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Abstract. We present theorems on the existence of Berk-Nash equilibria in mis-
specified Markov Decision Processes with infinite action and state spaces. We
extend the results of Esponda-Pouzo (2021) for finite state and action spaces to
compact action spaces and sigma-compact state spaces with possibly unbounded
payoff functions. This extension allows, for the first time, consideration of continuous
distributions with possibly unbounded support. We provide several examples that
span various areas in economic theory: neo-classical producer theory, the optimal
savings problem, and identification and inference in econometric theory. The proofs
use a recent technique in nonstandard analysis, originated by the second author, to
extend known theorems for finite mathematical systems to infinite systems. This
technique has already generated new results in probability theory, statistical decision
theory, and general equilibrium theory, and is potentially applicable to a wide range
of problems. (138 words)
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1. Introduction

Learning under model misspecification is an important topic in economic theory.1

Esponda and Pouzo (2021) (hereafter “EP”) define an equilibrium notion, Berk-Nash
Equilibrium, for misspecified Subjective Markov Decision Processes (SMDPs) in a
dynamic programming environment.2 EP presents results on the existence and stability
of Berk-Nash equilibrium in SMDPs with finite state and action spaces. This paper
extends the EP existence results to SMDPs with sigma-compact state and compact
action spaces. This extension covers SMDPs with continuous distributions, unbounded
state spaces and unbounded payoff functions. It covers examples chosen by EP to
illustrate the importance of the Berk-Nash concept, but which lie outside the scope of
their theorems.

The literature on Markov Decision Processes (MDPs) is replete with settings that
naturally feature infinite state and action spaces.3 We consider five examples from
three important economic environments: (i) neoclassical producer theory, (ii) the
optimal savings problem, and (iii) identification and inference in econometric theory.
In the first environment, we consider two instances featuring demand and supply
shocks to the revenues and the costs of the producer, and note the consequences of
1For literature on learning under misspecification, see Arrow and Green (1973), Nyarko (1991),
Hansen and Sargent (2011), and Fudenberg et al. (2021) and the references therein.
2Classical references on dynamic programming include Maitra (1968), Puterman (1994), and Bhat-
tacharya and Majumdar (2007).
3See Puterman (1994) for illustrations covering operations research, economics and engineering.
Chapter 3 sketches many settings in economic theory that naturally demand infinite state and action
spaces. Examples include the asset selling problem in Karlin (1962) and the employment seeking
problem in Stokey and Lucas (1989).
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the misspecified distributions of these shocks for the profit-maximizing choices.4 The
second environment extends Example 2 of EP, which features an optimal savings
problem with a binary preference shock, to shocks with continuous and unbounded
support.5 Finally, we provide two examples in Gaussian AR(1) processes that connect
the notion of Berk-Nash equilibrium to the existence of unit roots.6

In Theorem 1, we establish the existence of a Berk-Nash equilibrium for a regular
misspecified SMDP with compact action, state and parameter spaces, and hence
bounded payoff functions, but with unbounded densities (Radon-Nikodym derivatives).
However, the assumption of a compact state spaces rules out distributions that have
unbounded support, including normal, exponential and log-normal distributions which
play central roles in economic theory and finance. The extension of Theorem 1 to more
general environments necessitates further assumptions on the primitives of the problem.
Theorem 2 considers a σ-compact state space with bounded payoff functions, under a
regularity condition on the state space, a tightness condition on the class of probability
measures and either a uniform integrability or a uniqueness condition on the relative
entropy (Kullback-Liebler divergence). The tightness condition that we impose is
satisfied by many economic applications (e.g. Ornstein-Uhlenbeck and Cox-Ingersoll-
Ross processes) and we provide two sufficient conditions to test its applicability in
environments of interest. Theorem 3 relaxes the boundedness7 condition on the payoff
functions by weaker bounded and continuity conditions (state-boundedness, fold-
boundedness and W-continuity). Theorem 4 provides a possible learning foundation
for SMDPs with compact state and action spaces that generalizes Theorem 2 in EP;
since it depends on a strong convergence condition (see Definition C.6) that we hope
to relax in future work, we report it in the Online Appendix.

The proofs make use of nonstandard analysis, a powerful mathematical technique
that originated in Robinson (1966) and was introduced into mathematical economics
in Brown and Robinson (1975). This paper makes use of a novel application developed
recently by Duanmu (2018) and so far applied to probability theory, mathematical
4Lorenzoni (2009) explores the role of productivity shocks, news shocks and sampling shocks in
driving business cycles with the shocks normally distributed with the real line as their support.
5A key paper that connects learning, optimal savings and uncertainty is Koulovatianos et al. (2009).
Our convergence result (Theorem 4) in Appendix C applies potentially to such settings.
6See Farmer et al. (2021) for empirical illustrations connecting unit roots to model misspecification
in macroeconomic settings. There are at least three more avenues where misspecification is being
actively explored; climate economics (Berger and Marinacci (2020)), axiomatic decision theory
(Cerreia-Vioglio et al. (2022)) and non-atomic anonymous games (Cerreia-Vioglio et al. (2020)).
7See Assumption 5 and Assumption 6 in Section 2.2 for further details.
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statistics and economics.8 Previous applications of nonstandard analysis in mathe-
matical economics showed that results that are true in infinite settings but false in
finite settings are approximately true in large finite settings.9 Here, by contrast, we
take results that are exactly true in finite settings and transport them to results in
infinite settings. This method is applicable in situations in which the desired result
is known for finite objects, its proof depends heavily on finiteness, but its statement
makes sense for infinite objects.

A meta-theorem in mathematical logic guarantees that any nonstandard proof can
be mechanically translated into a standard one, but the resulting standard proof
can be very long and convoluted. The original EP proof can be modified to give a
tractable standard proof for a version of Theorem 1 under the strong10 additional
assumption that the Radon-Nikodym derivatives are bounded. We do not know how
to give tractable standard proofs for Theorem 1 without bounded Radon-Nikodym
derivatives, for Theorem 2 or for Theorem 3.

Section 2 formalizes a misspecified SMDP, motivates the various assumptions we
make on it, and presents our main results. Section 3 provides five concrete examples
of SMDPs with infinite state and action spaces that are covered by our theorems.
Section 4 lays out the methodological innovations of the paper and sketches the proofs.
Section 5 briefly discusses the extensions of our single-agent results to a broader class
of multi-agent misspecified environments. The Online Appendix gives a supplementary
result that furnishes a learning foundation to the existence results and also contains
the detailed analysis of the examples. The Appendix contains self-contained proofs of
all our main results.

2. The Environment and Main Results

We begin by describing the environment faced by the agent which mirrors the
one in EP. At the start of each period t = 0, 1, 2, . . . , the agent observes a state
st ∈ S, takes an action xt ∈ X that determines the distribution of the future
state st+1 given the transition probability function Q(·|st, xt) with the initial state s0,
8Duanmu’s technique has previously been applied to statistical decision theory (Duanmu and Roy
(2021)), Markov processes (Duanmu et al. (2021a) and Anderson et al. (2021b)), and to abstract
economies and Walrasian equilibrium (Anderson et al. (2021a) and Anderson et al. (2022)).
9For previous applications of nonstandard analysis to mathematical economics, see for example,
Brown and Robinson (1975), Anderson (1985), Khan (1976), Khan and Sun (2001), Duffie and Sun
(2007), Anderson and Raimondo (2008), and Duffie et al. (2018).
10Given any two Gaussian distributions with distinct variances, the Radon-Nikodym derivative of
the one with the larger variance with respect to the other is unbounded. Moreover, as we see in
Example 3.1, unbounded Radon-Nikodym derivatives arise routinely in OLS estimation.
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drawn according to the initial probability distribution q0. For a given payoff function
π(st, xt, xt+1), the agent then maximizes her expected discounted utility by choosing
a feasible policy function. We now formally describe these objects.

Definition 2.1. A Markov Decision Process (MDP) is a tuple ⟨S,X, q0, Q, π, δ⟩, where

(1) The state space S is a σ-compact locally compact metric space with Borel
σ-algebra B[S];

(2) The action space X is a compact metric space with Borel σ-algebra B[X];
(3) The initial distribution of states q0 is a probability measure on (S,B[S]);
(4) Q : S ×X → ∆(S) is a transition probability function, where ∆(S) denotes

the set of probability measures on S. That is, for each (s, x) ∈ S ×X, Q(s, x)

is a probability measure on S. We sometimes write Q(·|s, x) for Q(s, x)(·);
(5) π : S ×X × S → R is the per-period payoff function;
(6) The discount factor δ is in [0, 1).

By the principle of optimality, the agent’s problem can be cast recursively as

V (s) = max
x∈X

∫
S

{π(s, x, s′) + δV (s′)}Q(ds′|s, x). (2.1)

Let C[S] denote the set of real-valued continuous functions equipped with the sup-norm.
Then C[S] is a complete metric space. Let F : C[S] → C[S] be the operator such that
F (g)(s) = maxx∈X

∫
S
{π(s, x, s′) + δg(s′)}Q(ds′|s, x). Such F is a contraction. By the

Banach fixed point theorem, there exists an unique V ∈ C[S] that is a solution to the
Bellman equation Eq. (2.1). We use MDP(Q) to refer to Markov Decision Process
with transition probability function Q.

Definition 2.2. An action x is optimal given s in the MDP(Q) if

x ∈ argmax
x̂∈X

∫
S

{π(s, x̂, s′) + δV (s′)}Q(ds′|s, x̂) (2.2)

We next describe a subjective Markov Decision Process.

Definition 2.3. A subjective Markov Decision Process is a Markov Decision Process,
⟨S,X, q0, Q, π, δ⟩, and a nonempty family of transition probability functions, QΘ =

{Qθ : θ ∈ Θ}, where each transition probability function Qθ : S × X → ∆(S) is
indexed by an element θ ∈ Θ. A subjective Markov Decision Process is said to be
misspecified if Q /∈ QΘ.

We write SMDP(⟨S,X, q0, Q, π, δ⟩, QΘ) to denote a subjective Markov Decision
Process with the Markov Decision Process ⟨S,X, q0, Q, π, δ⟩ and the family QΘ of
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transition probability functions. For all θ ∈ Θ, all (s, x) ∈ S×X, let Dθ(·|s, x) : S → R̄
be the density function if Q(s, x) is dominated by Qθ(s, x) and let Dθ(s

′|s, x) = ∞ if
Q(s, x) is not dominated by Qθ(s, x).11

Definition 2.4. A regular subjective Markov decision process (regular-SMDP M) is
a SMDP that satisfies the following conditions:

(1) The parameter space Θ is a compact metric space;
(2) The mapping (s, x) → Q(s, x) is continuous in the Prokhorov metric;
(3) The mapping (θ, s, x) → Qθ(s, x) is continuous in the Prokhorov metric;
(4) The density function Dθ(s

′|s, x) is jointly continuous on the set {(θ, s′, s, x) :
Q(s, x) is dominated by Qθ(s, x)};

(5) (Uniform integrability) For every compact set S ′ ⊂ S, there exists some r > 0

such that
(
Dθ(·|s, x)

)1+r is uniformly integrable with respect to Qθ(s, x) over
the set {(θ, s, x) : Q(s, x) is dominated by Qθ(s, x)}. That is, for every ϵ > 0,
there exists κ > 0 such that∫

E

(
Dθ0(t|s0, x0)

)1+r
Qθ0(s0, x0)(dt) < ϵ (2.3)

if (θ0, s0, x0) is an element of the set {(θ, s, x) ∈ Θ× S ′ ×X : Q(s, x)

is dominated by Qθ(s, x)} and Qθ0(s0, x0)(E) < κ12;
(6) (Absolute continuity) There is a dense set Θ̂ ⊂ Θ such that Q(s, x) is dominated

by Qθ(s, x) for all θ ∈ Θ̂ and (s, x) ∈ S ×X;
(7) The per-period payoff function π : S ×X × S → R is continuous.

Remark 2.5. In Item 5, κ depends on both ϵ and the compact set S ′ ⊂ S. Note that we
allow Dθ(·|s, x) to take value ∞ even if Q(s, x) is dominated by Qθ(s, x). So we allow
for unbounded continuous density functions even when the state space is compact.

Definition 2.6. The weighted Kullback-Leibler divergence is a mapping KQ : ∆(S ×
X)×Θ → R̄≥0 such that for any m ∈ ∆(S ×X) and θ ∈ Θ,

KQ(m, θ) =

∫
S×X

EQ(·|s,x)
[
ln
(
Dθ(s

′|s, x)
)]

m(ds, dx). (2.4)

11We use R̄ to denote the extended real line, equipped with the one-point compactification topology
(Willard (2012)).
12This condition is automatically satisfied if the density functions Dθ(·|s, x) are uniformly bounded
over the set {(θ, s, x) : Q(s, x) is dominated by Qθ(s, x)}.
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The set of closest parameter values given m ∈ ∆(S ×X) is the set13

ΘQ(m) = argmin
θ∈Θ

KQ(m, θ). (2.5)

For (s, x) ∈ S ×X and θ ∈ Θ, the relative entropy (Kullback-Leibler divergence)
from Qθ(s, x) to Q(s, x) is:

DKL

(
Q(s, x), Qθ(s, x)

)
= EQ(·|s,x)

[
ln
(
Dθ(s

′|s, x)
)]

. (2.6)

If Q(s, x) is dominated by Qθ(s, x), then we have

DKL

(
Q(s, x), Qθ(s, x)

)
=

∫
S

Dθ(s
′|s, x) ln

(
Dθ(s

′|s, x)
)
Qθ(ds

′|s, x). (2.7)

and otherwise, it equals infinity. Moreover, by Item 5 in Definition 2.4, the function
Dθ(·|s, x) ln

(
Dθ(·|s, x)

)
is an integrable function with respect to Qθ(s, x). For m ∈

∆(S ×X), let Θm = {θ ∈ Θ : KQ(m, θ) < ∞}. By Definition 2.4, we have Θ̂ ⊂ Θm

and KQ(m, θ) is a continuous function of θ on Θm. Finally, by Jensen’s inequality, the
relative entropy DKL

(
Q(s, x), Qθ(s, x)

)
is non-negative for all (s, x) ∈ S ×X.

Definition 2.7. A probability distribution m ∈ ∆(S×X) is a Berk-Nash equilibrium
of the SMDP(⟨S,X, q0, Q, π, δ⟩, QΘ) if there exists a belief ν ∈ ∆(Θ) such that

(1) Optimality: For all (s, x) ∈ S ×X, that is in the support of m, x is optimal
given s in the MDP(Q̄ν), where Q̄ν =

∫
Θ
Qθν(dθ);

(2) Belief Restriction: We have ν ∈ ∆(ΘQ(m));
(3) Stationarity: For all A ∈ B[S], mS(A) =

∫
S×X

Q(A|s, x)m(ds, dx), where
mS denote the marginal measure of m on S.

Next, we present three existence results: the first pertains to a compact state space
and the other two, to non-compact state spaces. Throughout, we assume the action
space X, and parameter space Θ to be compact.

2.1. Existence of Equilibrium with Compact State Space. Our first main result
is on the existence of a Berk-Nash equilibrium when the underlying state space is
compact.

Theorem 1. For every regular-SMDP M with a compact state space, a Berk-Nash
equilibrium exists.
13We follow the standard convention in that ln(0) · 0 = 0 and integral of infinity over a set of measure

0 is 0. Further,
0

0
= 0,

1

0
= ∞, log∞ = ∞.
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2.2. Existence of Equilibrium with Sigma-Compact State Space. We extend
Theorem 1 to a regular SMDP M with a non-compact state space. We assume that
the density functions {Dθ(·|s, x)} take value in R. That is, for all θ ∈ Θ and all
(s, x) ∈ S ×X, let Dθ(·|s, x) : S → R be the density function if Q(s, x) is dominated
by Qθ(s, x) and let Dθ(s

′|s, x) = ∞ if Q(s, x) is not dominated by Qθ(s, x). We start
with the following assumption on the state space S.

Assumption 1. (Regularity) There exists a non-decreasing sequence {Sn}n∈N of
compact subsets of S such that

(1)
⋃

n∈N Sn = S;
(2) q0(Sn) > 0 for all n ∈ N;
(3) There exists r > 0 such that Q(s, x)(Sn) > r and Qθ(s, x)(Sn) > r for all

n ∈ N, all (s, x) ∈ Sn ×X and all θ ∈ Θ;
(4) For all n ∈ N, Sn is a continuity set of Q(s, x) and Qθ(s, x) for all (s, x) ∈ Sn×X

and all θ ∈ Θ.

Assumption 1 imposes four technical conditions on the state space that are satisfied
for most applications in the literature. It requires that the state space S can be
deconstructed into a countable, non-decreasing sequence of subsets such that their
union is the state space S. Items 3 and 4 of Assumption 1 jointly imply that the
true and model transition probability functions are well-behaved for the truncation
of the SMDP M defined on the sequence {Sn}n∈N. That is, for n ∈ N, define
Mn

Θ′ = (⟨Sn, X, qn0 , Q
n, πn, δ⟩, Qn

Θ′) to be the SMDP such that

(1) The state space is Sn, endowed with Borel σ-algebra B[Sn];
(2) The action space is X, endowed with Borel σ-algebra B[X];
(3) qn0 (A) =

q0(A)
q0(Sn)

for all A ∈ B[Sn];
(4) The parameter space Θ′ is a finite subset of Θ̂;
(5) Qn : Sn × X → ∆(Sn) is the transition probability function defined as

Qn(s, x)(A) = Q(s,x)(A)
Q(s,x)(Sn)

for all A ∈ B[Sn];
(6) For every θ ∈ Θ′, Qn

θ : Sn ×X → ∆(Sn) is defined as Qn
θ (s, x)(A) =

Qθ(s,x)(A)
Qθ(s,x)(Sn)

for all A ∈ B[Sn] and let Qn
Θ′ = {Qn

θ : θ ∈ Θ′};
(7) πn : Sn ×X × Sn → R is the restriction of π to Sn ×X × Sn;
(8) δ ∈ [0, 1) is the discount factor.

Remark 2.8. For θ ∈ Θ, it is possible that Qn(s, x) is dominated by Qn
θ (s, x) but

Q(s, x) is not dominated by Qθ(s, x). Thus, we need to approximate the state and
parameter spaces of the full SMDP M by carefully chosen subsets, simultaneously.
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So we choose to approximate the state space S by the sequence {Sn}n∈N of compact
sets and approximate the parameter space Θ by finite subsets of Θ̂.

To ensure that the Markov decision process has a stationary measure, a sequence
of stationary measures for the truncated Markov decision processes should have a
convergent subsequence. For every n ∈ N and every P ∈ ∆(Sn ×X), let Rn(P ) be
the probability measure on Sn such that

Rn(P )(A) =

∫
Sn×X

Qn(A|s, x)P (ds, dx). (2.8)

Let PS denote the marginal measure of P on S. The following tightness assumption
guarantees the existence of a stationary measure.

Assumption 2. (Tightness) The family R is tight, where

R = {Rn(P ) : n ∈ N, P ∈ ∆(Sn ×X), PS = Rn(P )} (2.9)

.Assumption 2 ensures that any sequence of stationary measures for the truncated
transition probability functions {Qn(s, x) : s ∈ Sn, x ∈ X} is tight, which further
implies that any sequence of stationary measures has a convergent subsequence.
Tightness may sometimes be hard to verify directly and therefore, we provide two
sufficient conditions that are satisfied for most applications.

Condition 1 (Reversible): The transition probability function {Q(s, x)} has a
unique stationary measure π and is reversible with respect to π. That is, there exists
a unique π ∈ ∆(S ×X) such that

πS(A) =

∫
S×X

Q(s, x)(A)π(ds, dx) (2.10)

for all A ∈ B[S]. Moreover, for all A1, A2 ∈ B[S], we have∫
A1×X

Q(s, x)(A2)π(ds, dx) =

∫
A2×X

Q(s, x)(A1)π(ds, dx). (2.11)

Condition 2 (Lyapunov): The transition probability function {Q(s, x)} satisfies the
Lyapunov condition, that is, there exist a non-negative continuous norm-like function
V,14 and constants 0 < α ≤ 1, β ≥ 0 such that∫

S

V (y)Q(s, x)(dy) ≤ (1− α)V (s) + β (2.12)

14A function V : S → R≥0 is norm-like if {s ∈ S : V (s) ≤ B} is precompact for every B > 0.
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for all s ∈ S and x ∈ X. Moreover, the sequence ({s ∈ S : V (s) ≤ n})n∈N of sets
satisfies Assumption 1. Then, by taking Sn = {s ∈ S : V (s) ≤ n}, Assumption 2 is
satisfied.

To establish belief restriction for the full SMDP M, we impose the following
assumption on the relative entropy.

Assumption 3. (Uniform-integrability) For all θ ∈ Θ̂, the family of relative entropy
{DKL

(
Q(s, x), Qθ(s, x)

)
} is uniformly integrable with respect to all stationary P ∈

∆(S ×X). That is, for every ϵ > 0, there exists κ > 0 such that∫
E

EQ(·|s,x)
[
ln
(
Dθ(s

′|s, x)
)]

P (ds, dx) < ϵ (2.13)

for all θ ∈ Θ̂ and all stationary P ∈ ∆(S ×X) with P (E) < κ.15

The candidate Berk-Nash equilibrium for M is the weak limit of Berk-Nash equilib-
rium for the sequence of truncated SMDPs. Assumption 3 allows us to approximate
the weighted Kullback-Leibler divergence of M from the weighted Kullback-Leibler
divergence of truncated SMDPs. Alternatively, we can also establish belief restriction
under the following assumption.

Assumption 4. (Uniqueness) There exists a unique θ0 ∈ Θ that minimizes the
relative entropy DKL

(
Q(s, x), Qθ(s, x)

)
for all (s, x) ∈ S × X. Moreover, for every

n ∈ N, θ0 uniquely minimizes DKL

(
Qn(s, x), Qn

θ (s, x)
)

for all (s, x) ∈ Sn ×X.

Remark 2.9. Under Assumption 4, the set of closest parameters for M and all
truncated SMDPs is the same singleton set {θ0}. If the model is correctly specified,
then Assumption 4 is trivially satisfied and the the set of closest parameters contains
a single point, which is the true parameter value.

We establish optimality under two different set of conditions: Theorem 2 assumes
the payoff function is bounded continuous while Theorem 3 allows for unbounded
payoff functions under a fairly general norm-restriction assumption on the state space.
For the bounded case, we assume,

Assumption 5. (Boundedness) The payoff function π : S ×X × S → R is a bounded
continuous function.
15One sufficient condition for Assumption 3 is to assume that the relative entropy is uniformly
bounded on the set {(θ, s, x) ∈ Θ× S ×X : Q(s, x) is dominated by Qθ(s, x)}. If the true transition
probability function Q and every element in QΘ do not depend on the current state, as the action
and parameter spaces are compact, this sufficient condition is usually satisfied.
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We now present our second theorem that establishes the existence of Berk-Nash
Equilibrium for bounded payoff functions with σ-locally compact state space.

Theorem 2. Any regular SMDP that satisfies regularity (Assumption 1), tightness
(Assumption 2) and has a bounded payoff function (Assumption 5) has a Berk-Nash
equilibrium if either the SMDP is correctly specified or if one of the assumptions of
uniform integrability (Assumption 3) or uniqueness (Assumption 4) holds.

Unbounded payoff functions are common in many environments. We assume the
state space S is a norm space and use ∥s∥ to denote the norm of an element s ∈ S.
We impose the following assumption on the payoff function.

Assumption 6. (State-boundedness) The payoff function π : S×X×S → R is a jointly
continuous function and there exist A,B ∈ R>0 such that16 for all (s, x, s′) ∈ S×X×S ′,
|π(s, x, s′)| ≤ A+Bmax{∥s∥, ∥s′∥}.

Our final two assumptions are on the subjective transition probability functions.

Assumption 7. (Fold-boundedness) Let B ∈ R>0 be given in Assumption 6. There
exist17 some C,D ∈ R>0 such that

∫
S
∥s′∥Qθ(ds

′|s, x) ≤ C + D
(1+δ)B+δD

∥s∥ for all
x ∈ X, θ ∈ Θ and s ∈ S.

The following stronger continuity condition is assumed on the family QΘ = {Qθ :

θ ∈ Θ}. Let dS denote the metric on S generated from the norm.

Assumption 8. (W-continuity) The mapping (θ, s, x) → Qθ(s, x) is continuous in
the 1-Wasserstein metric. Moreover, Qθ(s, x) has finite first moment for all (θ, s, x) ∈
Θ× S ×X. That is, for every (θ, s, x) ∈ Θ× S ×X, there exists18 some s0 ∈ S such
that

∫
S
dS(t, s0)Qθ(s, x)(dt) < ∞.

Our final theorem establishes existence for unbounded payoff functions.

Theorem 3. Theorem 2 holds if the boundedness of the payoff function (Assumption 5)
is weakened to state-boundedness of the payoff function (Assumption 6) but with
subjective transition probability functions being fold-bounded (Assumption 7) and
W-continuous (Assumption 8).
16Instances where such an assumption is easily satisfied are common: (i) a monopolist’s payoff in
Nyarko (1991), (ii) CRRA payoff functions in stochastic growth and optimal savings environments.
17It is clear that D

(1+δ)B+δD → 1
δ as D → ∞. If we assume that there exist C ∈ R>0 and D < 1

δ such
that

∫
S
∥s′∥Qθ(ds

′|s, x) ≤ C +D∥s∥, then it implies Assumption 7 with a suitably chosen D′.
18By the triangle inequality, under Assumption 8, we have

∫
S
dS(t, s

′)Qθ(s, x)(dt) < ∞ for all s′ ∈ S
and all (θ, s, x) ∈ Θ× S ×X.
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3. Some Selected Examples

In this section, we present examples to demonstrate the applicability of our main
results to a variety of problems encountered in economic theory. Examples 3.1 and
3.2 connect the existence of an equilibrium with the existence of unit roots for an
AR(1) process. Examples 3.3, 3.4, and 3.5 illustrate settings that naturally involve
continuous distributions.

Example 3.1 (Unbounded Densities and Unit Root). In this example, we show that
for a AR(1) process, a Berk-Nash equilibrium exists if and only if the AR(1) process
does not have a unit root. In addition, we illustrate that the unbounded density
functions arise naturally in correctly specified econometric inference problems.

Consider a SMDP with state space S = R, a singleton action space X = {0}, and a
payoff function π : S×X×S that equals 0 for all (s, x, s) ∈ S×X×S. For every s ∈ S,
the true transition probability function Q(s) is the distribution of a0s+ b0ξ, where
a0 ∈ [0, 2], b0 ∈ [0, 1] and ξ = N (0, 1) has the standard normal distribution.19 The
parameter space Θ is [0, 2]× [0, 1] and for every (a, b) ∈ Θ, the transition probability
function Q(a,b)(s) is the distribution of as+ bξ.

Consider first the degenerate case b0 = 0. In this case, the evolution of the state
is deterministic. When a0 < 1, the Dirac measure δ(0,0) at (0, 0) is a Berk-Nash
equilibrium, supported by the belief δ(a0,0). When a0 = 1, every Dirac measure δ(s,0)

for s ∈ S is a Berk-Nash equilibrium supported by the belief δ(1,0). There is no
Berk-Nash equilibrium if a0 > 1.

Now, we turn to the non-degenerate case b0 > 0. The true transition probability
function Q(s) = Q(a0,b0)(s) is absolutely continuous with respect to Q(a,b)(s) for all
(a, b) ∈ Θ̂ = [0, 2]× (0, 1], and the density function is jointly continuous function where
it is defined. Note, however, that the density function is unbounded on Θ̂, tending to
infinity as b → 0. The unboundedness arises here, even though the model is correctly
specified. This situation arises ubiquitously in econometric inference. In any OLS
estimation, we test (among other things) whether or not the regression coefficient α1

of the dependent variable y on a given independent variable x1 is, or is not, zero. This
estimation requires us to include in Θ the possibility that α1 is zero. If α1 is, in fact,
not zero, the Radon-Nikodym derivative will typically be unbounded.

It is straightforward to verify that this is a regular SMDP in the sense of Definition 2.4.
As the state space is not compact, we need to check the conditions under which this
19In other words, this is simply an inference problem about a Markov process, specifically an AR(1)
process, rather than a full Markov decision problem.
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example satisfies the assumptions for Theorem 2. We will see that the example
satisfies those conditions if and only if a0 < 1. Note that if a0 ≥ 1, then since b0 ̸= 0,
the Markov process has no stationary distribution, and hence there is no Berk-Nash
equilibrium. Note also that a0 ≥ 1 if and only if the AR(1) process has a unit root,
which implies that the usual method for estimating the parameters of the AR(1),
ordinary least squares, yields spurious results. Thus, our example has a Berk-Nash
equilibrium if and only if the AR(1) process does not have a unit root.

To see this, suppose 0 ≤ a0 < 1 (and recall that b0 > 0). For each n ∈ N, let
Sn = [−n, n]; it is straightforward to see that the sequence {Sn : n ∈ N} satisfies
Assumption 1. Assumption 2 is satisfied by taking the Lyapunov function V (s) = |s|.
It can be verified that Assumption 3 is satisfied, which establishes belief restriction20.
We can also establish belief restriction from the fact that the SMDP is correctly
specified. We can easily modify this example to a SMDP with misspecification, in
which case belief restriction follows from Assumption 4. The payoff function is constant,
and hence satisfies Assumption 5. By Theorem 2, there exists a Berk-Nash equilibrium
for this SMDP. The Berk-Nash equilibrium is µ× δ0 where µ = N (0,

b20
1−a20

), supported
by the belief δ(a0,b0).

Example 3.2 (Markov Decision Problem with Unit Root). We modify Example
3.1 by setting the action space X = [0, 1] and Θ = [0, 2]× [0, 1]× [−1, 1]. The true
probability transition Q(s, x) has the distribution of a0s+ b0ξ + c0x, with c0 ∈ [−1, 1],
and the payoff is π(s, x, s′) = s′.21 For every (a, b, c) ∈ Θ, the transition probability
function Q(a,b,c)(s, x) = as + bξ + cx. The degenerate case b0 = 0 is handled in the
same way as in Example 3.1.

Now suppose that b0 > 0. If a0 ≥ 1, then since b0 ̸= 0, the Markov decision process
has no stationary distribution, and hence there is no Berk-Nash equilibrium. If a0 < 1,
we restrict Θ to Θ′ = [0, 1] × [0, 1] × [−1, 1], and verify that the Assumptions of
Theorem 3 are satisfied for this modified SMDP. Letting V (s) = ∥s∥ and Sn = [−n, n],
Eq. (2.12) is satisfied by essentially the same calculation as in Example 3.1. The payoff
function π clearly satisfies Assumption 6 and Assumption 8. By a similar calculation
to Example 3.1, Assumption 3 is satisfied. We can establish belief restriction from the
fact that this SMDP is correctly specified or via Assumption 4. By essentially the
same calculation as in Example 3.1, Assumption 7 is satisfied. Thus, the restricted
SMDP has a Berk-Nash equilibrium by Theorem 3.
20In Appendix C.4, we provide rigorous verification for Assumption 2 and Assumption 3.
21In contrast to Example 3.1, the action x affects the evolution of the state.
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When b0 > 0 and a0 < 1, observe that the action choice x = sign c0
22 is a dominant

strategy,23 so let µ be the unique stationary distribution on S induced by the action
choice sign c0. When c0 ̸= 0, the Berk-Nash equilibrium is µ × δsign c0 ; when c0 = 0,
the set of Berk-Nash equilibria is µ×∆(X); in both cases, the Berk-Nash equilibria
are supported by the belief δ(a0,b0,c0). Note that, in this example, the set of closest
parameter values Θ′

Q(µ) = {(a0, b0, c0)} for the restricted SMDP is the same as the set
of closest parameter values ΘQ(µ) for the original SMDP. Hence, the equilibrium is a
Berk-Nash equilibrium of the original SMDP. Therefore, by Theorem 3, the problem
has a Berk-Nash equilibrium if and only if a0 < 1, i.e. if and only if the problem does
not have a unit root.

Example 3.3 (Misspecified Revenue). In this example, we incorporate misspecification
in the payoff function with misspecified pricing shocks. The Markov Decision Process
is as follows. Every period, an agent observes a productivity shock z ∈ Z = [0, 1]

and chooses an input x ∈ X ⊂ R+ which results in the agent receiving a payoff of
r(x)− c(x), where c(x) = x2 is the cost of choosing x, and r(x) = zf(x)ϵ where f(x)

is the production function, ϵ is a random, independent shock to the price (which we
set as 1) distributed according to the (true) distribution d∗, which has support equal
to [0, b], 0 ≤ b ≤ ∞ and 0 < Ed∗ [ϵ] < ∞.24 Therefore, the state space is given by,
(z, ϵ) ∈ S = [0, 1]× [0, b]. Let Q (z′ | z) be the probability that tomorrow’s productivity
shock is z′, given the current shock z and similarly, let QR(ϵ′ | x) denote the transition
function for the price shock, ϵ′. We follow EP in framing the price shock ϵ as a part
of the state variables along with the productivity shock z and define the Bellman
equation below.

V (z, ϵ) = max
x

∫
[0,1]×[0,b]

(zf(x)ϵ′ − c+ δV (z′, ϵ′))Q (dz′ | z)QR (dϵ′ | x) (3.1)

We assume that there is a unique stationary distribution over these productivity
shocks, denoted by z ∼ U [0, 1]. Next, we describe the SMDP of our environment.
The agent believes (SMDP) that f(x) = x and ϵ ∼ dθ, where dθ has support equal
to [0, b] where b = kθ. The parameter space Θ and the action space X are chosen as
such to be compact.25 We assume that ϵ follows a truncated exponential distribution,

dθ(ϵ) =
(1/θ)e−(1/θ)ϵ

1− e(−b/θ)
. Here, the agent’s model can be misspecified if either the true

22signx = x/|x| when x ̸= 0, sign 0 = 0.
23It is weakly dominant if c0 = 0, dominant otherwise.
24We assume that the true distribution d∗ satisfies conditions in Definition 2.4.
25The details are supplied in the Online Appendix.
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production function is not linear or if the true distribution of revenue shocks are not a
part of the exponential family, or if support assumed of the model transition functions
is different from the true transtion function. Given these primitives, it is easy to verify
that this is a regular SMDP in the sense of Definition 2.4. Therefore, from Theorem
1, a Berk-Nash equilibrium exists.

Example 3.4 (Optimal Savings). This example extends Example 2 of EP for a
continuum of preference shocks in an optimal consumption-savings model. The
Markov decision process consists of the following objects: A state space S = (y, z) ∈
Y × Z = (0,∞) × [0, 1], where y and z denote the wealth and preference shocks,
respectively. For each y ∈ Y , the agent chooses x ∈ X = [0, 1], with x representing the
fraction of y the agent chooses to save, so that the agent saves k = xy and consumes
y − k.26 The payoff function π is π (y, x, z) = z ln (y − k) = z ln (y − xy) .27 Given
the distribution of the shocks, the agent maximizes their discounted expected utility
by choosing optimal proportion of savings, x. We next describe the true transition
function. Q (y′, z′ | y, z, x) is such that y′ and z′ are independent, y′ has a log-normal
distribution with mean α∗ + β∗ ln(xy) + γ∗z and unit variance, and z′ is uniform on
[0, 1]. That is, the next period wealth, yt+1, is given by ln yt+1 = α∗ + β∗ lnxtyt + εt,

where εt = γ∗zt + ξt is an unobserved i.i.d. productivity shock, ξt ∼ N(0, 1), γ∗ ̸= 0,

and 0 ≤ β∗ < 1, δβ∗ < 1, where δ ∈ [0, 1) is the discount factor.28 The Bellman
equation for this MDP is as follows.

V (y, z) = max
0≤x≤1

z ln(y − xy) + δE [V (y′, z′) | x] ,

However, the agent believes (SMDP) that ln yt+1 = α+β ln(xtyt)+εt where εt ∼ N(0, 1)

and is independent of the utility shock. Further, the agent knows the distribution
of the utility shock and is uncertain about β ∈ Θ which is a compact set in R. The
subjective transition probability function Qθ (y

′, z′ | y, z, x) is such that y′ and z′ are
independent, y′ has a log-normal distribution with mean α+β ln(xy) and unit variance,
and z′ is uniform on [0, 1]. The agent has a misspecified model because she believes
that the productivity and utility shocks are independent, when in fact γ∗ ̸= 0. Here we
26In EP, the agent chooses how much k ∈ [0, y] to save. Here, we recast the problem in terms of the
fraction saved in order to ensure that the action set X is compact and independent of the state.
27When z = 0, we again use the standard convention that 0 ln 0 = 0. When z ̸= 0, we approximate
the action space X = [0, 1] by closed intervals {[0, 1− ϵ] : ϵ > 0}.
28It is the restriction on 0 ≤ β < 1 that gives us stationarity. The detailed analysis is in the
Supplementary Appendix.



16

diverge from the EP example by assuming that the preference shocks z are distributed
uniformly over [0, 1].

Following Examples 3.1 and 3.2, it is easy to see that the SMDP satisfies Defini-
tion 2.4 and given the normality of the transition probability function, Assumptions
1-3 hold. The state space is not compact, and therefore, we need to check whether
Theorem 2 or Theorem 3 applies. The payoff function is unbounded. However, it is
state-bounded and therefore, satisfies Assumption 6. Finally, Assumptions 7-8 hold as
well as illustrated in the previous example. Therefore, by Theorem 3, a Berk-Nash
equilibrium exists. We next characterize the Berk-Nash equilibrium for this instance.29

In this case, the Berk-Nash equilibrium is characterized by the optimal policy

function, k = x∗y = Az(β
m)y =

0.5δβm

(1− δβm)z + 0.5δβm
y, where there exists a βm ∈

(0, β∗). Indeed, note that the true transition probability function Q(s) has a unique
stationary measure µ. So, the Berk-Nash equilibrium for this SMDP is µ × δx∗ ,
supported by the belief δ(βm).

Example 3.5 (Misspecified Costs). Our final example extends EP’s finite productivity
shocks to a continuum of shocks in the realm of a producer’s problem and closely
mirrors Example 3.3, therefore the analysis is similar. However, instead of having
unbounded support for the cost shock as in EP, we restrict it to come from a bounded
support. Consider the following Markov decision process. Every period, an agent
observes a productivity shock z ∈ Z = [0, 1] and chooses an input x ∈ X ⊂ R+ which
results in the agent obtaining a payoff of r(x)− c(x) every period, where c(x) = ϕ(x)ϵ

is the cost of choosing x, r(x) = z ln(x) where ln(x) is the production function,
z is the productivity shock in [0, 1] and ϵ is a random, independent shock to the
cost distributed according to the (true) distribution d∗, which has support equal to
[0, b], 0 ≤ b ≤ ∞ and 0 < Ed∗ [ϵ] < ∞.30 The state space S = [0, 1] × [0, b], b < ∞ is
the support of the cost shock. The action space X and the parameter space Θ is
chosen as such to be compact31 and the payoff function π(s, x, s′) = z lnx− c(x). The
Bellman equation is given by:

V (z, ϵ) = max
x

∫
[0,1]×[0,b]

(zf(x)− c′ + δV (z′, ϵ′))Q (dz′ | z)QC (dϵ′ | x) (3.2)

Let Q (z′ | z) be the probability that tomorrow’s productivity shock is z′ given the
current shock z. We assume that there is a unique stationary distribution over these
29The details are given in Appendix C.
30We assume that the true distribution d∗ satisfies conditions in Definition 2.4.
31The details are supplied in the Online Appendix.
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productivity shocks which is uniform, U [0, 1]. Similarly, let QC(ϵ′ | x) denote the
transition function for the cost shock, ϵ′. The agent believes in a misspecified cost
function (SMDP), that is, cθ(x) = xϵ and ϵ ∼ dθ, where dθ has support equal to
[0, b] where b = kθ, 0 ≤ k < ∞. We assume that ϵ follows a truncated exponential

distribution, dθ(ϵ) =
(1/θ)e−(1/θ)ϵ

1− e(−b/θ)
.32 Given these primitives, it is easy to verify that

this is a regular SMDP in the sense of Definition 2.4. Therefore, from Theorem 1, a
Berk-Nash equilibrium exists.

4. The Nonstandard Framework

4.1. Methodological Innovation. While nonstandard analysis has been used in
mathematical economics since the 1970s, this paper relies on a new nonstandard
technique pioneered in Duanmu (2018) to extend theorems from finite mathematical
structures to infinite mathematical structures.33 Candidates for this technique have
the following properties:

• The theorem is known on a finite (or finite-dimensional) space, and
• The theorem statement does not rely heavily on the space being finite, but
• The existing proof(s) do rely heavily on the space being finite.

For results with these properties, Duanmu’s technique allows one to directly translate
the statement of the theorem without having to translate the details of the proof.

Nonstandard models satisfy three principles: extension, which associates to every
ordinary mathematical object a nonstandard counterpart called its extension; transfer,
which preserves the truth values of first-order logic statements between standard and
nonstandard models; and saturation, which gives us a powerful mechanism for proving
the existence of nonstandard objects defined in terms of finitely satisfiable collections
of first-order formulas. In a suitably saturated nonstandard model, one can construct
a single object—a hyperfinite probability space—that satisfies all the first order logical
properties of a finite probability space, but which can be simultaneously viewed as a
measure-theoretical probability space via the Loeb measure construction.

Duanmu’s technique invokes the following proof strategy:
32In the context of this particular example, the agent’s model can be misspecified if either cost
functions are nonlinear, true distribution of cost shocks are not a part of the exponential family, or if
the support assumed is incorrect.
33This paper is part of an ongoing program applying nonstandard analysis to resolve important
problems in Markov processes (Duanmu et al. (2021a), Anderson et al. (2018), Anderson et al. (2021b)
and Anderson et al. (2021c)), statistics (Duanmu and Roy (2021) and Duanmu et al. (2021b)) and
mathematical economics (Anderson et al. (2022) and Anderson et al. (2021a)).
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• Start with an standard infinite (e.g. measure-theoretic) object.
• Construct a lifting, embedding our standard object in a hyperfinite object.
• Use the transfer principle to obtain the theorem for the hyperfinite object,

essentially for free.
• Use the Loeb measure construction to push down the theorem for the hyperfinite

object to obtain the result in the original standard setting.

The rest of the section proceeds as follows. After setting out some basic preliminaries
of non-standard analysis for the lay reader in Section 4.2, we turn to an overview of the
basic argumentation. Section 4.3 and Appendix C.2 start with a regular SMDP with
compact state and action spaces, embed it in a hyperfinite SMDP, transfer existing
results from EP to this hyperfinite SMDP, then conclude by a “push down" argument
to obtain a Berk-Nash equilibrium. An analogous argument is presented in Section 4.4
for a regular SMDP with a σ-compact state space.

4.2. Preliminaries on Nonstandard Analysis. For those who are not familiar
with nonstandard analysis, Anderson et al. (2021a) and Anderson et al. (2022) provide
reviews tailored to economists. Cutland et al. (1995), Arkeryd et al. (1997), and Wolff
and Loeb (2000) provide thorough introductions. We use ∗ to denote the nonstandard
extension map taking elements, sets, functions, relations, etc., to their nonstandard
counterparts. In particular, ∗R and ∗N denote the nonstandard extensions of the reals
and natural numbers, respectively. An element r ∈ ∗R is infinite if |r| > n for every
n ∈ N and is finite otherwise. An element r ∈ ∗R with r > 0 is infinitesimal if r−1

is infinite. For r, s ∈ ∗R, we use the notation r ≈ s as shorthand for the statement
“|r− s| is infinitesimal,” and similarly we use use r ⪆ s as shorthand for the statement
“either r ≥ s or r ≈ s.”

Given a topological space (X, T ), the monad of a point x ∈ X is the set
⋂

U∈T :x∈U
∗U .

An element x ∈ ∗X is near-standard if it is in the monad of some y ∈ X. We say y

is the standard part of x and write y = st(x). Note that such y is unique provided
that X is a Hausdorff space. The near-standard part NS(∗X) of ∗X is the collection
of all near-standard elements of ∗X. The standard part map st is a function from
NS(∗X) to X, taking near-standard elements to their standard parts. In both cases,
the notation elides the underlying space Y and the topology T , because the space and
topology will always be clear from context. For a metric space (X, d), two elements
x, y ∈ ∗X are infinitely close if ∗d(x, y) ≈ 0. An element x ∈ ∗X is near-standard if
and only if it is infinitely close to some y ∈ X. An element x ∈ ∗X is finite if there
exists y ∈ X such that ∗d(x, y) < ∞ and is infinite otherwise.
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Let X be a topological space endowed with Borel σ-algebra B[X] and let M(X)

denote the collection of all finitely additive probability measures on (X,B[X]). An
internal probability measure µ on (∗X, ∗B[X]) is an element of ∗M(X). The Loeb
space of the internal probability space (∗X, ∗B[X], µ) is a countably additive probability
space (∗X, ∗B[X], µ) such that

∗B[X] = {A ⊂ ∗X|(∀ϵ > 0)(∃Ai, Ao ∈ ∗B[X])(Ai ⊂ A ⊂ Ao ∧ µ(Ao \ Ai) < ϵ)}
(4.1)

and

µ(A) = sup{st(µ(Ai))|Ai ⊂ A,Ai ∈ ∗B[X]} = inf{st(µ(Ao))|Ao ⊃ A,Ao ∈ ∗B[X]}.
(4.2)

Every standard model is closely connected to its nonstandard extension via the
transfer principle, which asserts that a first order statement is true in the standard
model if and only if it is true in the nonstandard model. Given a cardinal number κ,
a nonstandard model is called κ-saturated if the following condition holds: let F be a
family of internal sets, if F has cardinality less than κ and F has the finite intersection
property, then the total intersection of F is non-empty. In this paper, we assume
our nonstandard model is as saturated as we need (see e.g. Arkeryd et al. (1997,
Thm. 1.7.3) for the existence of κ-saturated nonstandard models for any uncountable
cardinal κ).

The concept of “push-down,” through which a standard object is constructed from
a nonstandard object, is at the heart of nonstandard analysis and will be employed in
the proofs of our theorems.

Definition 4.1. Let Y be a Hausdorff space endowed with Borel σ-algebra B[Y ]. Let
P be an internal probability measure on (∗Y , ∗B[Y ]). The push-down measure of
P is defined to be a standard measure Pp on (Y,B[Y ]) such that Pp(A) = P (st−1(A))

for all A ∈ B[Y ].

The following lemma from Duanmu and Roy (2021, Lemma. 6.1) shows that if the
underlying space is compact, then the push-down of an internal probability measure
is a standard probability measure.

Lemma 4.2. Let Y be a compact Hausdorff space endowed with Borel σ-algebra B[Y ].
Let P be an internal probability measure on (∗Y , ∗B[Y ]). Then Pp is a probability
measure on (Y,B[Y ]).
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We first provide the existence result and then provide the existence result for the
compact space. It is straightforward to verify that regular-SMDPs with finite state
and action spaces, as defined in EP, are regular in the sense of Definition 2.4. EP’s
Theorem 1 proves the following result.

Theorem 4.3 (EP). Suppose (⟨S,X, q0, Q, π, δ⟩, QΘ) is a regular-SMDP such that

(1) The state space S and the action space X are both finite;
(2) The parameter space is a compact subset of Euclidean space.

Then there exists a Berk-Nash equilibrium.

Note that every finite set can be embedded into a Euclidean space. Thus, the
following finite result is an immediate consequence of Theorem 4.3.

Lemma 4.4. Suppose (⟨S,X, q0, Q, π, δ⟩, QΘ) is a regular-SMDP such that the state
space S, the action space X and the parameter space Θ are finite. Then there exists a
Berk-Nash equilibrium.

4.3. Existence of Equilibrium with Compact State Space. In this section, we in-
troduce a hyperfinite Markov decision process and use it to give a proof outline for Theo-
rem 1. Throughout this section, We work with a regular SMDP (⟨S,X, q0, Q, π, δ⟩,QΘ)

with a compact state space S. We first give the definition of a hyperfinite representation
of compact metric spaces.

Definition 4.5. Let (Y, d) be a compact metric space with Borel σ-algebra B[Y ]. A
hyperfinite representation of Y is a tuple (TY , {BY (t)}t∈TY

) such that

(1) TY is a hyperfinite subset of ∗Y and Y is a subset of TY ;
(2) t ∈ BY (t) ∈ ∗B[Y ] for every t ∈ TY ;
(3) For every t ∈ TY , the diameter of BY (t) is infinitesimal;
(4) For every t ∈ TY , BY (t) contains an ∗open set;
(5) The hyperfinite collection {BY (t) : t ∈ TY )} forms a ∗partition of ∗Y .

For every y ∈ ∗Y , we use ty to denote the unique element in TY such that y ∈ BY (ty).

The next result from Duanmu et al. (2021a, Thm. 6.6) guarantees the existence of a
hyperfinite representation when the underlying space is a compact metric space.

Lemma 4.6. Let Y be a compact metric space with Borel σ-algebra B[Y ]. Then there
exists a hyperfinite representation (TY , {BY (t)}t∈TY

) of Y .
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A hyperfinite Markov decision process is a ∗Markov decision process where the state
and action spaces are hyperfinite. We construct a hyperfinite Markov decision process
(HMDP) from the Markov decision process ⟨S,X, q0, Q, π, δ⟩:

(1) Let (TS, {BS(s)}s∈TS
) and (TX , {BX(x)}x∈SX

) to be two hyperfinite represen-
tations of S and X, respectively, as in Lemma 4.6. TS is the hyperfinite state
space and TX is the hyperfinite action space;

(2) Define h0({s}) = ∗q0(BS(s)) for every s ∈ TS. Note that h0 is an internal
probability measure on TS. h0 denotes the initial distribution of states;

(3) For every s, s′ ∈ TS, x ∈ TX , let Q(s, x)(s′) = ∗Q(s, x)(BS(s
′)) and Q(s, x)(A) =∑

s′∈AQ(s, x)(s′) for all internal A ⊂ TS. We write Q(A|s, x) for Q(s, x)(A).
Then, Q : TS × TX → ∗∆(TS) is an internal transition probability function;

(4) Define Π : TS × TX × TS → ∗R to be the restriction of ∗π on TS × TX × TS. Π

denotes the hyperfinite per-period payoff function;
(5) The discount factor δ remains the same as in Definition 2.1.

Every hyperfinite Markov Decision Process has the same first-order logic properties
as a finite Markov Decision Process. By the transfer principle, ∗QΘ is an internal family
of internal transition probability functions. Let (TΘ, {BΘ(θ)}θ∈TΘ

) be a hyperfinite
representation of Θ. By Definition 4.5, BΘ(θ) contains an ∗open set for all θ ∈ TΘ.
Thus, we have BΘ(θ) ∩ ∗Θ̂ ̸= ∅ for all θ ∈ TΘ. So, without loss of generality, we
can assume TΘ ⊂ ∗Θ̂. For every θ ∈ TΘ, every s, s′ ∈ TS and every x ∈ TX ,
define Qθ(s, x)(s

′) = ∗Qθ(s, x)(BS(s
′)) and let Qθ(s, x)(A) =

∑
s′∈A Qθ(s, x)(s

′) for
all internal A ⊂ TS. We sometimes write Qθ(A|s, x) for Qθ(s, x)(A). The family
QTΘ

= {Qθ : θ ∈ TΘ} is an internal family of internal transition probability functions.
The tuple (⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

) is a Hyperfinite Subjective Markov Decision
Process (HSMDP), which has the same first-order logic properties as a finite SMDP.
The agent’s problem can be cast recursively as

V(t) = max
x∈TX

∑
s′∈TS

{Π(s, x, s′) + δV(s′)}Q(s′|s, x) (4.3)

where V : TS → R is the unique solution to the hyperfinite Bellman equation.

Definition 4.7. An action x is ∗optimal given s in the HMDP(Q) if

x ∈ argmax
x̂∈TX

∑
s′∈TS

{Π(s, x̂, s′) + δV(s′)}Q(s′|s, x̂) (4.4)
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Furthermore, an action x is S-optimal given s in the HMDP(Q) if∑
s′∈TS

{Π(s, x, s′) + δV(s′)}Q(s′|s, x) ≈ max
x̂∈TX

∑
s′∈TS

{Π(s, x̂, s′) + δV(s′)}Q(s′|s, x̂).

(4.5)

Clearly, ∗optimality implies S-optimality. We now introduce the concept of hyperfi-
nite weighted Kullback-Leibler divergence.

Definition 4.8. The hyperfinite weighted Kullback-Leibler divergence is a mapping
KQ : ∗∆(TS × TX)× TΘ → ∗R≥0 such that for any m ∈ ∗∆(TS × TX) and θ ∈ TΘ:

KQ(m, θ) =
∑

(s,x)∈TS×TX

EQ(·|s,x)

[
ln
( Q(s′|s, x)
Qθ(s′|s, x)

)]
m({(s, x)}). (4.6)

The set of closest parameter values given m ∈ ∗∆(TS × TX) is the set

TQ
Θ (m) = argmin

θ∈TΘ

KQ(m, θ). (4.7)

The set of almost closest parameter values given m ∈ ∗∆(TS × TX) is the external set

T̂Q
Θ (m) = {θ̂ ∈ TΘ : KQ(m, θ̂) ≈ min

θ∈TΘ

KQ(m, θ)}. (4.8)

Note that Qθ(s
′|s, x) = 0 implies that Q(s′|s, x) = 0 for all θ ∈ TΘ, (s, x, s′) ∈

TS × TX × TS. Hence, the hyperfinite relative entropy, EQ(·|s,x)

[
ln
( Q(s′|s,x)
Qθ(s′|s,x)

)]
, is well-

defined. If Q(s′|s, x) = 0, then the corresponding term is interpreted as 0. Note that
the hyperfinite relative entropy is always non-negative. By transferring the finite
existence result in Lemma 4.4, we have the following theorem.

Theorem 4.9. The hyperfinite Markov decision process

(⟨TS, TX , h0,Q,Π, δ⟩,QTΘ
) (4.9)

has a hyperfinite Berk-Nash equilibrium. That is, there exists some m ∈ ∗∆(TS × TX)

and some hyperfinite belief ν ∈ ∗∆(TΘ) such that

(1) Optimality: For all (s, x) ∈ TS × TX such that m({(s, x)}) > 0, x is ∗optimal
given s in the HMDP(Q̄ν), where Q̄ν =

∑
θ∈TΘ

Qθν({θ});
(2) Belief Restriction: We have ν ∈ ∗∆(TQ

Θ (m));
(3) Stationarity: mTS

({s′}) =
∑

(s,x)∈TS×TX
Q(s′|s, x)m({(s, x)}) for all s′ ∈ TS.

By Lemma 4.2, mp and νp are probability measures on S ×X and Θ, respectively.34

To show that mp is a Berk-Nash equilibrium for the SMDP, we introduce the following
34These are the push-down of the internal probability measures.
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definition of a Berk-Nash S-equilibrium, which is more general than hyperfinite Berk-
Nash equilibrium.

Definition 4.10. An internal probability distribution m ∈ ∗∆(TS × TX) is a Berk-
Nash S-equilibrium of the hyperfinite SMDP(⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

) if there exists
a hyperfinite belief ν ∈ ∗∆(TΘ) such that

(1) S-Optimality: For all (s, x) ∈ TS × TX such that m({(s, x)}) > 0, x is
S-optimal given s in the HMDP(Q̄ν), where Q̄ν =

∑
θ∈TΘ

Qθν({θ});
(2) S-Belief Restriction: The support of ν is a subset of T̂Q

Θ (m);
(3) S-Stationarity: For all internal A ⊂ TS:

mTS
(A) ≈

∑
(s,x)∈TS×TX

Q(A|s, x)m({(s, x)}). (4.10)

Theorem 4.11 then connects the Berk-Nash S-equilibrium to Berk-Nash equilibrium
for the hyperfinite SMDP. The proof is provided in the Appendix.

Theorem 4.11. Let m ∈ ∗∆(TS × TX) be a Berk-Nash S-equilibrium for the hyperfinite
SMDP (⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

) with the associated hyperfinite belief ν ∈ ∗∆(TΘ).
Then mp is a Berk-Nash equilibrium with the associated belief νp.

Finally, Theorem 1 is then an immediate consequence of Theorem 4.11.

Proof of Theorem 1. By Theorem 4.9, let m be the hyperfinite Berk-Nash equi-
librium for the hyperfinite SMDP with the associated hyperfinite belief ν. Clearly,
every hyperfinite Berk-Nash equilibrium is a Berk-Nash S-equilibrium. The result
then follows from Theorem 4.11 and this completes the proof. □

4.4. Existence of Equilibrium with Sigma-Compact State Space. In this sec-
tion, we work with a regular SMDP M = (⟨S,X, q0, Q, π, δ⟩,QΘ) but with a σ-compact
state space and compact action and parameter spaces. As opposed to approximating
M with truncations, nonstandard analysis provides an elegant alternative approach
by using a single nonstandard SMDP with a “large” ∗compact state space to represent
the M. The nonstandard SMDP can also be viewed informally as the limiting object
of a sequence of truncated SMDPs.

We extend the sequence {Sn}n∈N in Assumption 1 to an internal sequence {∗Sn}n∈∗N.
By the transfer principle, ∗Sn is a ∗compact set for all n ∈ ∗N. Pick some N ∈ ∗N \N.
As {Sn}n∈N is a sequence of non-decreasing sets, we have ∗Sn ⊂ ∗SN for all n ∈ N,
which implies that NS(∗S) ⊂ ∗SN . In other words, the state space S is a subset
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of ∗SN . The nonstandard subjective Markov decision process (NSMDP) MN
TΘ

=

(⟨∗SN ,
∗X, ∗qN0 ,

∗QN , ∗πN , δ⟩, ∗QN
TΘ
) is defined as:

(1) The ∗state space is ∗SN , endowed with ∗Borel σ-algebra ∗B[∗SN ];
(2) The action space is ∗X, endowed with ∗Borel σ-algebra ∗B[∗X];
(3) The parameter space TΘ is the hyperfinite representation of Θ chosen in

Definition 4.5. Note that TΘ ⊂ ∗Θ̂;
(4) ∗qN0 (A) =

∗q0(A)
∗q0(

∗SN )
for all A ∈ ∗B[∗SN ];

(5) ∗QN : ∗SN × ∗X → ∗∆(∗SN) is the ∗transition probability function defined as
∗QN(s, x)(A) =

∗Q(s,x)(A)
∗Q(s,x)(∗SN )

for all A ∈ ∗B[∗SN ];
(6) ∗πn : ∗SN × ∗X × ∗SN → ∗R is the restriction of ∗π to ∗SN × ∗X × ∗SN ;
(7) the discounting factor δ remains the same;
(8) For every θ ∈ TΘ, ∗QN

θ : ∗SN × ∗X → ∗∆(∗SN) is the ∗transition probability
function defined as ∗QN

θ (s, x)(A) =
∗Qθ(s,x)(A)

∗Qθ(s,x)(
∗SN )

for all A ∈ ∗B[∗SN ]. Let
∗QN

TΘ
= {∗QN

θ : θ ∈ TΘ}.
Under Assumption 1, every truncation of M is a regular SMDP and has a Berk-Nash

equilibrium. Therefore, from the transfer principle, we have the following result.

Theorem 4.12. Suppose Assumption 1 holds. Then MN
TΘ

is ∗regular and has a
hyperfinite Berk-Nash equilibrium.

The Proofs of Theorem 2 and Theorem 3. By Theorem 4.12, MN
TΘ

has a Berk-
Nash ∗equilibrium m with the associated ∗belief function ν on ∗Θ. By Assumption 2,
mp is a probability measure on S×X. Let m be the hyperfinite Berk-Nash equilibrium
for MN

TΘ
with the associated hyperfinite belief ν ∈ ∗∆(TΘ). Then, we have

m∗S(A) = m∗SN
(A) =

∫
∗SN×∗X

∗QN(A|s, x)m(ds, dx) (4.11)

for all A ∈ ∗B[∗SN ]. Thus, m is an element of ∗R, where R is the set in Assumption 2.
Under Assumption 2, m∗S(st

−1(S)) = 1, hence the push down mp is a probability
measure on S × X. As Θ is compact, by Lemma 4.2, νp is a probability measure
on Θ. In order to prove Theorems 2 and 3, therefore, it is sufficient to show that
mp is a Berk-Nash equilibrium for the regular SMDP M with the belief νp on Θ.
The stationarity of mp follows from Theorem A.27 in the Appendix. In a series of
Theorems A.31-A.33, we establish belief restriction for νp under the assumptions of
a correctly specified SMDP, uniform integrability (Assumption 3) and uniqueness
(Assumption 4), respectively. Finally, for a bounded payoff function, optimality follows
from Theorem A.37, thus proving Theorem 2. For unbounded payoff function as
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considered in Assumption 6, optimality follows from Theorem A.45, hence proving
Theorem 3. □

5. Discussion

This paper uses a novel technique in nonstandard analysis to extend the existence
results for Berk-Nash equilibrium from finite state and action spaces to sigma-compact
state and compact action spaces, thereby allowing coverage of a wide range of natural
examples in macroeconomics, microeconomics, and finance. This paper suggests the
following promising directions for future work:

(1) The paper, like EP, considers a single-agent environment. In future work,
we hope to extend these results to the case of multiple agents, in particular
recursive equilibrium frameworks in macroeconomics Molavi (2019);

(2) Theorem 4 in the online appendix provides a possible learning foundation
for SMDPs with compact state and action spaces. Unfortunately, it relies
on an implausibly strong condition, convergence in the total variation norm
on measures. It is of great interest to develop a learning foundation under a
weaker convergence condition such as convergence in the Prokhorov metric.
This may have further implications for environments that are characterized by
slow learning as in Frick et al. (2020).

A. Appendix A. Proofs

In this appendix, we present proofs that are omitted from the main body of the
paper. Most of the proofs make heavy use of nonstandard analysis for which notations
are introduced in Section 4.2.

A.1. Proof of Theorem 1. In this appendix, we provide a rigorous proof to The-
orem 4.11, thereby completing the proof of Theorem 1. The following two lemmas
are key to prove the existence of a hyperfinite Berk-Nash equilibrium in Theorem 4.9.
The first lemma follows from the fact that TΘ is hyperfinite.

Lemma A.1. Suppose (⟨S,X, q0, Q, π, δ⟩, QΘ) is a regular-SMDP. Then, for all
(s, x, s′) ∈ TS × TX × TS, the function Qθ(s

′|s, x) is ∗continuous function of θ.

Lemma A.2. Suppose (⟨S,X, q0, Q, π, δ⟩, QΘ) is a regular SMDP. Then, for all
θ ∈ TΘ, Qθ(s

′|s, x) > 0 for all (s, s′, x) ∈ TS × TS × TX such that Q(s′|s, x) > 0.
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Proof. Pick some θ ∈ TΘ and (s, s′, x) ∈ TS × TS × TX with Q(s′|s, x) > 0. Note
that Q(s′|s, x) = ∗Q(s, x)(BS(s

′)). As TΘ ⊂ ∗Θ̂, by the transfer principle, we have
∗Qθ(s, x)(BS(s

′)) > 0. As Qθ(s
′|s, x) = ∗Qθ(s, x)(BS(s

′)), we have the result. □

Proof of Theorem 4.9. Note that TΘ is a hyperfinite set. Then the result follows
from Lemma A.1, Lemma A.2 and the transfer of Lemma 4.4. □

Next, we divide the proof of Theorem 4.11 into the three subsections (A.1.1-A.1.3),
thus establishing stationarity, optimality and belief restriction of the candidate Berk-
Nash equilibrium (mp, νp), respectively.

A.1.1. Stationarity. Recall that (mp)S denotes the marginal measure of mp on S.
In this section, we establish the stationarity of (mp)S. We use mTS

to denote the
marginal measure of m on TS.

Lemma A.3. For any A ∈ B[S], (mTS
)p(A) = (mp)S(A).

Proof. We have (mTS
)p(A) = mTS

(st−1(A) ∩ TS) = m
(
(st−1(A) ∩ TS)× TX

)
for every

A ∈ B[S]. On the other hand, we have (mp)S(A) = mp(A×X) = m
(
(st−1(A)∩ TS)×

TX

)
for all A ∈ B[S]. Hence, we have the desired result. □

Lemma A.4. Let A be a (possibly external) subset of TS. Suppose there exists a
sequence {Ak : k ∈ N} of non-decreasing internal subsets of TS such that

⋃
k∈N Ak = A.

Then mTS
(A) =

∫
TS×TX

Q(s, x)(A ∩ TS)m(ds, dx)

Proof. By the continuity of probability, we have mTS
(A) = limk→∞ mTS

(Ak). For each
k ∈ N, by the S-stationarity of m, we have

mTS
(Ak) ≈

∫
TS×TX

Q(s, x)(Ak)m(ds, dx) ≈
∫
TS×TX

Q(s, x)(Ak)m(ds, dx). (A.1)

Thus, we have mTS
(A) = limk→∞

∫
TS×TX

Q(s, x)(Ak)m(ds, dx). The result then follows
from the dominated convergence theorem. □

To complete the proof, we need to make a topological assumption on S. We start
with the following definition.

Definition A.5. A π-system on a set Ω is a non-empty collection P of subsets of Ω
that is closed under finite intersection.

Lemma A.6 (The Uniqueness Lemma). Let (Ω,Σ) be a measure space with Σ generated
from some π-system Π. Let µ and ν be two probability measures that agree on Π.
Then µ and ν agree on Σ.
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Assumption 9. There exists a π-system F on S that generates B[S] such that,
for every A ∈ F , st−1(A) =

⋃
k∈N Ak for some sequence {Ak : k ∈ N} ⊂ ∗B[∗S] of

(non-decreasing) sets.

Although Assumption 9 is stated in nonstandard terminology, it is satisfied by many
standard topological spaces. In fact, all metric spaces which are endowed with the
Borel σ-algebra satisfy Assumption 9.

Theorem A.7. Let Y be a metric space endowed with the Borel σ-algebra B[Y ]. Then
(Y,B[Y ]) satisfies Assumption 9.

Proof. Let F be the π-system generated by the collection of open balls. Clearly, F
generates B[Y ]. Let B(a, η) be an open ball centered at a with radius η. For each
n ∈ N, let Cn be the closure of B(a, η − 1

n
). Then, we have st−1

(
B(a, η)

)
=
⋃

n∈N
∗Cn.

Pick some U ∈ F . Then U =
⋂

i≤n Ui for some n ∈ N, where Ui is an open ball
for all i ≤ n. For each i ≤ n, there is a sequence {Ai

k : k ∈ N} ⊂ ∗B[∗Y ] such
that st−1(Ui) =

⋃
k∈N A

i
k. Then U equals to the union of the countable collection

{
⋂

i≤n A
i
ki
: k1, k2, . . . , kn ∈ N}. □

Lemma A.8. (mp)S(A) =
∫
TS×TX

Q(s, x)(st−1(A) ∩ TS)m(ds, dx) for all A ∈ B[S].

Proof. By Theorem A.7, let F denote the π-system in Assumption 9. By Lemma A.3,
we have (mp)S(A) = (mTS

)p(A) = mTS
(st−1(A) ∩ TS) for every A ∈ B[S]. Pick some

B ∈ F . By Assumption 9, there is a sequence {Bk : k ∈ N} ⊂ ∗B[∗S] of non-decreasing
sets such that st−1(B) =

⋃
k∈N Bk. By Lemma A.4, we have

(mp)S(B) = mTS
(st−1(B) ∩ TS) =

∫
TS×TX

Q(s, x)(st−1(B) ∩ TS)m(ds, dx). (A.2)

For every A ∈ B[S], define P (A) =
∫
TS×TX

Q(s, x)(st−1(A) ∩ TS)m(ds, dx). It is
straightforward to verify that P is a well-defined a probability measure on (S,B[S]).
As (mp)S and P agree on F , by Lemma A.6, we have the desired result. □

Next, we quote the following results from nonstandard analysis which will be used
for the subsequent proofs.

Theorem A.9 (Anderson (1982, Prop. 8.4)). Let Y be a compact Hausdorff space en-
dowed with Borel σ-algebra B[Y ], let ν be an internal probability measure on (∗Y , ∗B[Y ]),
and let f : Y → R be a bounded measurable function. Define g : ∗Y → R by
g(s) = f(st(s)). Then we have

∫
f(y)νp(dy) =

∫
g(y)ν(dy).
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Theorem A.10 (Anderson and Rashid (1978, Corollary. 5)). Let Y be a compact
Hausdorff space endowed with Borel σ-algebra B[Y ], let {Pn}n∈N be a sequence of
probability measures on (Y,B[Y ]). Then the sequence {Pn}n∈N converges weakly to
a probability measure P on (Y,B[Y ]) if and only if P (A) = ∗PN(st

−1(A)) for all
A ∈ B[Y ] and N ∈ ∗N \ N.

Recall that we assume the mappings (s, x) → Q(s, x) and (θ, s, x) → Qθ(s, x) are
continuous in the Prokhorov metric. By Theorem A.10, we have the following result:

Lemma A.11. For every (s, x) ∈ TS × TX , every θ ∈ TΘ and every A ∈ B[S],
we have Q(st(s), st(x))(A) = Q(s, x)(st−1(A) ∩ TS) and Qst(θ)(st(s), st(x))(A) =

Qθ(s, x)(st
−1(A) ∩ TS).

Proof. Pick (s0, x0) ∈ TS × TX , θ0 ∈ TΘ and A0 ∈ B[S]. By Theorem A.10, we
have Q(st(s0), st(x0))(A0) = ∗Q(s0, x0)(st

−1(A0)) and Qst(θ0)(st(s0), st(x0))(A0) =
∗Qθ0(s0, x0)(st

−1(A0)). As st−1(A0) =
⋃
{BS(s) : s ∈ st−1(A0) ∩ TS}, by construction,

we obtain the desired result. □

We now prove the main result of this section:

Theorem A.12. (mp)S(A) =
∫
S×X

Q(A|s, x)mp(ds, dx) for every A ∈ B[S].

Proof. By Lemma A.8, we have (mp)S(A) =
∫
TS×TX

Q(s, x)(st−1(A) ∩ TS)m(ds, dx)

for all A ∈ B[S]. Thus, it is sufficient to show that∫
TS×TX

Q(s, x)(st−1(A) ∩ TS)m(ds, dx) =

∫
S×X

Q(s, x)(A)mp(ds, dx). (A.3)

This follows from Theorem A.9 and Lemma A.11. □

A.1.2. Belief Restriction. Recall that ν is the hyperfinite belief as in Theorem 4.9.
As Θ is compact, νp is a well-defined probability measure on Θ. In this section, we
show that the support of νp is a subset of ΘQ(mp). We start with the following result,
which is closely related to Zimmer (2005), on hyperfinite representation of density
functions.

Theorem A.13. For all θ ∈ TΘ, all (s, x, s′) ∈ TS × TX × TS such that

(1) Qθ(s
′|s, x) > 0;

(2) Q(st(s), st(x)) is dominated by Qst(θ)(st(s), st(x));
(3) Dst(θ)(st(s

′)|st(s), st(x)) is finite.

Then, we have Q(s′|s,x)
Qθ(s′|s,x)

≈ Dst(θ)(st(s
′)|st(s), st(x)).
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Proof. Pick some θ0 ∈ TΘ, some (s0, x0, s
′
0) ∈ TS×TX×TS that satisfy the assumptions

of the theorem. As TΘ ⊂ ∗Θ̂, by the transfer principle, we have

Q(s′0|s0, x0) =
∗Q(s0, x0)(BS(s

′
0)) =

∫
BS(s

′
0)

∗Dθ0(y|s0, x0)
∗Qθ0(dy|s0, x0). (A.4)

We also have Q(s′0|s0, x0) =
∫
BS(s

′
0)

Q(s′0|s0,x0)

Qθ0
(s′0|s0,x0)

∗Qθ0(dy|s0, x0). Note that the density
function Dθ(s

′|s, x) is jointly continuous on {(θ, s′, s, x) : Q(s, x) is dominated by Qθ(s, x)}
and Dst(θ0)(st(s

′
0)|st(s0), st(x0)) is finite. Thus, we have ∗Dθ0(y|s0, x0) ≈ Q(s′0|s0,x0)

Qθ0
(s′0|s0,x0)

for all y ∈ BS(s
′
0). Hence, we conclude that Q(s′0|s0,x0)

Qθ0
(s′0|s0,x0)

≈ Dst(θ0)(st(s
′
0)|st(s0), st(x0)),

completing the proof. □

We now introduce the notion of S-integrability from nonstandard analysis.

Definition A.14. Let (Ω,A, P ) be an internal probability space and let F : Ω → ∗R
be an internally integrable function such that st(F ) exists P -almost surely. Then F is
S-integrable with respect to P if st(F ) is P -integrable, and

∫
|F |dP ≈

∫
st(|F |)dP .

We now show that the hyperfinite Kullback-Leibler divergence is infinitely close to
the standard Kullback-Leibler divergence. Recall that Θm = {θ ∈ Θ : KQ(m, θ) < ∞}
for m ∈ ∆(S ×X). Note that Θ̂ ⊂ Θm for all m ∈ ∆(S ×X).

Theorem A.15. Let λ be an element of ∗∆(TS × TX). Then, we have

(1) KQ(λ, θ) ⪆ KQ(λp, st(θ)) for all θ ∈ TΘ such that st(θ) ∈ Θλp;
(2) KQ(λ, θ) ≈ KQ(λp, st(θ)) for all θ ∈ TΘ such that st(θ) ∈ Θ̂.

Proof. Pick θ ∈ TΘ such that st(θ) ∈ Θλp . As KQ(λp, st(θ)) < ∞, this implies that
Q(s, x) is dominated by Qst(θ)(s, x) for λp-almost all (s, x) ∈ S ×X. The proof of the
theorem relies essentially on the following claim which is proved in the supplementary
material, C.1.

Claim A.16. For every (s, x) ∈ TS × TX such that Q(st(s), st(x)) is dominated by
Qst(θ)(st(s), st(x)), EQ(·|s,x)

[
ln
( Q(s′|s,x)
Qθ(s′|s,x)

)]
≈ EQ(·|st(s),st(x))

[
ln
(
Dst(θ)(s

′|st(s), st(x))
)]

.

Define g : S × X → R to be g(s, x) = EQ(·|s,x)
[
ln
(
Dst(θ)(s

′|s, x)
)]

for all (s, x) ∈
S × X such that Q(s, x) is dominated by Qst(θ)(s, x) and g(s, x) = 0 otherwise.
For each n ∈ N, define gn : S × X → R to be gn(s, x) = min{g(s, x), n}. As
KQ(λp, st(θ)) < ∞, we conclude that KQ(λp, st(θ)) = limn→∞

∫
gn(s, x)λp(ds, dx).

Note that each gn is a bounded measurable function. Similarly, we define G : TS ×
TX → ∗R to be G(s, x) = EQ(·|s,x)

[
ln
( Q(s′|s,x)
Qθ(s′|s,x)

)]
. For each n ∈ N, let Gn : TS ×
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TX → ∗R be Gn(s, x) = min{G(s, x), n}. By Claim A.16 and Theorem A.9, we
have

∫
TS×TX

Gn(s, x)λ(ds, dx) ≈
∫
S×X

gn(s, x)λp(ds, dx) for all n ∈ N. Note that
KQ(λ, θ) ≥ limn→∞

∫
TS×TX

Gn(s, x)λ(ds, dx). Thus, we have KQ(λ, θ) ⪆ KQ(λp, st(θ)).
For the special case that st(θ) ∈ Θ̂, by Arkeryd et al. (1997, Section 4, Corol-

lary 6.1) and Claim A.16, G is S-integrable with respect to λ. Then, KQ(λ, θ) ≈
limn→∞

∫
TS×TX

Gn(s, x)λ(ds, dx) follows from Arkeryd et al. (1997, Section 4, Theorem
6.2). Hence, KQ(λ, θ) ≈ KQ(λp, st(θ)) when st(θ) ∈ Θ̂. □

We now prove the main result of this section.

Theorem A.17. The support of νp is a subset of ΘQ(mp).

Proof. Pick θ0 ∈ Θ such that θ0 is in the support of νp. As νp(A) = ν(st−1(A)) for
all A ∈ B[Θ], by Theorem 4.9, there exists θ1 ≈ θ0 such that θ1 ∈ T̂Q

Θ (m). That
is, we have KQ(m, θ1) ≈ minθ∈TΘ

KQ(m, θ). Suppose there exists θ′ ∈ Θ such that
KQ(mp, θ

′) < KQ(mp, θ0)− 1
n

for some n ∈ N. Note that KQ(mp, θ) is a continuous
function of θ on Θmp . As Θ̂ ⊂ Θmp and Θ̂ is a dense subset of Θ, there exists some
θ̂ ∈ Θ̂ such that KQ(mp, θ̂) < KQ(mp, θ0) − 1

2n
. Let tθ̂ ∈ TΘ be the unique element

such that θ̂ ∈ BΘ(tθ̂). By Theorem A.15, we have

KQ(m, tθ̂) ≈ KQ(mp, θ̂) < KQ(mp, θ0)−
1

2n
⪅ KQ(m, θ1)−

1

2n
. (A.5)

This is a contradiction, so the support of νp is a subset of ΘQ(mp). □

A.1.3. Optimality. In this section, we establish the optimality of the candidate
Berk-Nash equilibrium mp.

Lemma A.18. For every λ ∈ ∗∆(TΘ) and every (t, x) ∈ TS × TX , (Qλ(t, x))p =

Qλp(st(t), st(x)). That is, the push-down of Qλ(t, x) is the same as Qλp(st(t), st(x)).

Proof. Fix λ ∈ ∗∆(TΘ) and (t, x) ∈ TS × TX . Pick A ∈ B[S]. By the construction of
the Loeb measure, we have

(Qλ(t, x))p(A) = Qλ(t, x)(st
−1(A) ∩ TS) =

∫
SΘ

Qi(t, x)(st
−1(A) ∩ TS)λ(di). (A.6)

By Lemma A.11, we have Qst(i)(st(t), st(x))(A) = Qi(t, x)(st
−1(A)∩ TS) for all i ∈ TΘ.

Thus, by Theorem A.9, we have∫
TΘ

Qi(t, x)(st
−1(A) ∩ TS)λ(di) =

∫
Θ

Qθ(st(t), st(x))(A)λp(dθ) = Qλp(st(t), st(x))(A).

(A.7)
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Hence, we have the desired result. □

Recall that ν ∈ ∗∆(TΘ) is the hyperfinite belief function that associates with the
Berk-Nash S-equilibrium m. We consider the Bellman equation

V (s) = max
x∈X

∫
S

{π(s, x, s′) + δV (s′)}Q̄νp(ds
′|s, x). (A.8)

By the Banach fixed point theorem, there exists an unique V ∈ C[T ] that is a solution
to this Bellman equation. We fix V for the rest of this section.

Similarly, we consider the hyperfinite Bellman equation

V(s) = max
x∈TX

∫
TS

{Π(s, x, s′) + δV(s′)}Q̄ν(ds
′|s, x) (A.9)

where V : TS → R is the unique solution to the hyperfinite Bellman equation. The
existence of such V is guaranteed by the transfer principle. We fix V for the rest of
this section. Define V′ : ∗S → ∗R by letting V′(s) = V(ts) for all s ∈ ∗T , where ts is
the unique element in TS such that s ∈ BS(ts).

Lemma A.19. For all s ∈ ∗S, V′(s) ≈ ∗V (s).

Proof. Let V0 be the restriction of ∗V on TS. For all (s, x) ∈ TS ×TX , by Lemma A.18
and Theorem A.9, we have∫

TS

{Π(s, x, s′) + δV0(s
′)}Q̄ν(ds

′|s, x) (A.10)

≈
∫
S

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), st(x)). (A.11)

Hence, we have

max
x∈TX

∫
TS

{Π(s, x, s′) + δV0(s
′)}Q̄ν(ds

′|s, x) (A.12)

≈ max
x∈X

∫
S

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), st(x)) (A.13)

= V (st(s)) ≈ V0(s) (A.14)

Let G(f)(s) = maxx∈TX

∫
TS
{Π(s, x, s′)+ δf(s′)}Q̄ν(ds

′|s, x) for all internal function
f : TS → ∗R. Note that we have ∗dsup(G(f1), G(f2)) ≤ δ∗dsup(f1, f2) for all internal
functions f1, f2 : TS → ∗R. Moreover, we can find V as following: start with V0 and
define a sequence {Vn}n∈∗N by Vn+1 = G(Vn). Then V is the ∗limit of {Vn}n∈∗N. So:

∗dsup(V0,V) ≤
1

1− δ
∗dsup(V1, V0) ≈ 0. (A.15)
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As V is continuous, we conclude that V′(s) ≈ ∗V (s) for all s ∈ ∗S. □

We now prove the main result of this section.

Theorem A.20. For every (s, x) ∈ S ×X that is in the support of mp, x is optimal
given s in the MDP(Q̄νp).

Proof. Pick some (s, x) ∈ S × X in the support of mp. Then there exists some
(a, b) ∈ TS × TX such that (a, b) ≈ (s, x) and m

(
{(a, b)}

)
> 0. As m is a Berk-Nash

S-equilibrium, b is S-optimal given a in HMDP(Q̄ν). That is, we have∫
TS

{Π(a, b, s′) + δV(s′)}Q̄ν(ds
′|a, b) ≈ max

y∈TX

∫
TS

{Π(a, y, s′) + δV(s′)}Q̄ν(ds
′|a, y).

(A.16)

By Lemma A.19, Lemma A.18 and Theorem A.9, we have∫
TS

{Π(a, y, s′) + δV(s′)}Q̄ν(ds
′|a, y) ≈

∫
S

{π(s, st(y), s′) + δV (s′)}Q̄νp(ds
′|s, st(y))

(A.17)

for all y ∈ TX . Thus, we have x ∈ argmaxx̂∈X
∫
S
{π(s, x̂, s′) + δV (s′)}Q̄νp(ds

′|s, x̂),
which implies that x is optimal given s in the MDP(Q̄νp). □

We now furnish the proof of Theorem 4.11 which concludes the proof of Theorem 1.

Proof of Theorem 4.11. Let m ∈ ∗∆(TS × TX) be a Berk-Nash S-equilibrium with
the associated hyperfinite belief ν ∈ ∗∆(TΘ) for the hyperfinite SMDP. By Theo-
rem A.20, Theorem A.17 and Theorem A.12, mp is a Berk-Nash equilibrium for the
regular SMDP with associated belief function νp. □

A.2. Proofs of Theorems 2 and 3. For every n ∈ N and every finite Θ′ ⊂ Θ̂, we
denote the truncation by Mn

Θ′ .

Lemma A.21. Suppose Assumption 1 holds. Then, for every n ∈ N, the mappings
(s, x) → Qn(s, x) and (θ, s, x) → Qn

θ (s, x) are continuous in Prokhorov metric.

Proof. Let (sm, xm)m∈N be a sequence of points in Sn × X that converges to some
point (s, x) ∈ Sn ×X. Let A be a continuity set of Qn(s, x). As Sn is a continuity set
of Qn(s, x), A is a continuity set of Q(s, x). Thus, we have

lim
m→∞

Qn(sm, xm)(A) = lim
m→∞

Q(sm, xm)(A)

Q(sm, xm)(Sn)
=

Q(s, x)(A)

Q(s, x)(Sn)
= Qn(s, x)(A). (A.18)

Thus, the mapping (s, x) → Qn(s, x) is continuous in Prokhorov metric. By the same
argument, the mapping (θ, s, x) → Qn

θ (s, x) is continuous in Prokhorov metric. □
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Lemma A.22. Suppose Assumption 1 holds. For every n ∈ N, Qn(s, x) is dominated
by Qn

θ (s, x) for all θ ∈ Θ′ and all (s, x) ∈ Sn ×X.

Proof. Pick n ∈ N, θ ∈ Θ′ and (s, x) ∈ Sn × X. Pick some A ∈ B[Sn] such that
Qn

θ (s, x)(A) =
Qθ(s,x)(A)
Qθ(s,x)(Sn)

= 0. This implies that Qθ(s, x)(A) = 0. As θ ∈ Θ′ ⊂ Θ̂, we
have Q(s, x)(A) = 0, which implies that Qn(s, x)(A) = 0 □

For every n ∈ N, θ ∈ Θ′ and every (s, x) ∈ Sn ×X, we use Dθ,n(·|s, x) to denote
the density function of Qn(s, x) with respect to Qn

θ (s, x).

Lemma A.23. Suppose Assumption 1 holds. For every n ∈ N and θ ∈ Θ′, Dθ,n(s
′|s, x)

is a jointly continuous function of s′, s and x.

Proof. Pick n ∈ N and θ ∈ Θ′. For any A ∈ B[Sn] and any (s, x) ∈ Sn ×X, we have

Qn(s, x)(A) =

∫
A

Dθ(s
′|s, x)

Q(s, x)(Sn)
Qθ(s, x)(ds

′) =

∫
A

Dθ(s
′|s, x)

Q(s, x)(Sn)
Qθ(s, x)(Sn)Q

n
θ (s, x)(ds

′).

(A.19)

So Dθ,n(s
′|s, x) = Dθ(s

′|s,x)
Q(s,x)(Sn)

Qθ(s, x)(Sn). Note that Q(s, x)(Sn) > 0 and Qθ(s, x)(Sn) >

0, and Sn is a continuity set for both Q(s, x) and Qθ(s, x). Thus, Dθ,n(s
′|s, x) is a

jointly continuous function of s′, s and x. □

As Θ′ is finite, Sn and X are compact, by Lemma A.23, Dθ,n(s
′|s, x) is bounded.

Hence, Item 5 of Definition 2.4 is automatically satisfied for the SMDP Mn
Θ′ . Moreover,

the payoff function πn is continuous on Sn ×X × Sn. Hence, by Theorem 1, we have

Lemma A.24. Suppose Assumption 1 holds. For every n ∈ N and every finite Θ′ ⊂ Θ̂,
the SMDP Mn

Θ′ is regular and has a Berk-Nash equilibrium.

Theorem 4.12 then follows from the transfer of Lemma A.24. Let m ∈ ∗∆(∗SN × ∗X)

denote the Berk-Nash ∗equilibrium of MN
TΘ

, with the associated ∗belief ν. Assumption 2
guarantees that the push-down, mp, of m is a probability measure on ∆(S × X).
To show that mp is a Berk-Nash equilibrium for the original SMDP M with the
associated belief function νp, we break the proof into three subsections (A.2.1-A.2.5)
which establishes stationarity, optimality and belief restriction, respectively.

A.2.1. Stationarity. In this section, we show that mp satisfies stationarity. Using
essentially the same argument as in Lemma A.8, we have the following result.

Lemma A.25. For all A ∈ B[S], (mp)S(A) =
∫
∗S×∗X

∗QN(s, x)(st−1(A))m(ds, dx),
where (mp)S denote the marginal measure of mp on S.
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Lemma A.26. For every (s, x) ∈ NS(∗S) × ∗X, every θ ∈ TΘ and every A ∈
B[S], we have Q(st(s), st(x))(A) = ∗QN(s, x)(st−1(A)) and Qst(θ)(st(s), st(x))(A) =
∗QN

θ (s, x)(st
−1(A)).

Proof. Pick some (s0, x0) ∈ NS(∗S)×∗X, some θ0 ∈ TΘ and some A0 ∈ B[S]. By Theo-
rem A.10, we have Q(st(s0), st(x0))(A0) = ∗Q(s0, x0)(st

−1(A0)). As ∗QN (s0, x0)(
∗SN ) ≈

1, we have Q(st(s0), st(x0))(A0) = ∗QN(s0, x0)(st
−1(A0)). By the same argument, we

have Qst(θ0)(st(s0), st(x0))(A0) = ∗QN
θ0
(s0, x0)(st

−1(A0)). □

Theorem A.27. Suppose Assumption 1 holds. For every A ∈ B[S], (mp)S(A) =∫
S×X

Q(A|s, x)mp(ds, dx).

Proof. Pick A ∈ B[S]. By Lemma A.25, (mp)S(A) =
∫
∗S×∗X

∗QN(s, x)(st−1(A))m(ds, dx)

As m(st−1(S)× ∗X) = 1, we have∫
∗S×∗X

∗QN(s, x)(st−1(A))m(ds, dx) = lim
n→∞

∫
∗Sn×∗X

∗QN(s, x)(st−1(A))m(ds, dx).

(A.20)

By Lemma A.26 and Theorem A.9, we have∫
∗Sn×∗X

∗QN(s, x)(st−1(A))m(ds, dx) =

∫
Sn×X

Q(s, x)(A)mp(ds, dx). (A.21)

Note that we also have

lim
n→∞

∫
Sn×X

Q(s, x)(A)mp(ds, dx) =

∫
S×X

Q(s, x)(A)mp(ds, dx). (A.22)

So, we have the desired result. □

A.2.2. Belief Restriction under Assumption 3. In this section, we establish
belief restriction assuming uniformly bounded relative entropy. Recall that ν is the
hyperfinite belief that associates with the Berk-Nash ∗equilibrium m of the nonstandard
SMDP MN

TΘ
. Recall that TΘ ⊂ ∗Θ̂. By the transfer of Lemma A.22, ∗QN(s, x) is

∗dominated by ∗QN
θ (s, x) for all θ ∈ TΘ and (s, x) ∈ ∗SN × ∗X. We use Dθ(·|s, x) to

denote the ∗density function of ∗QN(s, x) with respect to ∗QN
θ (s, x). By the transfer

of Lemma A.23, Dθ(s
′|s, x) is jointly ∗continuous on (s′, s, x).

Lemma A.28. Suppose Assumption 1 holds. For all θ ∈ TΘ and all (s, x) ∈ NS(∗S)×
∗X, we have Dθ(s

′|s, x) ≈ ∗Dθ(s
′|s, x) on a ∗QN

θ (s, x) measure 1 set.



35

Proof. Pick θ ∈ TΘ and (s, x) ∈ NS(∗S) × ∗X. Note that ∗Q(s, x)(∗SN) ≈ 1 and
∗Qθ(s, x)(

∗SN) ≈ 1. Thus, for every A ∈ ∗B[∗SN ], we have:

∗QN(s, x)(A) =
∗Q(s, x)(A)

∗Q(s, x)(∗SN)
≈
∫

∗SN

∗Dθ(s
′|s, x)∗QN

θ (s, x)(ds
′). (A.23)

Note that ∗QN(s, x)(A) =
∫
∗SN

Dθ(s
′|s, x)∗QN

θ (s, x)(ds
′). Thus, we conclude that

Dθ(s
′|s, x) ≈ ∗Dθ(s

′|s, x) on some ∗QN
θ (s, x) measure 1 set. □

For every θ ∈ TΘ, let the nonstandard Kullback-Leibler divergence be:

∗KN(m, θ) =

∫
∗SN×∗X

∗E∗QN (·|s,x)
[
ln
(
Dθ(s

′|s, x)
)]

m(ds, dx). (A.24)

The set of closest parameter values given m is the set TN
Θ (m) = argminθ∈TΘ

∗KN (m, θ).
Recall that we use Θmp to denote the set {θ ∈ Θ : KQ(θ,mp) < ∞}. The proof of the
following lemma is provided in Appendix C.1.

Lemma A.29. Suppose Assumption 1 and Assumption 2 hold. For every (θ, s, x) ∈
TΘ×NS(∗S)×∗X, if st(θ) ∈ Θmp and Q(st(s), st(x)) is dominated by Qst(θ)(st(s), st(x)),
then ∗E∗QN (·|s,x)

[
ln
(
Dθ(s

′|s, x)
)]

≈ EQ(·|st(s),st(x))
[
ln
(
Dst(θ)(s

′|st(s), st(x))
)]

.

By the transfer principle, ∗QN(s, x)(∗SN) > r for all (s, x) ∈ ∗SN × ∗X. As
TΘ ⊂ ∗Θ̂, following the calculation in Lemma A.23, |Dθ(s

′|s, x)| ≤ 1
r
|∗Dθ(s

′|s, x)| for
all (s′, s, θ, x) ∈ ∗SN × ∗SN × TΘ × ∗X. We now establish the connections between
the nonstandard weighted Kullback-Leibler divergence ∗KN(m, θ) and the standard
weighted Kullback-Leibler divergence KQ(mp, θ).

Theorem A.30. Suppose Assumption 1, Assumption 2 and Assumption 3 hold. For
every θ ∈ TΘ, if st(θ) ∈ Θmp, then ∗KN(m, θ) ≈ KQ(mp, st(θ)).

Proof. Pick θ ∈ TΘ such that st(θ) ∈ Θmp . Since KQ(mp, st(θ)) < ∞, Q(s, x) is
dominated by Qst(θ)(s, x) for mp-almost all (s, x) ∈ S×X. Let R̄ denote the extended
real line and define g : S × X → R̄ to be g(s, x) = EQ(·|s,x)

[
ln
(
Dst(θ)(s

′|s, x)
)]

if
Q(s, x) is dominated by Qst(θ)(s, x) and g(s, x) = ∞ otherwise. We have

KQ(mp, st(θ)) =

∫
S×X

g(s, x)mp(ds, dx) = lim
n→∞

∫
Sn×X

g(s, x)mp(ds, dx). (A.25)

Let G : ∗SN × ∗X → ∗R be G(s, x) = ∗E∗QN (·|s,x)
[
ln
(
Dθ(s

′|s, x)
)]

. By Lemma A.29
and Theorem A.9, we have

∫
Sn×X

g(s, x)mp(ds, dx) ≈
∫
Sn×X

G(s, x)m(ds, dx). To
finish the proof, it is sufficient to show that G is S-integrable with respect to m. As
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θ ∈ TΘ ⊂ ∗Θ̂ and m is ∗stationary, by Assumption 3, ∗E∗Q(·|s,x)
[
ln
(∗Dθ(s

′|s, x)
)]

is S-
integrable with respect to m. By Item 3 of Assumption 1, ∗E∗QN (·|s,x)

[
ln
(
Dθ(s

′|s, x)
)]

is S-integrable with respect m, completing the proof. □

We now prove the main result of this section.

Theorem A.31. Suppose Assumption 1, Assumption 2 and Assumption 3 hold. The
support of νp is a subset of ΘQ(mp).

Proof. Pick θ0 ∈ Θ such that θ0 is in the support of νp. As νp(A) = ν(st−1(A)) for
all A ∈ B[Θ], by Theorem 4.9, there exists θ1 ≈ θ0 such that θ1 ∈ TN

Θ (m). That is,
we have ∗KN(m, θ1) = argmint∈TΘ

∗KN(m, t). Suppose there exists θ′ ∈ Θ such that
KQ(mp, θ

′) < KQ(mp, θ0)− 1
n

for some n ∈ N. Clearly, both θ′ and θ0 belong to Θmp .
Let tθ′ ∈ TΘ be the unique element such that θ′ ∈ BΘ(tθ′). By Theorem A.30, we have

∗KN(m, tθ′) ≈ KQ(mp, θ
′) < KQ(mp, θ0)−

1

n
⪅ ∗KN(m, θ1)−

1

n
. (A.26)

This is a contradiction, hence we conclude that νp is a subset of ΘQ(mp). □

A.2.3. Belief Restriction without Assumption 3. In this section, we establish
belief restriction of the SMDP M if M is correctly specified or satisfies Assumption 4.
We first assume that M is correctly specified.

Theorem A.32. Suppose the SMDP M is correctly specified, Assumption 1 and
Assumption 2 hold. Then, the support of νp is a subset of ΘQ(mp).

Proof. As the SMDP M is correctly specified and Θ ⊂ TΘ, we have mint∈TΘ

∗KN (m, t) =

0. Pick θ0 ∈ Θ and (s0, x0) such that θ0 in the support of νp and (s0, x0) in the support
of mp. Then, by Theorem 4.9, there exist θ1 ≈ θ0 and (s1, x1) ∈ ∗SN × ∗X such that
θ1 ∈ TN

Θ (m) and (s1, x1) in the ∗support of m. By the transfer of Lemma 1 in EP, we
have ∗QN

θ1
(s1, x1) =

∗QN (s1, x1). As s1 is near-standard, by Definition 2.4, we conclude
that Qθ0(s0, x0) = Q(S0, x0) and therefore, KQ(mp, θ0) = 0. □

We now assume that Assumption 4 holds but M may be misspecified.

Theorem A.33. Suppose Assumption 1, Assumption 2 and Assumption 4 hold. Then
the support of νp is a subset of ΘQ(mp).

Proof. As Θ ⊂ TΘ, by Assumption 2, TN
Θ (m) = {θ0}. Thus, we have νp({θ0}) =

ν({θ0}) = 1. By Assumption 4 again, ΘQ(mp) = {θ0}, completing the proof. □
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A.2.4. Optimality with Bounded Payoff Function. In this appendix, we estab-
lish optimality of the candidate Berk-Nash equilibrium mp assuming bounded and
continuous payoff function. We start with the follwing lemma:

Lemma A.34. For every λ ∈ ∗∆(TΘ) and every (s, x) ∈ NS(∗S)×∗X, ( ¯∗QN
λ (s, x))p =

Q̄λp(st(s), st(x)). That is, the push-down of ¯∗Q
N
λ (s, x) is the same as Q̄λp(st(s), st(x)).

Proof. Fix (λ, s, x) ∈ ∗∆(TΘ)×NS(∗S)×∗X and A ∈ B[S]. As ¯∗Q
N
λ (s, x)(st

−1(S)) = 1,
we have ( ¯∗Q

N
λ (s, x))p(A) = ¯∗Qλ(s, x)(st

−1(A)) =
∫
TΘ

∗Qi(s, x)(st
−1(A))λ(di). By

Lemma A.11, we have Qst(i)(st(s), st(x))(A) = ∗Qi(s, x)(st
−1(A)) for all i ∈ TΘ. Thus,

by Theorem A.9, we have∫
TΘ

∗Qi(s, x)(st
−1(A))λ(di) =

∫
Θ

Qθ(st(s), st(x))(A)λp(dθ) = Q̄λp(st(s), st(x))(A).

(A.27)

Hence, we have the desired result. □

We now consider the Bellman equation

V (s) = max
x∈X

∫
S

{π(s, x, s′) + δV (s′)}Q̄νp(ds
′|s, x). (A.28)

Let C0[S] denote the set of bounded continuous functions on S equipped with the
sup-norm. Then C0[S] is a complete metric space. Under Assumption 5, the map
F (g)(s) = maxx∈X

∫
S
{π(s, x, s′) + δg(s′)}Q̄νp(ds

′|s, x) is a contraction mapping from
C0[S] to C0[S]. By the Banach fixed point theorem, there is an unique V ∈ C0[S] that
is a solution to the Bellman equation Eq. (A.28). We fix V for the rest of this section.
Similarly, we consider the nonstandard Bellman equation

V(s) = max
x∈∗X

∫
∗SN

{∗πN(s, x, s
′) + δV(s′)} ¯∗Q

N
ν (ds

′|s, x). (A.29)

where V ∈ ∗C0[∗SN ] is the unique solution of the nonstandard Bellman equation
Eq. (A.29). The existence of such V is guaranteed by the transfer principle. We also
fix V for the rest of this section.

Lemma A.35. Suppose Assumption 1 and Assumption 5 hold. For every (s, x) ∈
NS(∗S)× ∗X: ∫

∗SN

{∗πN(s, x, s
′) + δ∗V (s′)} ¯∗Q

N
ν (ds

′|s, x) (A.30)

≈
∫
S

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), st(x)). (A.31)
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Proof. Pick (t, x) ∈ NS(∗T ) × ∗X. As π is bounded, ∗πN(t, x, ·) is bounded. By
Arkeryd et al. (1997, Section 4, Corollary 6.1), ∗πN(t, x, t

′) + δ∗V (t′) is S-integrable
with respect to ¯∗Q

N
ν (dt

′|t, x). By Arkeryd et al. (1997, Section 4, Corollary 6.1),
Lemma A.18 and Theorem A.9 , we have∫

∗TN

{∗πN(t, x, t
′) + δ∗V (t′)} ¯∗Q

N
ν (dt

′|t, x) (A.32)

= lim
n→∞

∫
Tn

{π(st(t), st(x), t′) + δV (t′)}Q̄νp(dt
′|st(t), st(x)) (A.33)

=

∫
T

{π(st(t), st(x), t′) + δV (t′)}Q̄νp(dt
′|st(t), st(x)). (A.34)

Hence, we have the desired result. □

The set C0[S] is a complete metric space under the metric dsup. Recall that, under
Assumption 1, Sn is a non-decreasing sequence of compact subsets of S such that S =⋃

n∈N Sn. For two elements g1, g2 ∈ C0[S], define dsup,n(g1, g2) = sups∈Sn
|g1(s)− g2(s)|.

Define dunif(g1, g2) =
∑

n∈N
min{1,dsup,n(g1,g2)}

2n
. Note that dunif is a well-defined complete

metric on C0[S]. For every f ∈ C0[S], under the topology generated by the metric
dunif , F ∈ ∗C0[∗S] is in the monad of ∗f if F (s) ≈ ∗f(s) for all s ∈ NS(∗S).

Lemma A.36. Suppose Assumption 1 and Assumption 5 hold. Then ∗V (s) ≈ V(s)
for all s ∈ NS(∗S).

Proof. Let V0 be the restriction of ∗V to ∗SN . For all (s, x) ∈ NS(∗S) × ∗X, by
Lemma A.35, we have

max
x∈∗X

∫
∗SN

{∗πN(s, x, s
′) + δV0(s

′)} ¯∗Q
N
ν (ds

′|s, x) = V (st(s)) ≈ V0(s). (A.35)

Let G(f)(s) = maxx∈∗X

∫
∗SN

{∗πN (s, x, s
′)+δ∗f(s′)} ¯∗Q

N
ν (ds

′|s, x) for all f ∈ ∗C0(∗SN ).
Consider the following internal iterated process: start with V0 and define a sequence
{Vn}n∈∗N by Vn+1 = G(Vn). As δ ∈ [0, 1) and ∗SN is a ∗compact set, there ex-
ists some K ∈ ∗N such that ∗dsup(VK , VK+1) < 1. Hence the internal sequence
{Vn}n∈∗N is a ∗Cauchy sequence with respect to the ∗metric ∗dunif . As ∗C0(∗SN) is
∗complete with respect to ∗dunif , the internal sequence {Vn}n∈∗N has a ∗limit. Note that
∗dunif(G(f1), G(f2)) ≤ ∗dunif(f1, f2) for all f1, f2 ∈ ∗C0(∗SN). So G is a ∗continuous
function, hence the ∗limit of the internal sequence {Vn}n∈∗N is the ∗fixed point V. As
∗dunif(V0,V) ≈ ∗dunif(V1, V0) ≈ 0, we have ∗V (s) ≈ V(s) for all s ∈ NS(∗S). □

Theorem A.37. Suppose Assumption 1 and Assumption 5 hold. For every (s, x) ∈
S ×X that is in the support of mp, x is optimal given s in the MDP(Q̄νp).
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Proof. Pick (s, x) ∈ S × X that is in the support of mp. Then there exists some
(a, b) ∈ NS(∗S)× ∗X such that (a, b) ≈ (s, x) and (a, b) is in the ∗support of m. Thus,
we have b ∈ argmaxy∈∗X

∫
∗SN

{∗πN(a, y, s
′) + δV(s′)} ¯∗Q

N
ν (ds

′|a, y).

Claim A.38. V is bounded.

Proof of Claim A.38. Let G(f)(s) = maxx∈∗X

∫
∗SN

{∗πN (s, x, s
′)+δ∗f(s′)} ¯∗Q

N
ν (ds

′|s, x)
for all f ∈ ∗C0(∗SN) and F0 : ∗SN → ∗R be the constant 0 function. Consider the
following internal iterated process: start with F0 and define a sequence {Fn}n∈∗N by
Fn+1 = G(Fn). The ∗limit (with respect to ∗dsup) of the internal sequence {Fn}n∈∗N is
V. By the transfer of the Banach fixed point theorem, we know that ∗dsup(F0,V) ≤
1

1−δ
∗dsup(F0, F1). As ∗πN is bounded, we conclude that V is bounded.

By Claim A.38, Arkeryd et al. (1997, Section 4, Corollary 6.1), Lemma A.36,
Lemma A.34 and Theorem A.9:∫

∗SN

{∗πN(a, y, s
′) + δV(s′)} ¯∗Q

N
ν (ds

′|a, y) (A.36)

≈ lim
n→∞

∫
Sn

{π(s, st(y), s′) + δV (s′)}Q̄νp(ds
′|s, st(y)) (A.37)

=

∫
S

{π(s, st(y), s′) + δV (s′)}Q̄νp(ds
′|s, st(y)). (A.38)

for all y ∈ ∗X. Thus, we have x ∈ argmaxx̂∈X
∫
S
{π(s, x̂, s′) + δV (s′)}Q̄νp(ds

′|s, x̂),
which implies that x is optimal given s in the MDP(Q̄νp). □

A.2.5. Optimality with Unbounded Payoff Function. In this appendix, we estab-
lish optimality of of the candidate Berk-Nash equilibrium mp with possibly unbounded
payoff function under Assumption 6, Assumption 7 and Assumption 8. Let ∥s∥, dS
denote the norm of an element s ∈ S and the metric on S, respectively. Let W (µ, ν)

denote the Wasserstein distance between two probability measures µ and ν.

Lemma A.39. Suppose Assumption 8 holds. For every λ ∈ ∗∆(TΘ) and every
(s, x) ∈ NS(∗S)× ∗X, ∗W

(
¯∗Qλ(s, x), ¯∗Q∗λp

(st(s), st(x))
)
≈ 0. That is, ¯∗Qλ(s, x) is in

the monad of Q̄λp(st(s), st(x)) with respect to the 1-Wasserstein metric.

Proof. Fix λ ∈ ∗∆(TΘ) and (s, x) ∈ NS(∗S) × ∗X. Note that convergence in the
Wasserstein metric is equivalent to weak convergence plus convergence of the first
moments. By Lemma A.34, it is sufficient to show that∫

∗S

∗dS(t, s0) ¯∗Qλ(s, x)(dt) ≈
∫
S

dS(t, st(s0))Q̄λp(st(s), st(x))(dt) (A.39)
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for all s0 ∈ NS(∗S). By Assumption 8, we have∫
∗S

∗dS(t, s0)
∗Qθ(s, x)(dt) ≈

∫
S

dS(t, st(s0))Qst(θ)(st(s), ST (x))(dt). (A.40)

for all θ ∈ TΘ. By Theorem A.9, we have∫
∗S

∗dS(t, s0) ¯∗Qλ(s, x)(dt) ≈
∫
Θ

∫
S

dS(t, st(s0))Qθ(st(s), st(x))(dt)λp(dθ) (A.41)

=

∫
S

dS(t, st(s0))Q̄λp(st(s), st(x))(dt). (A.42)

Hence, we have the desired result. □

We now consider the Bellman equation.

V (s) = max
x∈X

∫
S

{π(s, x, s′) + δV (s′)}Q̄νp(ds
′|s, x). (A.43)

For each n ∈ N and any two elements g1, g2 ∈ C[S] (the set of continuous real-valued
functions on S), let dsup,n(g1, g2) = sups∈Sn

|g1(s) − g2(s)|. Recall that the uniform
convergence topology on compact sets on C[S] can be generated from the metric
dunif(g1, g2) =

∑
n∈N

min{1,dsup,n(g1,g2)}
2n

. Note that C[S] equipped with dunif is a complete
metric space. Let B,D be constants in Assumption 6 and Assumption 7, respectively.
Define LB,D[S] = {f ∈ C[S] : (∃E ∈ R>0)(∀s ∈ S)(|f(s)| ≤ E + (B +D)∥s∥)}. Then
LB,D[S] is a complete metric space under the metric dunif . We present three lemmas,
Lemma A.40- Lemma A.42, proofs of which are provided in the Online Appendix.

Lemma A.40. Suppose Assumption 1, Assumption 6, Assumption 8 and Assumption 7
hold. The Bellman operator F (g)(s) = maxx∈X

∫
S
{π(s, x, s′) + δg(s′)}Q̄νp(ds

′|s, x)
maps every element in LB,D[S] to some element in LB,D[S].

The Bellman operator F (g)(s) = maxx∈X
∫
S
{π(s, x, s′) + δg(s′)}Q̄νp(ds

′|s, x) is a
contraction mapping on LB,D[S]. Given any g0 ∈ LB,D[S], let {gn}n≥0 be the sequence
such that gn+1 = F (gn) for all n ≥ 0. The sequence {gn}n≥0 ⊂ LB,D[S] is a Cauchy
sequence with respect to the metric dunif . This is because, for every n ∈ N, there
exists some K ∈ N such that dsup,n(gK , gK+1) < 1. The limit of the sequence {gn}n≥0

is the unique fixed point of the Bellman operator, hence is the solution of the Bellman
equation. We use V to denote the unique solution of the Bellman equation Eq. (A.43),
and fix this notation for the rest of this section.
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Lemma A.41. Suppose Assumption 1, Assumption 6, Assumption 7 and Assumption 8
hold. For every (s, x) ∈ NS(∗S)× ∗X:∫

∗SN

{∗πN(s, x, s
′) + δ∗V (s′)} ¯∗Q

N
ν (ds

′|s, x) (A.44)

≈
∫
S

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), st(x)). (A.45)

The nonstandard Bellman equation is:

V(t) = max
x∈∗X

∫
∗SN

{∗πN(s, x, s
′) + δV(s′)} ¯∗Q

N
ν (ds

′|s, x). (A.46)

Let ∗C0[∗SN ] is the set of ∗bounded continuous functions on ∗SN . Note that ∗πN is an
element in ∗C0[∗SN ]. By the transfer of the Banach fixed point theorem, there exists a
unique solution V of the nonstandard Bellman equation Eq. (A.46). We fix V for the
rest of this section.

Lemma A.42. Suppose Assumption 1, Assumption 6, Assumption 7 and Assumption 8
hold. Then ∗V (s) ≈ V(s) for all s ∈ NS(∗S).

To complete the proof of the main result of this section, we need to show that the
solution V of the nonstandard Bellman equation (Eq. (A.46)) is S-integrable. Let

∗LB,D[
∗SN ] = {f ∈ ∗C0[∗SN ] : (∃E ∈ ∗R>0)(∀s ∈ ∗SN)(|f(s)| ≤ E + (B +D)∥s∥)}.

(A.47)

Note that ∗LB,D[
∗SN ] is a ∗closed subset of ∗C0[∗SN ] under ∗dsup, hence is a ∗complete

metric space under the ∗metric ∗dsup.

Lemma A.43. Suppose Assumption 1, Assumption 6 and Assumption 7 hold. The
nonstandard Bellman operator, defined below, maps every element in ∗LB,D[

∗SN ] to
some element in ∗LB,D[

∗SN ].

G(f)(s) = max
x∈∗X

∫
∗SN

{∗πN(s, x, s
′) + δ∗f(s′)} ¯∗Q

N
ν (ds

′|s, x) (A.48)

Proof. Let f be an arbitrary element in ∗LB,D(
∗SN). Then, there is some E ∈ ∗R>0

such that |f(s)| ≤ E+(B+D)∥s∥ for all s ∈ ∗SN . By Assumption 6 and Assumption 7:

|
∫

∗SN

{∗πN(s, x, s
′) + δ∗f(s′)} ¯∗Q

N
ν (ds

′|s, x)| (A.49)

≤ A+ δE +

∫
∗S

{Bmax{∥s∥, ∥s′∥}+ δ(B +D)∥s′∥} ¯∗Qν(ds
′|s, x) (A.50)

≤ A+ δE +
(
B + δ(B +D)

)
C + (B +D)∥s∥. (A.51)
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Thus, we have the desired result. □

Hence, we conclude that the solution V of the the nonstandard Bellman equation
(Eq. (A.46)) is an element of ∗LB,D[

∗SN ].

Lemma A.44. Suppose Assumption 1, Assumption 6, Assumption 7 and Assumption 8
hold. Then V is S-integrable with respect to ¯∗Q

N
ν (s, x) when (s, x) ∈ NS(∗S)× ∗X.

Proof. Pick some (s, x) ∈ NS(∗S)× ∗X. As V ∈ ∗LB,D[
∗SN ], there exist some E ∈ ∗R

such that |V(t)| ≤ E + (B +D)∥t∥ for all t ∈ ∗SN . By Lemma A.42, ∗V (t) ≈ V(t) for
all t ∈ NS(∗S). Hence, E is near-standard. As D ∈ R>0, it is sufficient to show that
∥t∥ is S-integrable with respect to ¯∗Qν(s, x). By Lemma A.39 and Theorem A.9:∫

∗SN

∥t∥ ¯∗Q
N
ν (dt|s, x) ⪅

∫
∗S

∥t∥ ¯∗Qν(dt|s, x) (A.52)

≈ lim
n→∞

∫
Sn

∥t∥Q̄νp(dt|st(s), st(x)) (A.53)

= lim
n→∞

st
( ∫

∗Sn

∥t∥ ¯∗Q
N
ν (dt|s, x)

)
. (A.54)

Note that
∫
∗SN

∥t∥ ¯∗Q
N
ν (dt|s, x) ⪆ limn→∞ st

( ∫
∗Sn

∥t∥ ¯∗Q
N
ν (dt|s, x)

)
. Hence, by Ark-

eryd et al. (1997, Section 4, Theorem 6.2), ∥t∥ is S-integrable with respect to ¯∗Q
N
ν (s, x),

completing the proof. □

Theorem A.45. Suppose Assumption 1, Assumption 6, Assumption 7 and Assump-
tion 8 hold. Then, for every (s, x) ∈ S ×X that is in the support of mp, x is optimal
given s in the MDP(Q̄νp).

Proof. Pick (s, x) ∈ S × X that is in the support of mp. Then there exists some
(a, b) ∈ NS(∗S)× ∗X such that (a, b) ≈ (s, x) and m({(a, b)}) > 0. Thus, we have

b ∈ argmax
y∈∗X

∫
∗SN

{∗πN(a, y, s
′) + δV(s′)} ¯∗Q

N
ν (ds

′|a, y). (A.55)

By Lemma A.44, V is S-integrable with respect to ¯∗Q
N
ν (ds

′|a, y) for all y ∈ ∗X. Using
similar argument, ∗πN(a, y, ·) is also S-integrable with respect to ¯∗Q

N
ν (ds

′|a, y) for
all y ∈ ∗X. Thus, by Arkeryd et al. (1997, Section 4, Theorem 6.2), Lemma A.42,
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Lemma A.34 and Theorem A.9:∫
∗SN

{∗πN(a, y, s
′) + δV(s′)} ¯∗Q

N
ν (ds

′|a, y) (A.56)

≈ lim
n→∞

∫
Sn

{π(s, st(y), s′) + δV (s′)}Q̄νp(ds
′|s, st(y)) (A.57)

=

∫
S

{π(s, st(y), s′) + δV (s′)}Q̄νp(ds
′|s, st(y)). (A.58)

for all y ∈ ∗X. Thus, we have x ∈ argmaxx̂∈X
∫
S
{π(s, x̂, s′) + δV (s′)}Q̄νp(ds

′|s, x̂),
which implies that x is optimal given s in the MDP(Q̄νp). □
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C. Supplementary Material - For Online Publication

This supplementary material is divided into four sections: (i) proofs and statements
that are omitted from Appendix A, (ii) asymptotic characterization of state-action
frequencies, (iii) a proof of our convergence result in Theorem 4, and (iv) a detailed
analysis of some examples covered in the main paper.

C.1. Omitted Proofs. Theorems C.1 and C.2 are invoked at several instances during
the proofs of the main theorems in our paper. We list them for completeness here.

Theorem C.1 (Arkeryd et al. (1997, Section. 4, Corollary 6.1)). Suppose (Ω,A, P ) is
an internal probability space, and F : Ω → ∗R is an internally integrable function such
that st(F ) exists everywhere. Then F is S-integrable.

Theorem C.2 (Arkeryd et al. (ibid., Section. 4, Theorem 6.2)). Suppose (Ω,A, P ) is
an internal probability space, and F : Ω → ∗R is an internally integrable function such
that st(F ) exists P -almost surely. Then the following are equivalent:

(1) st(
∫
|F |dP ) exists and it equals to limn→∞ st(

∫
|Fn|dP ) where for n ∈ N,

Fn = min{F, n} when F ≥ 0 and Fn = max{F,−n} when F ≤ 0;
(2) For every infinite K > 0,

∫
|F |>K

|F |dP ≈ 0;
(3) st(

∫
|F |dP ) exists, and for every B with P (B) ≈ 0, we have

∫
B
|F |dP ≈ 0;

(4) F is S-integrable with respect to P .

We next provide a proof to Claim A.16 which is used to prove Theorem A.15.

Proof of Claim A.16. Pick (s, x) ∈ TS×TX such that Q(st(s), st(x)) is dominated by
Qst(θ)(st(s), st(x)). Then, Dst(θ)(·|st(s), st(x)) is the density function of Q(st(s), st(x))

with respect to Qst(θ)(st(s), st(x)). Let f : S → R be f(t) = ln
(
Dst(θ)(t|st(s), st(x))

)
.

For n ∈ N, define fn : S → R to be:

• fn(t) = f(t) if 1
n
≤ Dst(θ)(t|st(s), st(x)) ≤ n;

• fn(t) =
1
n

if Dst(θ)(t|st(s), st(x)) < 1
n
;

• fn(t) = n if Dst(θ)(t|st(s), st(x)) > n.

Note that fn is a bounded continuous function. Moreover, by Item 5 of Definition 2.4,
we have EQ(·|st(s),st(x)) = limn→∞

∫
S
fn(t)Q(dt|st(s), st(x)). Let F : TS → ∗R be

F (t) = ln
( Q(t|s,x)
Qθ(t|s,x)

)
. For n ∈ N, define Fn : TS → ∗R to be

• Fn(t) = F (t) if 1
n
≤ Q(t|s,x)

Qθ(t|s,x)
≤ n;

• Fn(t) =
1
n

if Q(t|s,x)
Qθ(t|s,x)

< 1
n
;

• Fn(t) =
1
n

if Q(t|s,x)
Qθ(s|t,x)

> n.
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By Theorem A.13, we know that Fn(t) ≈ fn(st(t)) for every n ∈ N and t ∈ TS. For
every n ∈ N, we have∫

S

fn(t)Q(dt|st(s), st(x)) =
∫

∗S

∗fn(t)
∗Q(dt|st(s), st(x)) (C.1)

≈
∫

∗S

∗fn(t)
∗Q(dt|s, x) (C.2)

≈
∑
i∈TS

Fn(i)Q(i|s, x) (C.3)

Thus, to finish the proof, it remains to show that limn→∞ st
(∑

t∈TS
Fn(i)Q(t|s, x)

)
≈

EQ(·|s,x)[F (t)]. By Theorem C.2, this is the same as establishing the S-integrability of
F (t) under Q(·|s, x). Pick an infinite K > 0 and let IK = {t ∈ TS : |F (t)| > K}. Let
I0K = {t ∈ TS : |F (t)| > K ∧ Q(i|s,x)

Qθ(i|s,x)
≤ 1} and I∞K = {t ∈ TS : |F (t)| > K ∧ Q(i|s,x)

Qθ(i|s,x)
>

1}. It is easy to see that both I0K and I∞K are internal sets and IK = I0K ∪ I∞K . For all
t ∈ I0K , we have Q(t|s,x)

Qθ(t|s,x)
≈ 0. Then we have∑

t∈I0K

|F (t)|Q(t|s, x) =
∑
t∈I0K

|F (t)| Q(t|s, x)
Qθ(t|s, x)

Qθ(t|s, x) ≈ 0. (C.4)

For all t ∈ I∞K , Q(t|s,x)
Qθ(t|s,x)

> n for all n ∈ N. By Theorem A.13, Dst(θ)(st(t)|st(s), st(x)) =
∞ for all t ∈ I∞K . This implies that Qst(θ)(st(s), st(x))

(
st(I∞K )

)
= 0. By Lemma A.11,

we conclude that ∗Qθ(s, x)(
⋃

t∈I∞K
BS(t)) ≈ 0. By Item 5 in Definition 2.4, we conclude

that
∫⋃

t∈I∞
K

BS(t)

(∗Dθ(s
′|s, x)

)1+r∗Qθ(s, x)(ds
′) ≈ 0. This implies that

∑
t∈I∞K

|F (t)|Q(t|s, x) =
∑
t∈I∞K

|F (t)| Q(t|s, x)
Qθ(t|s, x)

Qθ(t|s, x) ≈ 0. (C.5)

Combining Eq. (C.4) and Eq. (C.5), we have the desired result.
□

Proof of Lemma A.29. Pick θ ∈ TΘ such that st(θ) ∈ Θmp and (s, x) ∈ NS(∗S)×∗X

such that Q(st(s), st(x)) is dominated by Qst(θ)(st(s), st(x)). By Lemma A.28 and the
fact that ∗Qθ(s, x)(

∗SN) ≈ 1, we have

∗E∗QN (·|s,x)
[
ln
(
Dθ(s

′|s, x)
)]

≈
∫

∗SN

∗Dθ(s
′|s, x) ln

(∗Dθ(s
′|s, x)

)∗Qθ(s, x)(ds
′). (C.6)
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By Item 5 of Definition 2.4 and the fact that s is near-standard, we conclude that∫
∗SN

∗Dθ(s
′|s, x) ln

(∗Dθ(s
′|s, x)

)∗Qθ(s, x)(ds
′) (C.7)

≈
∫

∗S

∗Dθ(s
′|s, x) ln

(∗Dθ(s
′|s, x)

)∗Qθ(s, x)(ds
′). (C.8)

Dst(θ)(s
′|st(s), st(x)) ln

(
Dst(θ)(s

′|st(s), st(x))
)

is a continuous and bounded on Sn for
each n ∈ N. So, for every n ∈ N, we have∫

Sn

Dst(θ)(s
′|st(s), st(x)) ln

(
Dst(θ)(s

′|st(s), st(x))
)
Qst(θ)(st(s), st(x))(ds

′) (C.9)

≈
∫

∗Sn

∗Dst(θ)(s
′|st(s), st(x)) ln

(∗Dst(θ)(s
′|st(s), st(x))

)∗Qθ(s, x)(ds
′) (C.10)

≈
∫

∗Sn

∗Dθ(s
′|s, x) ln

(∗Dθ(s
′|s, x)

)∗Qθ(s, x)(ds
′). (C.11)

Note that, we have

lim
n→∞

∫
Sn

Dst(θ)(s
′|st(s), st(x)) ln

(
Dst(θ)(s

′|st(s), st(x))
)
Qst(θ)(st(s), st(x))(ds

′) (C.12)

= EQ(·|st(s),st(x))
[
ln
(
Dst(θ)(s

′|st(s), st(x))
)]

. (C.13)

By Item 5 of Definition 2.4 and the fact that s is near-standard, we have

lim
n→∞

st
( ∫

∗Sn

∗Dθ(s
′|s, x) ln

(∗Dθ(s
′|s, x)

)∗Qθ(s, x)(ds
′)
)

(C.14)

≈
∫

∗S

∗Dθ(s
′|s, x) ln

(∗Dθ(s
′|s, x)

)∗Qθ(s, x)(ds
′) (C.15)

≈ ∗E∗QN (·|s,x)
[
ln
(
Dθ(s

′|s, x)
)]

. (C.16)

Hence, we have the desired result.
□

Proof of Lemma A.40. Let g be some element in LB,D[S]. Then there exists some
E ∈ R>0 such that |g(s)| ≤ E + (B +D)∥s∥ for all s ∈ S. We show that F (g) is a
continuous function.

Claim C.3. For every (s, x) ∈ NS(∗S)× ∗X, ∗π(s, x, ·) + δ∗g(·) is S-integrable with
respect to ¯∗Q∗νp(s, x)(·).

Proof of Claim C.3. Let (s0, x0) ∈ NS(∗S) × ∗X be given. By Assumption 6, it
is sufficient to show that ∥s′∥ is S-integrable with respect to ¯∗Q∗νp(s0, x0)(·). By
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Lemma A.39, we have:∫
∗S

∥s′∥ ¯∗Q∗νp(ds
′|s0, x0) ≈

∫
S

∥s′∥Q̄νp(ds
′|st(s0), st(x0)) (C.17)

= lim
n→∞

st
( ∫

∗Sn

∥s′∥ ¯∗Q∗νp(ds
′|s0, x0)

)
. (C.18)

By Theorem C.2, ∥s′∥ is S-integrable with respect to ¯∗Q∗νp(ds
′|s0, x0).

By Claim C.3 and Theorem A.9, for every (s, x) ∈ NS(∗S)× ∗X, we have∫
∗S

{∗π(s, x, s′) + δ∗g(s′)} ¯∗Q∗νp(ds
′|s, x) (C.19)

≈ lim
n→∞

st
( ∫

∗Sn

{∗π(s, x, s′) + δ∗g(s′)} ¯∗Q∗νp(ds
′|s, x)

)
(C.20)

= lim
n→∞

∫
Sn

{π(st(s), st(x), s′) + δg(s′)}Q̄νp(ds
′|st(s), st(x)) (C.21)

=

∫
S

{π(st(s), st(x), s′) + δg(s′)}Q̄νp(ds
′|st(s), st(x)). (C.22)

Hence, we have ∗F (∗g)(s) ≈ F (g)(st(s)) for all s ∈ NS(∗S), so F (g) is a continuous
function. For every s ∈ S, by Assumption 7, we have

|F (g)(s)| ≤ max
x∈X

∫
S

{A+Bmax{∥s∥, ∥s′∥}+ δ(E + (B +D)∥s′∥)}Q̄νp(ds
′|s, x)

(C.23)

≤ A+ δE +
(
B + δ(B +D)

)
C + (B +D)∥s∥ (C.24)

Hence we have the desired result. □

Proof of Lemma A.41. Pick (s, x) ∈ NS(∗S)× ∗X. Note that ¯∗Qν(s, x)(
∗SN) ≈ 1.

Thus, we have∫
∗SN

{∗πN(s, x, s
′) + δ∗V (s′)} ¯∗Q

N
ν (ds

′|s, x) ≈
∫

∗SN

{∗πN(s, x, s
′) + δ∗V (s′)} ¯∗Qν(ds

′|s, x)

(C.25)

Claim C.4. ∗πN(s, x, ·) + δ∗V (·) is S-integrable with respect to ¯∗Q
N
ν (s, x).

Proof of Claim C.4. As ¯∗Qν(s, x)(
∗SN) ≈ 1, by Theorem C.2, it is sufficient to show

∗πN (s, x, ·)+δ∗V (·) is S-integrable with respect to ¯∗Qν(s, x)(·). By Lemma A.40, there
exists E ∈ R>0 such that |V (s)| ≤ E + (B +D)∥s∥ for all s ∈ S. By Assumption 6
and Assumption 7, it is sufficient to show that ∥s′∥ is S-integrable with respect to
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¯∗Qν(s, x)(·). By Lemma A.39 and Theorem A.9, we have∫
∗S

∥s′∥ ¯∗Qν(ds
′|s, x) ≈

∫
S

∥s′∥Q̄νp(ds
′|s, x) (C.26)

= lim
n→∞

st
( ∫

∗Sn

∥s′∥ ¯∗Qν(ds
′|s, x)

)
. (C.27)

By Theorem C.2, ∥s′∥ is S-integrable with respect to ¯∗Qν(s, x)(·).
Thus, by Arkeryd et al. (1997, Section 4, Theorem 6.2) and Theorem A.9, we have:∫

∗SN

{∗πN(s, x, s
′) + δ∗V (s′)} ¯∗Q

N
ν (ds

′|s, x) (C.28)

≈ lim
n→∞

∫
Sn

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), st(x)) (C.29)

=

∫
S

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), st(x)). (C.30)

Hence, we have the desired result.

□

Proof of Lemma A.42. Let V0 be the restriction of ∗V to ∗SN . For all s ∈ NS(∗S),
by Lemma A.41, we have

max
x∈∗X

∫
∗SN

{∗πN(s, x, s
′) + δV0(s

′)} ¯∗Q
N
ν (ds

′|s, x) (C.31)

≈ max
x∈X

∫
S

{π(st(s), st(x), s′) + δV (s′)}Q̄νp(ds
′|st(s), x) (C.32)

= V (st(s)) ≈ V0(s). (C.33)

Let G(f)(s) = maxx∈∗X

∫
∗SN

{∗πN (s, x, s
′)+δ∗f(s′)} ¯∗Q

N
ν (ds

′|s, x) for all f ∈ ∗C0(∗SN ).
Note that ∗C0(∗SN ) is a ∗complete metric space under the ∗metric ∗dunif . Consider the
following internal iterated process: start with V0 and define a sequence {Vn}n∈∗N by
Vn+1 = G(Vn). As δ ∈ [0, 1) and ∗SN is a ∗compact set, there exists some K ∈ ∗N
such that ∗dsup(VK , VK+1) < 1. Hence the internal sequence {Vn}n∈∗N is a ∗Cauchy
sequence with respect to the ∗metric ∗dunif . As ∗C0(∗SN) is ∗complete, the internal
sequence {Vn}n∈∗N has a ∗limit. Note that ∗dunif(G(f1), G(f2)) ≤ ∗dunif(f1, f2) for all
f1, f2 ∈ ∗C0(∗SN). So, G is a ∗continuous function, hence the ∗limit of the internal
sequence {Vn}n∈∗N is the ∗fixed point V. As ∗dunif(V0,V) ≈ ∗dunif(V1, V0) ≈ 0, we have
∗V (s) ≈ V(s) for all s ∈ NS(∗S).

□
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C.2. Asymptotic Characterization of State-Action Frequencies. In this subsec-
tion, we study the problem where the agent who faces a regular SMDP with compact
state and action spaces, updates her belief in each period as a result of observing
the current state, her action and the new state. Our aim is to show that the agent’s
steady state behavior is a Berk-Nash equilibrium. Throughout this section, we work
with a regular SMDP (⟨S,X, q0, Q, π, δ⟩, QΘ) as in Definition 2.4. The agent who
faces this regular SMDP has a prior µ0 ∈ ∆(Θ), which is assumed to have full support.
Furthermore, throughout this section, we assume that the state space S is compact.
We start by making the following assumption:

Assumption 10. There is a referencing finite measure λ on (S,B[S]) with full support
such that

(1) For all θ ∈ Θ and all (s, x) ∈ S ×X, Qθ(s, x) is absolutely continuous with
respect to λ;

(2) The density function q(θ,s,x)(·) : S → R of Qθ(s, x) with respect to λ is a jointly
continuous function on Θ× S ×X × S;

(3) For all (θ, s, x) ∈ Θ× S ×X, the density function q(θ,s,x)(s
′) > 0 for all s′ ∈ S.

Recall that ∆(Θ) denote the set of probability measures on (Θ,B[Θ]), endowed
with the Prokhorov metric. For (s, x, s′) ∈ S × X × S, the Bayesian operator
B(s, x, s′, ·) : ∆(Θ) → ∆(Θ) is defined as:

B(s, x, s′, µ)(A) =

∫
A
q(θ,s,x)(s

′)µ(dθ)∫
Θ
q(θ,s,x)(s′)µ(dθ)

(C.34)

for all A ∈ B[Θ].
By the principle of optimality, the agent’s problem can be cast recursively as:

W (s, µ) = max
x∈X

∫
S

{π(s, x, s′) + δW (s′, µ′)}Q̄µ(ds
′|s, x) (C.35)

where Q̄µ(s, x) =
∫
Θ
Qθ(s, x)µ(dθ) and µ′ = B(s, x, s′, µ). Let C[S × ∆(Θ)] be the

set of real-valued continuous functions on S ×∆(Θ), equipped with the sup-norm.
Assuming Assumption 10 holds, then the operator

L(g)(s, µ) = max
x∈X

∫
S

{π(s, x, s′) + δg(s′, µ′)}Q̄µ(ds
′|s, x) (C.36)

is a contraction mapping from C[S×∆(Θ)] to C[S×∆(Θ)], with the contraction factor
δ. Thus, by the Banach fixed point theorem, there exists a unique W ∈ C[S ×∆(Θ)]

that is the solution of Eq. (C.35), which we fix for the rest of this section.
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Definition C.5. A policy function is a function f : S×∆(Θ) → ∆(X), where f(·|s, µ)
is a probability measure on X if she is in state s and her belief is µ. A policy function
is optimal if, for all s ∈ S, µ ∈ ∆(Θ) and x ∈ X such that x is in the support f(·|s, µ):

x ∈ argmax
x̂∈X

∫
S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ))}Q̄µ(ds
′|s, x̂). (C.37)

Let h = (s0, x0, . . . , sk, xk, . . . ) be an infinite history of state-action pairs and let H =

(S×X)N be the space of infinite histories. For every k ∈ N, let µk : H → ∆(Θ) denote
the agent’s belief at time k, defined recursively by µk(h) = B(sk−1, xk−1, sk, µk−1(h)).
When the context is clear, we drop h from the notation.

For a fixed h ∈ H, in each period k, there is a state sk and a belief µk. Given
a policy function f , the agent chooses an action randomly according to f(·|sk, µk).
After an action xk is realized, the state sk+1 is drawn according to the true transition
probability Q(·|sk, xk). The agent then updates her belief to µk+1 according to the
Bayes operator. Thus, the primitives of the problem and the policy function f induce
a probability distribution Pf over H.

For every k ∈ N, we define the frequency of the state-action pairs at time k to
be a function mk : H → ∆(S ×X) such that mk(h)(A) =

1
k

∑k
τ=0 1A(sτ , xτ ) for all

measurable A ∈ ∆(S ×X), where 1A denote the indicator function on A.

Definition C.6. Let H be a subset of H. The sequence (mk)k∈N is said to be uniformly
converges to m ∈ ∆(S ×X) on H in total variation distance if, for every ϵ > 0, there
exists kϵ ∈ N such that ∥mk(h)−m∥TV < ϵ for all h ∈ H and all k ≥ kϵ.

Remark C.7. For h ∈ H, the frequency of state-action pairs mk(h) is supported on a
countable set. So, Definition C.6 implies that the support of m is also countable. In
conclusion, Definition C.6 is a reasonable assumption if both the state space S and
the action space X are countable.

We now introduce the concept of identification and then present the main result
Theorem 4 of this section.

Definition C.8. A SMDP is identified given m ∈ ∆(S ×X) if θ, θ′ ∈ ΘQ(m) implies
Qθ(·|s, x) = Qθ′(·|s, x) for all (s, x) ∈ S ×X.

Theorem 4. Suppose Assumption 10 holds and the state space S is compact. Let f
be an optimal policy function. Suppose:

(1) (mk)k∈N uniformly converges to some m ∈ ∆(S × X) on some H ∈ H with
Pf -positive probability in total variation distance;
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(2) The SMDP (⟨S,X, q0, Q, π, δ⟩, QΘ) is identified given m.

Then m is a Berk-Nash equilibrium for the SMDP (⟨S,X, q0, Q, π, δ⟩, QΘ).

In this section, we present the necessary nonstandard framework to prove Theorem 4.
Throughout this section, We work with a regular SMDP (⟨S,X, q0, Q, π, δ⟩,QΘ) with
a compact state space S.

Lemma C.9. Suppose Assumption 10 holds. Then the Bayesian operator B is a
continuous function from S ×X × S ×∆(Θ) to ∆(Θ).

Since we are working with a regular SMDP, we can construct an associate hyperfinite
SMDP (⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

) as in Section 4.3, which will be fixed for the rest of
the section. Let λ be the finite measure on S as in Assumption 10. Define ∗λTS

to be
the internal probability measure on TS such that ∗λTS

({s}) = ∗λ(BS(s)) for all s ∈ TS.
Let ∗∆(TΘ) denote the set of internal probability measures on TΘ. For (s, x, s′) ∈
TS × TX × TS, the hyperfinite Bayesian operator B(s, x, s′, ·) : ∗∆(TΘ) → ∗∆(TΘ) is
given by

B(s, x, s′, µ)(A) =
∑

θ∈A Qθ(s
′|s, x)µ({θ})∑

θ∈TΘ
Qθ(s′|s, x)µ({θ})

(C.38)

for all internal A ⊂ TΘ.
By the transfer principle and the principle of optimality, the agent’s problem can

be cast recursively as

W(s, µ) = max
x∈TX

∑
s′∈TS

{Π(s, x, s′) + δW(s′, µ′)}Q̄µ(s
′|s, x) (C.39)

where Q̄µ(s, x) =
∑

θ∈TΘ
Qθ(s, x)µ({θ}), µ′ = B(s, x, s′, µ) and W : TS× ∗∆(TΘ) → ∗R

is the unique solution to the hyperfinite Bellman equation Eq. (C.39). The existence of
such a W is guaranteed by the transfer principle. The next theorem establishes a tight
connection between the solution W of the hyperfinite Bellman equation Eq. (C.39)
and the solution W of the standard Bellman equation Eq. (C.35).

Theorem C.10. Suppose Assumption 10 holds. For all (s, µ) ∈ TS × ∗∆(TΘ):

W(s, µ) ≈ W (st(s), µp). (C.40)

We now give the definition of hyperfinite policy functions.

Definition C.11. A hyperfinite policy function is an internal function f : TS ×
∗∆(TΘ) → ∗∆(TX), where f(x|s, µ) denotes the probability that the agent chooses x

if she is in state s and her belief is µ.
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We now discuss the agent’s belief updating according to the hyperfinite SMDP
(⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

). Recall that the agent who faces the regular SMDP
(⟨S,X, q0, Q, π, δ⟩, QΘ) has a prior µ0 ∈ ∆(Θ), which is assumed to have full support.
Let ν0(θ) =

∗µ0(BΘ(θ)) for all θ ∈ TΘ. As µ0 has full support, then ν0(θ) > 0 for
all θ ∈ TΘ. The agent who faces the hyperfinite SMDP (⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

)

has the prior ν0. Let h = (s0, x0, . . . , sk, xk, . . . ) be an ∗infinite hyperfinite history
of state-action pairs and let ∗HTS×TX

= (TS × TX)
∗N be the space of infinite histo-

ries. It is clear that ∗HTS×TX
⊂ ∗H = (∗S × ∗X)

∗N. For two h1, h2 ∈ ∗H, we write
h1 ≈ h2 if every coordinates of h1 and h2 are infinitely close. For every k ∈ ∗N,
let νk : ∗HTS×TX

→ ∗∆(TΘ) denote the agent’s hyperfinite belief at time k, defined
recursively by νk(h) = B(sk−1, sk−1, sk, µk−1(h)). When the context is clear, we drop
h from the notation. Recall that we use dP to denote the Prokhorov metric on ∆(Θ).

For a fixed h ∈ ∗HTS×TX
, in each period k, there is a state sk and a belief νk. Given

a hyperfinite policy function F , the agent chooses an action randomly according to
F (·|sk, νk). After an action xk is realized, the state sk+1 is drawn according to the true
hyperfinite transition probability Q(·|sk, xk). The agent then updates her hyperfinite
belief to νk+1 according to the hyperfinite Bayes operator B. Thus, the primitives
of the problem and the hyperfinite policy function F induce an internal probability
measure ∗PF

TS×TX
over ∗HTS×TX

.
For every k ∈ ∗N, we define the hyperfinite frequency of the state-action pairs at

time k to be a function Mk :
∗HTS×TX

→ ∗∆(TS × TX) such that

Mk(h)({(s, x)}) =
1

k

k∑
τ=0

1(s,x)(sτ , xτ ), (C.41)

where 1(s,x) denote the indicator function on the point (s, x).
Recall that KQ : ∗∆(TS × TX)×TΘ → ∗R≥0 denote the hyperfinite weighted Kullback

Leibler divergence, and the set of closest parameter values given m ∈ ∗∆(TS × TX) is
the set

TQ
Θ (m) = argmin

θ∈TΘ

KQ(m, θ). (C.42)

The set of almost closest parameter values given m ∈ ∗∆(TS × TX) is the external set

T̂Q
Θ (m) = {θ̂ ∈ TΘ : KQ(m, θ̂) ≈ min

θ∈TΘ

KQ(m, θ)}. (C.43)

We now introduce the concept of S-identification for hyperfinite SMDP.
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Definition C.12. The hyperfinite SMDP (⟨TS, TX , h0,Q,Π, δ⟩,QTΘ
) is S-identified

given m ∈ ∗∆(TS × TX) if θ, θ′ ∈ T̂Q
Θ (m) implies that Qθ(·|s, x) ≈ Qθ′(·|s, x) for all

(s, x) ∈ TS × TX .

The rigorous proof of Theorem 4 is provided in the following section.

C.3. Proof of Theorem 4. In this appendix, we present a rigorous proof of Theorem 4
via the hyperfinite SMDP constructed in the last section. We start by proving the
continuity of Bayesian operator.

Proof of Lemma C.9. Note that S×X×S×∆(Θ) is a compact metric space. Pick
(s, x, s′, µ) ∈ ∗S × ∗X × ∗S × ∗∆(∗Θ). Then, µ is an internal probability measure on
∗Θ. The standard part of µ in ∆(Θ) with respect to the Prokhorov metric is simply
the push-down of µ, denoted by µp. By Assumption 10 and Theorem A.9, we have∫

Θ

q(θ,st(s),st(x))(st(s
′))µp(dθ) ≈

∫
∗Θ

∗q(θ,s,x)(s
′)µ(dθ). (C.44)

Pick a set A ∈ B[S] such that A is a continuity set of B(st(s), st(x), st(s′), µp). Then,
by Assumption 10, A is a continuity set of µp, which implies that µp(A) ≈ µ(∗A).
Hence, by Assumption 10 and Theorem A.9 again, we have∫

A

q(θ,st(s),st(x))(st(s
′))µp(dθ) ≈

∫
∗A

∗q(θ,s,x)(s
′)µ(dθ), (C.45)

completing the proof. □

C.3.1. The Proof and Consequences of Theorem C.10. The proof of Theo-
rem C.10 relies on the following two lemmas:

Lemma C.13. Suppose Assumption 10 holds. For all θ ∈ TΘ and all (s, x, s′) ∈
TS × TX × TS:

q(st(θ),st(s),st(x))(st(s
′)) ≈ Qθ(s

′|s, x)
∗λTS

({s′})
. (C.46)

Proof. Pick θ ∈ TΘ and (s, x, s′) ∈ TS ×TX ×TS. Note that λ has full support. By the
construction of TS, we know that ∗λTS

({s′}) > 0. By the transfer principle, we have

Qθ(s
′|s, x) = ∗Qθ(s, x)(BS(s

′)) =

∫
BS(s′)

∗q(θ,s,x)(y)
∗λ(dy). (C.47)

We also have

Qθ(s
′|s, x) =

∫
BS(s′)

Qθ(s
′|s, x)

∗λTS
({s′})

∗λ(dy). (C.48)
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By Assumption 10, we have ∗q(θ,s,x)(y) ≈
Qθ(s

′|s,x)
∗λTS

({s′}) for all y ∈ BS(s
′). By Assump-

tion 10, we have q(st(θ),st(s),st(x))(st(s
′)) ≈ Qθ(s

′|s,x)
∗λTS

({s′}) . □

Let dP denote the Prokhorov metric on ∆(Θ). By the transfer principle, ∗dP is the
∗Prokhorov metric on ∗∆(∗Θ).

Lemma C.14. Suppose Assumption 10 holds. For all µ ∈ ∗∆(TΘ) and all (s, x, s′) ∈
TS × TX × TS:

∗dP
(∗B(st(s), st(x), st(s′), µp),B(s, x, s′, µ)

)
≈ 0. (C.49)

That is, the hyperfinite Bayesian operator B(s, x, s′, µ) is in the monad of the standard
Bayesian operator B(st(s), st(x), st(s′), µp), with respect to the Prokhorov metric dP .

Proof. For all µ ∈ ∗∆(TΘ), as Θ is compact, µp is a well-defined probability measure
on Θ, and µ is in the monad of µp with respect to the Prokhorov metric. Then the
result follows from Lemma C.13 and Theorem A.9. □

We now give a rigorous proof of Theorem C.10

Proof of Theorem C.10. Let W0 be the restriction of ∗W on TS × ∗∆(TΘ). For all
(µ, s, x) ∈ ∗∆(TΘ)×TS ×TX , by Lemma A.18, Lemma C.9 and Theorem A.9, we have∫

TS

{Π(s, x, s′) + δW0(s
′, µ′)}Q̄µ(ds

′|s, x) (C.50)

≈
∫
S

{π(st(s), st(x), s′) + δW (s′, µ′
p)}Q̄µp(ds

′|st(s), st(x)). (C.51)

Thus, we can conclude that

max
x∈TX

∫
TS

{Π(s, x, s′) + δW0(s
′, µ′)}Q̄µ(ds

′|s, x) (C.52)

≈ max
x∈X

∫
S

{π(st(s), x, s′) + δW (s′, µ′
p)}Q̄µp(ds

′|st(s), x) (C.53)

= W (st(s), µp) ≈ W0(s, µ). (C.54)

Let

L(g)(s) = max
x∈TX

∫
TS

{Π(s, x, s′) + δg(s′, µ′)}Q̄µ(ds
′|s, x) (C.55)

for all internal function g : TS × ∗∆(TΘ) → ∗R. Note that L is a contraction with the
contraction factor δ. Moreover, we can find W as following: start with W0 and define
a sequence {Wn}n∈∗N by Wn+1 = H(Wn). Then W is the ∗limit of {Wn}n∈∗N. Thus,
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we have

∗dsup(W0,W) ≤ 1

1− δ
∗dsup(W1,W0) ≈ 0. (C.56)

As W is continuous, we have W(s, µ) ≈ W (st(s), µp) for all (s, µ) ∈ TS × ∗∆(TΘ). □

We now prove two important consequences of Theorem C.10, which will be used in
the proof of Theorem 4. Let Y be an arbitrary metric space and U be a subset of ∗Y .
The nonstandard hull of U , denoted by Û , is the collection of all points in ∗Y that are
infinitely close to some point in U . That is:

Û = {y ∈ ∗Y : (∃u ∈ U)(∗dY (y, u) ≈ 0)}. (C.57)

Lemma C.15. Suppose Assumption 10 holds. Let (s, µ) ∈ TS × ∗∆(TΘ). Suppose

y ∈ ˆargmax
x∈TX

∫
TS

{Π(s, x, s′) + δW(s′,B(s, x, s′, µ))}Q̄µ(ds
′|s, x). (C.58)

Then ∫
TS

{Π(s, y, s′) + δW(s′,B(s, y, s′, µ))}Q̄µ(ds
′|s, y) (C.59)

≈ max
x∈TX

∫
TS

{Π(s, x, s′) + δW(s′,B(s, x, s′, µ))}Q̄µ(ds
′|t, x). (C.60)

Proof. Pick

x0 ∈ argmax
x∈TX

∫
TS

{Π(s, x, s′) + δW(s′,B(s, x, s′, µ))}Q̄µ(ds
′|s, x) (C.61)

such that y ≈ x0. As the SMDP (⟨S,X, q0, Q, π, δ⟩, QΘ) is regular, we have Π(s, y, s′) ≈
Π(s, x0, s

′) for all s′ ∈ TS. By regularity again, the ∗Prokhorov distance between
Q̄(·|s, y) and Q̄(·|s, x0) is infinitesimal. The result then follows from Lemma C.14 and
Theorem C.10. □

Lemma C.16. Suppose Assumption 10 holds. Let (s1, µ) ∈ ∗S× ∗∆(∗Θ) and (s2, ν) ∈
TS × ∗∆(TΘ) such that s1 ≈ s2 and the ∗Prokhorov distance between µ and ν is
infinitesimal. Suppose

x ∈ argmax
x̂∈∗X

∫
∗S

{∗π(s1, x̂, s′) + δ∗W (s′, ∗B(s1, x̂, s
′, µ))}∗Q̄µ(ds

′|s1, x̂). (C.62)
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Then, for all y ∈ TX such that y ≈ x:∫
TS

{Π(s2, y, s′) + δW(s′,B(s2, y, s′, ν))}Q̄ν(ds
′|s2, y) (C.63)

≈ max
x̂∈TX

∫
TS

{Π(s2, x̂, s′) + δW(s′,B(s2, x̂, s′, ν))}Q̄ν(ds
′|s2, x̂). (C.64)

Proof. By Lemma C.14, Theorem C.10 and the fact that (⟨S,X, q0, Q, π, δ⟩, QΘ) is a
regular SMDP, we have

argmax
x̂∈∗X

∫
∗S

{∗π(s1, x̂, s′) + δ∗W (s′, ∗B(s1, x̂, s
′, µ))}∗Q̄µ(ds

′|s1, x̂) (C.65)

≈ argmax
x̂∈TX

∫
TS

{Π(s2, x̂, s′) + δW(s′,B(s2, x̂, s′, ν))}Q̄ν(ds
′|s2, x̂). (C.66)

Moreover, we have

y ∈ ˆargmax
z∈∗X

∫
∗S

{∗π(s1, z, s′) + δ∗W (s′, ∗B(s1, z, s
′, µ))}∗Q̄µ(ds

′|s1, z) (C.67)

= ˆargmax
z∈TX

∫
TS

{Π(s2, z, s′) + δW(s′,B(s2, z, s′, ν))}Q̄ν(ds
′|s2, z). (C.68)

By Lemma C.15, we have the desired result. □

C.3.2. Proof of Theorem 4. We are now at the place to prove Theorem 4. We
start with the following lemma, which shows that the agent’s belief µk and the agent’s
hyperfinite belief νk remains close for some infinite steps.

Lemma C.17. Suppose Assumption 10 holds. Let h̃ ∈ ∗HTS×TX
and h ∈ ∗H be such

that h̃ ≈ h. Then, for every k ∈ N, ∗dP (
∗µk, νk) ≈ 0. Hence, there exists some

k0 ∈ ∗N \ N such that ∗dP (
∗µk, νk) ≈ 0 for all k ≤ k0.

Proof. The second claim follows from the first claim and saturation. We now prove
the first claim by induction. Clearly, we have ∗dP (

∗µ0, ν0) ≈ 0. The inductive case
follows from Lemma C.9 and Lemma C.14. □

If the frequency of state-action pairs (mk)k∈N uniformly converges in total variation
distance to some m ∈ ∆(S ×X) for all h in some set H ⊂ H, then the hyperfinite
frequence of state-action pairs (Mk)k∈∗N almost converges to some M ∈ ∗∆(TS × TX)

for all h̃ in some internal H̃ ⊂ ∗HTS×TX
. As one would expect, M and H̃ are closely

related to m and H, respectively.

Lemma C.18. Let H ∈ H be such that (mk(h))k∈N converges in total variation distance
to some m ∈ ∆(S × X) for all h ∈ H. Let M ∈ ∗∆(TS × TX) be M({(s, x)}) =
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∗m(BS(s) × BX(x)). Let H̃ be the internal subset of ∗HTS×TX
consisting of h̃ =

(s̃0, x̃0, . . . , s̃k, x̃k, . . . ) ∈ H̃ such that

(∃h = (s0, x0, . . . , sk, xk, . . . ) ∈ ∗H)(∀k ∈ ∗N)(sk ∈ BS(s̃k) ∧ xk ∈ BX(x̃k)). (C.69)

Then (Mk(h̃))k∈∗N
∗converges to M for all h̃ ∈ H̃. Moreover, if (mk)k∈N uniformly

converges to m on H in total variation distance, then

∥Mk(h̃)−M∥TV ≈ 0 (C.70)

for all h̃ ∈ H̃ and all k ∈ ∗N \ N.

Proof. Pick some h̃ = (s̃0, x̃0, . . . , s̃k, x̃k, . . . ) ∈ H̃. By the construction of H̃, there
exists some h = (s0, x0, . . . , sk, xk, . . . ) ∈ ∗H such that sk ∈ BS(s̃k) and xk ∈ BX(x̃k)

for all k ∈ ∗N. By the transfer principle,(∗mk(h)(BS(s)×BX(x))
)
k∈∗N

∗converges to ∗m(BS(s)×BX(x)) (C.71)

for all (s, x) ∈ TS ×TX . For all (s, x) ∈ TS ×TX , note that (s̃k, x̃k) = (s, x) if and only
if (sk, xk) ∈ BS(s)×BX(x). Hence, we conclude that

(
Mk(h̃)({(s, x)})

)
k∈∗N

∗converges
to M({(s, x)}) for all (s, x) ∈ TS×TX . Now, suppose that (mk)k∈N uniformly converges
to m on H in total variation distance, by saturation, we have ∥∗mk(h)− ∗m∥TV ≈ 0

for all h ∈ ∗H and all k ∈ ∗N \ N. By the construction of H̃, TS and TX , we have the
desired result. □

Using essentially the same proof as in Lemma 2 of EP, we have:

Lemma C.19. Let F be a hyperfinite policy function. Suppose that ∥Mk(h̃)−M∥TV ≈
0 for some k ∈ ∗N and all h̃ in some internal H̃ ⊂ ∗HTS×TX

such that ∗PF
TS×TX

(H̃) > 0.
Then, for any internal set A ⊃ T̂Q

Θ (m), νk(A) ≈ 1 on some internal set H̃ ′ ⊂ H̃ with
∗PF

TS×TX
(H̃ ′) > 0.

We now study the connection between identification and S-identification. The
following lemma follows from essentially the same proof of Theorem A.17.

Lemma C.20. Let m ∈ ∆(S × X) and let M ∈ ∗∆(TS × TX) be the same as in
Lemma C.18. Then, for every θ̂ ∈ T̂Q

Θ (M), st(θ̂) ∈ ΘQ(m).

The hyperfinite SMDP is S-identified if the SMDP is identified.

Lemma C.21. Suppose Assumption 10 holds and the SMDP (⟨S,X, q0, Q, π, δ⟩, QΘ) is
identified given m ∈ ∆(S×X). Let M ∈ ∗∆(TS × TX) be the same as in Lemma C.18.
Then the hyperfinite SMDP (⟨TS, TX , h0,Q,Π, δ⟩,QTΘ

) is S-identified given M .
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Proof. By Lemma C.20, for every θ ∈ T̂Q
Θ (m), we have st(θ) ∈ ΘQ(m). Thus, for

θ, θ′ ∈ T̂Q
Θ (m), by Assumption 10, we have

∗Qθ(·|s, x) ≈ ∗Qst(θ)(·|s, x) = ∗Qst(θ′)(·|s, x) ≈ ∗Qθ′(·|s, x) (C.72)

for all (s, x) ∈ ∗S × ∗X. This immediately implies that Qθ(·|s, x) ≈ Qθ′(·|s, x) for all
(s, x) ∈ TS × TX , completing the proof. □

We now prove the main result, Theorem 4.

Proof of Theorem 4. Let M ∈ ∗∆(TS × TX) be the same as in Lemma C.18. Let
H̃ ⊂ ∗HTS×TX

be the same internal set as in Lemma C.18. By Lemma C.18, we have:

∥Mk(h̃)−M∥TV ≈ 0 (C.73)

for all h̃ ∈ H̃ and all k ∈ ∗N \ N. Let F be a hyperfinite policy function such
that ∗PF

TS×TX
(H̃) > 0. Pick H̃ ′ ⊂ H̃ as in Lemma C.19. For the rest of the proof,

we fix h̃ = (s̃0, x̃0, . . . , s̃k, x̃k, . . . ) ∈ H̃ ′. By the construction of H̃, there exists
h = (s0, x0, . . . , sk, xk, . . . ) ∈ ∗H such that sk ∈ BS(s̃k) and xk ∈ BX(x̃k) for all
k ∈ ∗N. For every k ∈ ∗N, let ∗µk denote the updated ∗belief and νk denote the
updated hyperfinite belief at time k, according to h and h̃, respectively. Henceforth,
we omit the hyperfinite history from the notation.

Recall that we use dP to denote the Prokhorov metric on ∆(Θ). By Lemma C.17,
there exists some k0 ∈ ∗N \ N such that ∗dP (

∗µk, νk) ≈ 0 for all k ≤ k0. Let
(s, x) ∈ TS ×TX be such that M({(s, x)}) > 0. By the construction of M , (st(s), st(x))
is in the support of m. Thus, there exists k1 ∈ ∗N \ N such that

(1) k1 ≤ k0;
(2) s̃k1 ≈ sk1 ≈ s and x̃k1 ≈ xk1 ≈ x.

As f is an optimal policy function, by the transfer principle, we have

xk1 ∈ argmax
x̂∈∗X

∫
∗S

{∗π(sk1 , x̂, s′) + δ∗W (s′, ∗B(sk1 , x̂, s
′, ∗µk1))} ¯∗Q∗µk1

(ds′|sk1 , x̂).

(C.74)

As ∗dP (
∗µk1 , νk1) ≈ 0, by Lemma C.16, we have:∫

TS

{Π(s, x, s′) + δW(s′,B(s, x, s′, νk1))}Q̄νk1
(ds′|s, x) (C.75)

≈ max
x̂∈TX

∫
TS

{Π(s, x̂, s′) + δW(s′,B(s, x̂, s′, νk1))}Q̄νk1
(ds′|s, x̂). (C.76)



61

As the SMDP is identified given m, by Lemma C.21, the hyperfinite SMDP is S-
identified. This implies that there is QM such that, for all ν ∈ ∗∆(TΘ) with support
being a subset of T̂Q

Θ (M), Qν ≈ QM . By Lemma C.19, the support of νk1 is a subset of
T̂Q
Θ (M). Note that the support of the posterior of νk1 generated from the hyperfinite

Bayesian operator is a subset of the support of νk1 . Hence, we have:∫
TS

{Π(s, x, s′) + δV(s′)}QM(ds′|s, x) (C.77)

≈ max
x̂∈TX

∫
TS

{Π(s, x̂, s′) + δV(s′)}QM(ds′|s, x̂). (C.78)

By Lemma C.18, (Mk)k∈∗N
∗converges to M for all hyperfinite histories in H̃. By

the transfer principle (or use essentially the same proof as in Theorem 2 of EP, M is
∗stationary. Thus, M is a Berk-Nash S-equilibrium for the hyperfinite SMDP with
the hyperfinite belief νk1 (or any ν ∈ ∗∆(TΘ) such that the support of ν is a subset of
T̂Q
Θ (M)). Hence, by Theorem 4.11, m is a Berk-Nash equilibrium for the SMDP with

the belief being any µ ∈ ∆(Θ) such that the support of µ is a subset of ΘQ(m). □

C.4. Detailed Analysis of Examples. Here we present the analysis of the examples
3.1, 3.3, 3.4 and 3.5.
Example 3.1 In this example, we study an AR(1) process and show that a Berk-Nash
equilibrium exists if and only if the AR(1) process has no unit root. Recall that the
SMDP in this problem is defined as:

• The state space S = R, the action space X = {0}, and the payoff function
π : S ×X × S → R is the constant function 0;

• For every s ∈ S, the true transition probability function Q(s) is the distribution
of a0s + b0ξ, where a0 ∈ [0, 2], b0 ∈ [0, 1] and ξ = N (0, 1) has the standard
normal distribution;

• he parameter space Θ is [0, 2]× [0, 1] and for every (a, b) ∈ Θ, the transition
probability function Q(a,b)(s) is the distribution of as+ bξ.

We first consider the degenerate case b0 = 0. The true transition Q(a0,0) is absolutely
continuous with respect to Q(a,b) if and only if a = a0 and b = b0 = 0. When a0 < 1,
the Markov process has a unique stationary distribution, namely the Dirac measure
δ0 at zero. So the Berk-Nash equilibrium is δ(0,0) with the belief δ(a0,0). When a0 = 1,
the Dirac measure δs is a stationary distribution for every s ∈ S, and δ(s,0) is a Berk-
Nash equilibrium supported by the belief δ(1,0). When a0 > 1, there is no stationary
distribution hence no Berk-Nash equilibrium.
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For the non-degenerate case b0 > 0, following Example 3.1, we focus on the case
0 ≤ a0 < 1. We now provide rigorous verification for Assumption 2 and Assumption 3:

• We apply the Lyapunov condition to verify Assumption 2 by taking the
Lyapunov function V (s) = |s|. Clearly, this V is a non-negative, continuous
and norm-like function as defined in Assumption 2. Moreover, we have Sn =

{s ∈ S : V (s) ≤ n} for all n ∈ N. By the properties of the folded normal
distribution, we have:∫

S

|s′|Q(s)(ds′) = b0

√
2

π
e
−a20s

2

2b20 + a0s(1− 2ϕ(−a0s

b0
)) (C.79)

where ϕ is the cumulative distribution function of the standard normal distri-
bution. Thus, for all s ≥ 0, we have

∫
S
|s′|Q(s)(ds′) ≤ a0|s|+

√
2
π
. Hence, by

choosing α = 1− a0 and β =
√

2
π
, Eq. (2.12) is satisfied. Hence, Assumption 2

is satisfied;
• For (a, b) ∈ [0, 2]× (0, 1] and s ∈ S, the relative entropy from Q(a,b)(s) to Q(s)

is:

DKL(Q(s), Q(a,b)(s)) = ln(
b

b0
) +

b20 + (a0s− as)2

2b2
− 1

2
. (C.80)

Note that the true transition probability function Q(s) has a unique stationary
measure µ = N (0,

b20
1−a20

). It is then straightforward to show that Assumption 3
is satisfied.

Example 3.3 This example assumes that the agent knows the per-period payoff
function and the transition function but has a misspecified revenue function. We
follow EP in framing the price shock be a part of the state variable. The Bellman can
be written as,

V (z, ϵ) = max
x

∫
Z×[0,1]

(zf(x)ϵ′ − c+ δV (z′, ϵ′))Q (dz′ | z)QR (dϵ′ | x)

The variable ϵ′ is the unknown price shock to the revenue, r = f(x)ϵ′, at the time
the agent has to choose x. Its distribution is given by QR (dϵ′ | x) ∼ dθ. The
agent knows Q, but does not know QR. In particular, the agent has a parametric
family of transitions, where QR

θ (dϵ′ | x) is the distribution of ϵ′. The parameter
space Θ is compact, that is, Θ = [0, 2KEd∗ [ϵ] + 1] and the action space, X =

[0,max

[(
(Ed∗ [ϵ])/4

)2/3

,

(
(Ed∗[ϵ])/

√
K

)2/3]
+ 1], where K = (1− e−k)/(1− k(k +
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1)e−k). Given this, suppose the true production function is given by f ∗(x)x1/2 and
hence, concave. Then the minimizer, θ∗ = 2(KEd∗ [ϵ])

2/3 and the corresponding optimal
action for the misspecified agent is x∗ = zθ∗/2K,35 whereas, for the agent with the

correctly specified model is, xopt =

(
zEd∗ [ϵ]

4

)2/3

. We first solve for the optimal action

as a function of model primitives. Suppose the agent has a degenerate belief on some
θ. Here, as in the original example, the agent’s optimization problem reduces to a

static optimization problem maxx zxEθ[ϵ]− x2. Noting that Eθ[ϵ] =
θ

K
,36 it follows

that the optimal input choice in state z is x∗ =
zθ

2K
. Next, the stationarity condition

implies that the marginal of m over Z is equal to the stationary distribution over z,
which is q, a uniform distribution, U [0, 1]. Therefore, the stationary distribution over

X, denoted by mX, has a uniform support over [0,
θ

2K
]. Finally, we optimize θ for the

weighted KLD,∫
x

EQ(·|x)
[
logQR

θ (f ′ | x)
]
mX(x)dx =

∫
[0,1]

EQ(·|x) [log dθ (ϵ
′)]mX(x)dx

=

∫
[0,1]

EQ(·|x)

(
−1

θ
(ϵ′)− ln θ − ln(1− exp−k)

)
mX(.)dx

Then minimizing the above expression with respect to θ gives us the minimizing θ∗

and the corresponding x∗.

Example 3.4 For this optimal savings problem, we solve for optimality, belief
restriction and stationarity. The Bellman equation for the agent is

V (y, z) = max
0≤x≤y

z ln(y − x) + δE [V (y′, z′) | x] ,

and let us guess that the form of the value function is V (y, z) = a(z) + b(z) ln(y).

This provides us a guess for the optimal strategy which is to invest a fraction of wealth
that depends on the utility shock and the unknown parameter β, i.e., x = Az(β) · y,

where Az(β) =
δβE[b(z′)]

(z + δβE[b(z′)])
where b(z) satisfies b(z) = z+δβE[b(z′)] for z ∈ [0, 1].

Solving for b(z), we get b(z) = z+
δβ

1− δβ
E[z] which gives Az(β) =

0.5δβ

(1− δβ)z + 0.5δβ
where E[z] = 0.5.37 The stationarity condition is met because of 0 ≤ β∗ < 1, which

35For k > 0, let K =
1− e−k

1− k(k + 1)e−k
which is always finite and asymptotes to 1 as k → ∞.

36K =
1− e−k

1− k(k + 1)e−k

37This corrects the typo in EP for the policy function.
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prevents the process from drifting away. The belief restriction and the rest of the
problem for βm is solved analogously as in EP.

Example 3.5 This example assumes that the agent knows the per-period payoff
function and the transition function but has a misspecified cost function. We follow
EP in framing cost be a part of the state variable. we simply let the cost c be part of
the state as follows:

V (z, c) = max
x

∫
Z×C

(zf(x)− c′ + δV (z′, c′))Q (dz′ | z)QC (dc′ | x)

The variable c′ is the unknown cost of production at the time the agent has to choose
x. Its distribution is given by QC (dc′ | x), which is the distribution of c′ = c(x) as
described above. The agent knows Q, but does not know QC . In particular, the
agent has a parametric family of transitions, where QC

θ (dc′ | x) is the distribution of

c′ = cθ(x). The action space, X =

[
ε,max

[(
(Ed∗ [ϵ])/4

)2/3

,

(
(Ed∗ [ϵ])/

√
K

)2/3]
+

1

]
, ε > 0. The parameter space Θ is compact, Θ =

[
0,

√
K + 1

2
Ed∗ [ϵ] + 1

]
, where

K =
1− e−k

1− k(k + 1)e−k
. Given this, suppose the true cost function ϕ(x) is quadratic

i.e. ϕ(x) = x2. Then the Berk-Nash equilibrium is characterized by the minimizer

θ∗ given by θ∗ =

√
K

2
Ed∗ [ϵ] and the action x∗ =

√
2K

Ed∗(ϵ)
z, whereas for the agent

with the correctly specified model is xopt =

√
z√

2Ed∗(ϵ)
. Indeed, note that the true

transition probability function Q(s) has a unique stationary measure µ. Therefore,
the Berk-Nash equilibrium for this SMDP is µ× δx∗ , supported by the belief δθ∗ .

We now solve for the equilibrium. First, we solve for the optimal x∗ as a function of
the parameter. Suppose the agent has a degenerate belief on some θ. Here, as in the
original example, the agent’s optimization problem reduces to a static optimization

problem maxx z lnx − xEθ[ϵ]. Noting that Eθ[ϵ] =
θ

K
, it follows that the optimal

input choice in state z is x∗ = Kz/θ. Next, the stationarity condition implies that
the marginal of m over Z is equal to the stationary distribution over z, which is q, a
uniform distribution, U [0, 1]. Therefore, the stationary distribution over X, denoted
by mX, is a uniform distribution, U [0, K

θ
]. Finally, following the steps as in Example

3.3, we get our corresponding x∗ and θ∗.
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