LTV 74 80 0 200 68 90

Original interest rate 7.8 7.8 0 30 6.3 9.6
Original balance 160,197 124,000 7 318,750 68,850 210,000

Table 2: Summary statistics for some mortgage features in subprime data.

Feature Mean Median Min Max 25% Quantile 75% Quantile

FICO 720 730 300 900 679 772
Original LTV 74 79 0 200 63 90

Original interest rate 5.8 5.8 0 20.6 4.9 6.6
Original balance 190,614 151,353 1 6,450,000 98,679 238,000

Table 3: Summary statistics for some mortgage features in prime data.

Feature Mean Median Min Max 25% Quantile 75% Quantile

FICO 707 718 300 900 660 767
Original LTV 74 79 0 200 63 90

Original interest rate 6 5.95 0 30 4.9 6.9
Original balance 186,202 148,500 1 6,450,000 94,000 234,000

Table 4: Summary statistics for some mortgage features in full dataset (prime and subprime).
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Feature Values

Current status Current, 30 days delinquent, 60 days
delinquent, 90+ days delinquent, Fore-
closed, REO, paid o↵

Number of days delinquent Continuous
Current interest rate Continuous
Current interest rate � national mortgage rate Continuous
Time since origination Continuous
Current balance Continuous
Scheduled principal payment Continuous
Scheduled principal + interest payment Continuous
Number of months the mortgage’s in-
terest been less than the national mort-
gage rate and the mortgage did not pre-
pay

Continuous

Number of occurrences of current in
past 12 months

0-12

Number of occurrences of 30 days delin-
quent in past 12 months

0-12

Number of occurrences of 60 days delin-
quent in past 12 months

0-12

Number of occurrences of 90+ days
delinquent in past 12 months

0-12

Number of occurrences of Foreclosed in
past 12 months

0-12

Table 5: Loan-level performance features (from CoreLogic).
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Product type Percent of Total Percent of Subprime Percent of Prime

Fixed Rate 80.6 % 48 % 86.3 %
ARM 11.7 % 29 % 8.7 %

GPM (graduated payment) .01 % 0 % .01 %
Balloon Unknown .9 % 1 % .9 %

Balloon 5 .03 % 0 % .03 %
Balloon 7 .03 % .004 % .04 %
Balloon 10 .004 % .006 % .004 %

Balloon 15/30 .2 % 1.07 % .005 %
ARM Balloon .2 % 1.3 % .01 %
Balloon Other .7 % 3.3 % .26 %

Two Step Unknown .02 % 0 % .02 %
Two Step 10/20 .003 % 0 % .003 %

GPARM .002 % 0 % .002 %
Hybrid 2/1 1 % 6.7 % 0 %
Hybrid 3/1 .63 % 2.2 % .35 %
Hybrid 5/1 1.9 % .22 % 2.2 %
Hybrid 7/1 .5 % .005 % .64 %
Hybrid 10/1 .24 % .02 % .28 %
Hybrid Other .02 % .02 % .02 %

Other .7 % 4.3 % .01 %
Invalid data .18 % .6 % .11 %

Table 6: Types of mortgages for full dataset, subprime subset, and prime subset.
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Feature Values

Monthly zip code median house price per square feet (Zillow) Continuous
Monthly zip code average house price (Zillow) Continuous
Zillow zip code house price change since origination Continuous
Monthly state unemployment rate (BLS) Continuous
Yearly county unemployment rate (BLS) Continuous
Original interest rate - National mortgage rate (Freddie Mac) Continuous
Original interest rate - National mortgage rate at origination (Freddie Mac) Continuous
Number of months where interest rate is < nat’l mortgage rate (Freddie Mac) Continuous
Median income in same zip code (Powerlytics) Continuous
Total number of prime mortgages in same zip code (CoreLogic) Continuous
Lagged subprime default rate in same zip code (CoreLogic) Continuous
Lagged prime default rate in same zip code (CoreLogic) Continuous
Lagged prime paid o↵ rate in same zip code (CoreLogic) Continuous

Table 7: Local and national economic risk factors. Data sources in parentheses. “Default
rate” is taken to be the states foreclosure or REO.

Current/Next Current 30 days 60 days 90+ days Foreclosure REO Paid O↵

Current 93 4.7 0 0 .01 .002 2
30 days 30 45 23 0 .2 .004 2
60 days 11 16 35 32 5 .01 1.5
90+ days 4 1 2 82 9 .3 2.2
Foreclosure 2 .4 .3 6.5 85 4 1.4

REO 0 0 0 0 0 100 0
Paid o↵ 0 0 0 0 0 0 100

Table 8: Monthly transition matrix for subprime data. Probabilities are given in percentages.

Current/Next Current 30 days 60 days 90+ days Foreclosure REO Paid O↵

Current 97.1 1.3 0 0 .001 .0002 1.57
30 days 34.6 44.4 19 0 .004 .003 1.82
60 days 12 16.8 34.5 34 1.6 .009 1.1
90+ days 4.1 1.4 2.6 80.2 10 .3 1.3
Foreclosure 1.9 .3 .1 6.8 87 2.5 1.3

REO 0 0 0 0 0 100 0
Paid o↵ 0 0 0 0 0 0 100

Table 9: Monthly transition matrix for prime data. Probabilities are given in percentages.
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Current/Next Current 30 days 60 days 90+ days Foreclosure REO Paid O↵

Current 96.7 1.6 0 0 .002 .0004 1.61
30 days 34.2 44.5 19.3 0 .02 .003 1.84
60 days 12 16.7 34.5 33.8 1.9 .009 1.1
90+ days 4.1 1.4 2.5 80.4 9.9 .3 1.3
Foreclosure 1.9 .3 .1 6.8 86.8 2.6 1.3

REO 0 0 0 0 0 100 0
Paid o↵ 0 0 0 0 0 0 100

Table 10: Monthly transition matrix for full dataset. Probabilities are given in percentages.

Model In-sample Loss Out-of-sample Loss Out-of-sample Loss LR Score
w/o Dropout w/o Dropout with Dropout

0 hidden layer .1840 .1805 .1805 N/A
1 hidden layer .1680 .1700 .1685 1.006⇥ 108

3 hidden layer .1644 .1679 .1671 2.264⇥ 107

5 hidden layer .1639 .1684 .1670 3.145⇥ 106

7 hidden layer .1638 .1688 .1673 6.290⇥ 105

Ensemble .1640 .1659 .1654 N/A

Table 11: In-sample and out-of-sample loss (negative average log-likelihood) for neural net-
works of di↵erent depth. The ensemble is composed of eight 5-layer networks. The LR Score
is the likelihood ratio test statistic, given by twice the di↵erence between the in-sample
log-likelihood of the alternative model and the in-sample log-likelihood of the null model.
We test a more complex model (alternative) against the simpler one (null); for example,
1.006 ⇥ 108 is the score for a test of the 1 hidden layer network against the 0 hidden layer
network. All tests reported are significant at the 99% level.
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Variable Gradient

Current Outstanding Balance 0.1878
Original Loan Balance 0.0856
Original Interest Rate 0.0503

Current Interest Rate - National Mortgage Rate 0.0478
Original Interest Rate - National Mortgage Rate 0.0463

Zillow Zip Code Housing Price Change Since Origination 0.0386
Number of Times 30 Days Delinquent in Last 12 Months 0.0384

Scheduled Interest and Principle Due 0.0364
Number of Times 60 Days Delinquent in Last 12 Months 0.0362

Zillow zip code median house price change since origination 0.0346
Time Since Origination 0.0306

ARM First Rate Reset Period 0.0295
FICO Score 0.0293

Lagged Prime Prepayment Rate in Same Zip Code 0.0292
Number of Times 90+ Days Delinquent in Last 12 Months 0.0237

Current Interest Rate - Original Interest Rate 0.0228
State Unemployment Rate 0.0214
Number of Days Delinquent 0.0195

ARM periodic rate cap 0.0191
Lagged Prime Default Rate in Same Zip Code 0.0190

Total Number of Prime Mortgages in Same Zip Code 0.0190
Number of Times Current in Last 12 Months 0.0145

Original Appraised Value 0.0132
Original Interest Rate - National Mortgage Rate at Origination 0.0129

LTV Ratio 0.0116
Lagged Default Rate for Subprime Mortgages in Same Zip Code 0.0115

...
...

Table 12: Variable sensitivity analysis. We report the average absolute gradient for transition
current ! paid o↵. Performed using 5-layer neural network.
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Variable Gradient

Number of Times 30 Days Delinquent in Last 12 Months 0.0650
FICO Score 0.0445

Number of Times 60 Days Delinquent in Last 12 Months 0.0334
Current Outstanding Balance 0.0320

Original Loan Balance 0.0285
Original Interest Rate 0.0235

Zillow Zip Code Housing Price Change Since Origination 0.0187
Original Interest Rate - National Mortgage Rate 0.0170

Number of Times 90+ Days Delinquent in Last 12 Months 0.0145
Lagged Prime Default Rate in Same Zip Code 0.0116
Number of Times Foreclosed in Last 12 Months 0.0109

Zillow zip code median house price change since origination 0.0108
Number of Days Delinquent 0.0095

Number of Times Current in Last 12 Months 0.0088
Time Since Origination 0.0087

Current Interest Rate - Original Interest Rate 0.0087
Lagged Prime Prepayment Rate in Same Zip Code 0.0074

ARM Rate Reset Frequency 0.0070
Total Number of Prime Mortgages in Same Zip Code 0.0068

Current Interest Rate - National Mortgage Rate 0.0065
State Unemployment Rate 0.0060

Scheduled Interest and Principle Due 0.0050
LTV Ratio 0.0050

Lagged Default Rate for Subprime Mortgages in Same Zip Code 0.0050
Original Term of the Loan 0.0041

...
...

Table 13: Variable sensitivity analysis. We report the average absolute gradient for transition
current ! 30 days delinquent. Performed using 5-layer neural network.
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Most Important Pairs of Variables Gradient

Original interest rate, State unemployment rate 1.33⇥ 10�3

Original interest Rate, Number of times current in past 12 months 1.21⇥ 10�3

Original interest rate, Original term of the loan 0.87⇥ 10�3

FICO score, Original interest rate 0.86⇥ 10�3

Number of times current in past 12 months, Original term of the loan 0.69⇥ 10�3

State unemployment rate, Original term of the loan 0.67⇥ 10�3

...
...

Table 14: Analysis of pairwise variable interactions. We report the average absolute gradient
for transition current ! paid o↵. Performed using 5-layer neural network.

Most Important Triplets of Variables Gradient

Original interest rate, FICO score, State unemployment rate 7.52⇥ 10�4

Original interest Rate, State unemployment rate, 5.31⇥ 10�4

Original interest rate - National mortgage rate
Original loan balance, Original interest rate, State unemployment rate 4.78⇥ 10�4

Original loan balance, Original interest rate, FICO score 4.53⇥ 10�4

Current outstanding balance, Original interest rate, State unemployment rate 3.72⇥ 10�4

Original loan balance, FICO score, State unemployment rate 3.71⇥ 10�4

...
...

Table 15: Analysis of interactions between three variables. We report the average absolute
gradient for transition current ! paid o↵. Performed using 5-layer neural network.
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Most Important Pairs of Variables Gradient

FICO score, Original term of the loan 1.68⇥ 10�3

Original interest rate, Original term of the loan 1.28⇥ 10�3

Number of times current in last 12 months, Original term of the loan 1.27⇥ 10�3

State unemployment rate, Original term of the loan 0.91⇥ 10�3

Original term of the loan, Scheduled Principle Due (missing value) 0.66⇥ 10�3

Original term of the loan, Number of IO months (missing value 0.66⇥ 10�3

...
...

Table 16: Analysis of pairwise variable interactions. We report the average absolute gradient
for transition current ! 30 days delinquent. Performed using 5-layer neural network.

Most Important Triplets of Variables Gradient

FICO score, Original interest rate, Number of times current in last 12 months 2.10⇥ 10�4

FICO score, Original interest rate, 1.82⇥ 10�4

Original interest rate - National mortgage rate
FICO score, Current outstanding balance, Original interest rate 1.60⇥ 10�4

FICO score, Original loan balance, Original interest rate 1.57⇥ 10�4

FICO score, Current outstanding balance, Original loan balance 1.30⇥ 10�4

Current Outstanding balance, Original loan balance, Original interest rate 1.27⇥ 10�4

...
...

Table 17: Analysis of interactions between three variables. We report the average abso-
lute gradient for transition current ! 30 days delinquent. Performed using 5-layer neural
network.
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Model C!P 30dd!P 60dd!P 90+dd!P F!P

0 hidden layer .65 .77 .68 .59 .57
1 hidden layer .72 .79 .71 .76 .68
3 hidden layer .74 .81 .73 .79 .72
5 hidden layer .74 .81 .73 .79 .73
Ensemble .76 .83 .74 .79 .74

Table 18: Out-of-sample AUC for various transitions to paid o↵ (i.e., prepayment) for neural
networks of di↵erent depth. The ensemble is composed of eight 5-layer networks. “P” stands
for paid o↵, “dd” stands for days delinquent, and “F” stands for foreclosure. The AUC for
transition u ! P is the AUC for the two-way classification of whether the mortgage is in
state P or not in state P at a 1-month horizon conditional on the mortgage currently being
in state u.

State/Portfolio 0-Layer Neural Network 5-Layer Neural Network

REO 0.00 0.00
Paid o↵ 0.83 0.36
Current 98.71 99.25
30 dd 0.46 0.39
60 dd 0.00 0.00
90+ dd 0.00 0.00

Foreclosure 0.01 0.00

Table 19: Percent of portfolio which is in each state at a 1 month time horizon. Portfolios
have size N = 20, 000 and are chosen from an available pool of 100, 000 mortgages.

State/Portfolio 0-Layer Neural Network 5-Layer Neural Network

REO 0.03 0.02
Paid o↵ 8.14 4.06
Current 89.09 93.28
30 dd 1.54 1.60
60 dd 0.36 0.36
90+ dd 0.54 0.49

Foreclosure 0.30 0.19

Table 20: Percent of portfolio which is in each state at a 1 year time horizon. Portfolios have
size N = 20, 000 and are chosen from an available pool of 100, 000 mortgages.
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Feature Gradient

Original interest rate .1596
Lagged prime default rate in same zip code .1505

Original interest rate minus national mortgage rate .1203
Number of days delinquent .0773

Lagged prime prepayment rate in same zip code .0697
Current interest rate minus national mortgage rate .0674
Current interest rate minus original interest rate .0533

Zillow zip code median house price change .0441
Original loan balance .0388

Current outstanding balance .0356
Time since origination .0341
Zillow housing prices .0317

ARM first rate reset period .0298
Zillow zip code housing price change since origination .0266

Number of times 90+ days delinquent in last 12 months .0238
Number of times current in last 12 months .0227

Lagged default rate for subprime mortgages in same zip code (� 500 and < 1000) .0203
FICO score .0165

Total number of prime mortgages in same zip code .0163
Lagged default rate for subprime mortgages in same zip code .0158

...
...

Table 21: Variable sensitivity analysis. We report the average absolute gradient for transition
current ! paid o↵. Performed using linear 0-layer network (i.e., logistic regression).

0-Layer Neural Network 5-Layer Neural Network

Avg. Actual Prepayments 1723.8 1723.8
Avg. Predicted Prepayments 2853.8 1456.9

Avg. Absolute Gap 1186.0 278.5
Avg. Standardized Gap 2.4 1.9

Table 22: Comparison of out-of-sample pool-level distribution. The table reports averages
for 50 random test portfolios. “Avg. Predicted Prepayments” is the average across 50
test portfolios of the mean of the forecast distribution. The “Avg. Absolute Gap” is the
absolute di↵erence between the predicted and the actual number of prepayments. The
“Avg. Standardized Gap” is the di↵erence between the predicted and the actual number of
prepayments measured in multiples of the forecast standard deviation.
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Figure 4: Empirical monthly prepayment rate versus FICO score. The figure shows that the
prepayment rate has a significant nonlinear relationship with the FICO score of the borrower.
The propensity to prepay is less for borrowers with lower FICO scores but it plateaus once
the score crosses a threshold of about 500 points. This reinforces the need for a model family
that is capable of learning nonlinear functions of the data.
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Figure 5: Empirical monthly prepayment rate versus time since origination (loan age). The
figure shows that the prepayment rate has a significant nonlinear relationship with the age
of the mortgage. Several spikes in the rate occur at 1, 2, and 3 years. These might be due
to the expiration of prepayment penalties or ARM and hybrid mortgages having rate resets.
Many of the subprime mortgages started with low teaser rates and would later jump to
higher rates; borrowers would refinance to avoid these rate jumps.
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Figure 6: Empirical monthly prepayment rate versus loan-to-value (LTV) ratio at origination.
The figure shows that the prepayment rate has a significant nonlinear relationship with the
LTV ratio. One should expect this curve to have a downward slope since a loan with high
LTV will have lesser opportunities to refinance due to a large loan amount relative to the
value of the asset. This trend is observed in the data, albeit with significant nonlinearity as
seen in the figure.
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Figure 7: Out-of-sample loss (negative average log-likelihood) versus number of neural net-
works in the ensemble. The figure shows the improvement in the out-of-sample loss, an indi-
cator of the performance of the ensemble, as the number of independently trained models in
the ensemble are increased. Note that each model in an ensemble is a 5-layer neural network
that is trained with bootstrapped data and random initialization chosen independently of
that for other models. The predictions from all models within an ensemble are averaged to
produce a low-variance estimate of transition probabilities, so the computational e↵ort in-
creases linearly with the ensemble size. The figure shows that the gains beyond an ensemble
size of 8 are marginal and may not justify using bigger ensembles due to the computational
burden.
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Figure 8: Nonlinear Relationships between Prepayment and Covariates.
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Figure 9: Nonlinear Relationships between Delinquency and Covariates.
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Figure 10: Relationship between prepayment and pairs of covariates.
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Figure 11: Relationship between Prepayment and Triplets of Covariates
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Figure 12: Relationship between original interest rate, original interest rate - national mort-
gage rate, and state unemployment rate.
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Figure 13: Relationship between delinquency and pairs of covariates.
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Figure 14: Relationship between Delinquency and Triplets of Covariates
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Figure 15: Relationship between FICO score, Original interest rate, and Number of times
current in last 12 months.
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Figure 16: Out-of-sample AUCs for the di↵erent models. The AUC matrices above o↵er
the most granular view into model performance. For mortgages in state u in the current
month, the AUC for event u ! v is the AUC for the two-way classification of whether
the mortgage will be in state v or not next month. A higher value, depicted by a darker
color, indicates better performance. We see marked improvement in the AUC values in going
from the 0-layer model to the 1-layer network, especially for transitions to foreclosure and
paid o↵ as well as for the transitions from the delinquent states to current. We see further
improvement in the AUC values in going from the 3-layer network to the 5-layer network.
In going from the 5-layer neural network to their ensemble, every transition in the matrix
sees an improvement in prediction.
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Figure 17: Out-of-sample ROC curves for various models for the transition current ! paid
o↵. The ROC curve corresponding to the ensemble dominates the curves for the individual
networks, which in turn dominate the curve for the 0-layer (logistic regression) model. This
implies that for those mortgages that are presently in the current state, predicting whether
the state next month would be paid o↵ or not is best predicted by the ensemble, followed
by the networks with at least one layer, and then by the 0-layer model. Further, the gap
between the curves for the 0-layer model and those for the deep neural networks indicates
the significant gain in predictive power due to the modeling of more complex nonlinear
relationships obtained by adding multiple hidden layers to the model.
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Figure 18: Comparison of out-of-sample performance for 5-layer network portfolio and 0-layer
network portfolio for 1-month (top) and 1-year (bottom) ahead horizon. From a random pool
of 100, 000 loans, an investor selects N loans so as to maximize the number of loans (out of
these N) that remain current after one (twelve) months. This requires ranking the loans on
their probability of remaining current in the next month (year) and then selecting the top
N loans. This ranking is obtained for two models, and the number of loans selected, N , is
varied from 0 to 100, 000. The figure shows for each portfolio size N (expressed as percent
of the pool size) on the x-axis the corresponding number of loans that are not current in the
subsequent month (year) on the y-axis. The portfolio constructed using the 5-layer neural
network yields superior performance for all portfolio sizes. Note that the curves intersect at
the end points by design, since the portfolios selected for N = 0 (no loans) and N = 100, 000
(entire pool of loans) are identical.
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Figure 19: Comparison of out-of-sample pool-level predictions of the 5-layer network and the
0-layer model. A pool of 2 million mortgages is grouped into 2, 000 portfolios by ordering
loans according to the borrowers’ FICO score and then sequentially packaging every 1,000
loans into individual portfolios. For each such portfolio, the figure shows the observed
number of prepayments in the next 12 months on the x-axis and the predicted number of
prepayments in the next 12 months from the two models, the 5-layer neural network and
the logistic regression model, on the y-axis. The x = y line (in black) shows the ideal but
hypothetical scenario under which the predicted and the observed number of prepayments
coincide. It is seen that the predictions from the 5-layer neural network are much closer to
this ideal line than those from the 0-layer model.
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Figure 20: Comparison of out-of-sample pool-level predictions of the 5-layer neural network
and the logistic regression model. A pool of 2 million mortgages is grouped into 2, 000
portfolios by ordering loans according to their initial interest rate and then sequentially
packaging every 1,000 loans into individual portfolios. For each such portfolio, the figure
shows the observed number of prepayments in the next 12 months on the x-axis and the
predicted number of prepayments in the next 12 months from the two models, the 5-layer
neural network and the logistic regression model, on the y-axis. The x = y line (in black)
shows the ideal but hypothetical scenario under which the predicted and the observed number
of prepayments coincide. It is seen that the predictions from the 5-layer neural network are
much closer to this ideal line than those from the logistic regression model.
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Figure 21: Comparison of out-of-sample pool-level predictions of the 5-layer neural network
and the logistic regression model. A pool of 2 million mortgages is grouped into 2, 000
portfolios by ordering loans according to their loan-to-value (LTV) ratio and then sequentially
packaging every 1,000 loans into individual portfolios. For each such portfolio, the figure
shows the observed number of prepayments in the next 12 months on the x-axis and the
predicted number of prepayments in the next 12 months from the two models, the 5-layer
neural network and the logistic regression model, on the y-axis. The x = y line (in black)
shows the ideal but hypothetical scenario under which the predicted and the observed number
of prepayments coincide. It is seen that the predictions from the 5-layer neural network are
much closer to this ideal line than those from the logistic regression model.
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Figure 22: Comparison of out-of-sample pool-level predictions of the 5-layer neural network
and the logistic regression model. A pool of 2 million mortgages is grouped into 2, 000
portfolios by ordering loans according to their probability of being current after 12 months
and then sequentially packaging every 1,000 loans into individual portfolios. For each such
portfolio, the figure shows the observed number of prepayments in the next 12 months on
the x-axis and the predicted number of prepayments in the next 12 months from the two
models, the 5-layer neural network and the logistic regression model, on the y-axis. The
x = y line (in black) shows the ideal but hypothetical scenario under which the predicted
and the observed number of prepayments coincide. It is seen that the predictions from the 5-
layer neural network are much closer to this ideal line than those from the logistic regression
model. It is important to note here that the loans were ordered on their probability of being
current after 12 months, where this probability is estimated using the logistic regression
model. If the estimated probabilities were accurate, the portfolios so obtained would have
large variations in quality with the observed number of prepayments covering the entire x-
axis (as in previous plots) as well as the logistic regression model would see an increasing
curve; however, neither of these trends is observed, implying that the predicted probabilities
are inaccurate.
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Figure 23: Comparison of out-of-sample pool-level distribution from the 5-layer neural net-
work and the logistic regression model. The distribution of the number of prepayments at a
12-month horizon is obtained by simulating several trajectories for the time-varying covari-
ates and then computing the transition probabilities for each loan for every trajectory; this
approach is described in Section 3. For a wide range of portfolios, we observe that the gap
between the mean of the distribution and the actual number of prepayments is lesser for the
neural network model than for the logistic regression model.

Figure 24: Comparison of out-of-sample pool-level distribution from the 5-layer neural net-
work and the logistic regression model. The distribution of the number of prepayments at a
12-month horizon is obtained by simulating several trajectories for the time-varying covari-
ates and then computing the transition probabilities for each loan for every trajectory; this
approach is described in Section 3. For a wide range of portfolios, we observe that the gap
between the mean of the distribution and the actual number of prepayments is lesser for the
neural network model than for the logistic regression model.
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