
Greedy Online Classification of Persistent Market
States Using Realized Intraday Volatility Features

Petter Kolm
NYU Courant

petter.kolm@nyu.edu
https://www.linkedin.com/in/petterkolm

UC Berkeley CDAR
February 16, 2021

1 / 33

petter.kolm@nyu.edu
https://www.linkedin.com/in/petterkolm

Our papers related to this talk

◮ Nystrup, Kolm, and Lindström (2020), “Greedy Online
Classification of Persistent Market States Using Realized
Intraday Volatility Features,” Journal of Financial Data
Science, 2 (3)

◮ Nystrup, Kolm, and Lindström (2021), “Feature Selection in
Jump Models,” submitted paper

2 / 33

Background

3 / 33

What are the regimes of S&P 500?

4 / 33

Regime switching in finance I

◮ Regime-switching models are used extensively in financial
modeling in equities, fixed income, foreign exchange,
commodities etc. where time series often exhibit
◮ Heavy tails
◮ Volatility clustering
◮ Nonlinearities

◮ They are prevalent in many areas including
◮ Asset allocation
◮ Portfolio and risk management
◮ Macroeconomic forecasting
◮ Security and factor forecasting
◮ High-frequency trading

5 / 33

Regime switching in finance II
◮ The popularity of the hidden Markov model (HMM) is partly

due to that resulting hidden states (regimes) have meaningful
interpretations
◮ Risk-on and risk-off
◮ Business cycles
◮ Inflation and deflation
◮ Periods of different waiting times in between trades

6 / 33

Challenges with classical HMM

◮ The classical HMM comes with its challenges
◮ Sensitive to model specifications

◮ Markov assumption
◮ Misspecified conditional distributions

◮ Not robust to outliers
◮ Lack of temporal persistence of hidden states
◮ Needs a lot of data to produce efficient estimates
◮ Computationally expensive due to slow convergence
◮ Nontrivial to incorporate exogenous features

7 / 33

What we do

1. Introduce a greedy online classifier that contemporaneously
determines which hidden state a new observation belongs to
◮ without the need to parse historical observations
◮ without compromising temporal persistence

2. Our new classifier obtains higher accuracy and is more robust
to misspecification than the correctly specified maximum
likelihood estimator

3. Classification accuracy can be improved by including features
that are based on intraday volatility data

8 / 33

Jump models

9 / 33

Jump models I

“Sometimes all you need is a big leap of faith” (Sean Bean)

10 / 33

Jump models II

“Leap of faith yes, but only after reflection.” (Soren Kierkegaard)

11 / 33

Jump models III

Illustration of the states resulting from clustering a time series of t = 1, . . . , 10
observations of two features using K -means and a jump model.

12 / 33

Fitting jump models
Suppose y = {y1, ..., yT} is a time series of T observations

Bemporad et al. (2018) proposed to fit jump models by minimizing

T−1!

t=1

"
ℓ (yt , θst) + λIst ∕=st+1

#
+ ℓ (yT , θsT)

over the model parameters θ = {θ1, . . . , θK} and the state
sequence s = {s1, . . . , sT}

Notation:
◮ Loss function: ℓ(yt , θst) := ‖yt − θst‖

2 (squared Euclidean
distance)

◮ Jump penalty: λ

13 / 33

Features for HMM estimation
Input: Time series y = {y1, . . . , yt} and window length wl

1. Observation: yt

2. Absolute change: |yt − yt−1|
3. Previous absolute change: |yt−1 − yt−2|
4. Centered mean: mean [yt−wl+1, . . . , yt]

5. Centered standard deviation: std [yt−wl+1, . . . , yt]

6. Left mean: mean
$
yt−wl+1, . . . , yt−wl

2

%

7. Left standard deviation: std
$
yt−wl+1, . . . , yt−wl

2

%

8. Right mean: mean
$
yt−wl

2 +1, . . . , yt
%

9. Right standard deviation: std
$
yt−wl

2 +1, . . . , yt
%

Output: Feature set z = {z1, . . . , zT} (standardized)

14 / 33

Jump estimation of HMM using coordinate descent
Input: Time series y = {y1, . . . , yT}, number of latent states K ,
jump penalty λ, and initial state sequence s0 =

&
s0
1 , . . . , s

0
T

'

1. Construct a set of standardized features z from the time series
y

2. Iterate for i = 1, . . .

a. Fit model parameters θi = argminθ
!T

t=1 ℓ
"
zt , θs i−1

t

#

b. Fit state sequence
s i = argmins

$!T−1
t=1

%
ℓ
&
zt , θ

i
st

'
+ λIst ∕=st+1

(
+ ℓ

&
zT , θ

i
sT

')

3. Until s i = s i−1

4. Compute the transition probabilities and distributional
parameters for each state

Output: HMM parameters and prediction of latent states

15 / 33

Fitting the state-sequence by dynamic programming

◮ Define

V (T , s) = ℓ (zT , θs)

V (t, i) = ℓ (zt , θi) + minj [V (t + 1, j) + λIi ∕=j] , t = T − 1, . . . , 1

◮ Then, the most likely sequence of states is given by

s1 = argminj V (1, j)

st = argminj
"
V (t, j) + λIst−1 ∕=j

#
, t = 2, . . . ,T

◮ This becomes the Viterbi algorithm if the time order of
operations is reversed

16 / 33

Jump estimation vs. EM

◮ Complexity: Finding the most likely sequence of states
requires O(TK 2) operations just like EM

◮ Iterations: Jump estimation <5 vs. EM 50–100
◮ Least-squares criterion does not rely on distributional

assumptions
◮ Robust to initialization and an increasing number of states
◮ Estimation of parameters and state sequence without Markov

assumption

17 / 33

Greedy online state classification
In practical applications, it is of critical significance to estimate the
model recursively in an online fashion. The jump model can be
used in this fashion

Input: Model parameters θ, jump penalty λ, last two observations
{zt−1, zt}, and arrival cost At−1

1. Update
At(st) = minst−1

&
ℓ(zt−1, θst−1) +At−1(st−1) + λIst−1 ∕=st

'

2. Compute ŝt = argmins {ℓ(zt , θs) +At(s)}

Output: Estimated state ŝt and updated arrival cost At

18 / 33

Simulation studies

19 / 33

Summary of simulation studies
We compare the new classifier with HMMs (via MLE) and spectral
clustering on simulated data where the true state sequence is known

Main findings include:

◮ Classifier has higher accuracy in most situations, both in- and
out-of-sample

◮ Classifier is robust to misspecification (misspecified conditional
and sojourn-time distributions)

◮ Increasing sampling frequency of data used to estimate
(volatility) features improves accuracy

20 / 33

Simulation study

◮ We simulate data from a two-state Gaussian HMM

yt | st ∼ N
(
µst ,σ

2
st

)

◮ st is a first-order Markov chain
◮ Parameters

µ1 = .0006, µ2 = −.0008,
σ1 = .0078, σ2 = .0174,

Γ =

*
.9979 .0021
.0120 .9880

+

◮ Daily equivalent of a model Hardy (2001) estimated from
monthly stock returns

21 / 33

Balanced accuracy (BAC)

True/Predicted State 1 State 2 Accuracy
State 1 90 0 100%
State 2 10 0 0%

◮ Average accuracy: 90
100 = 90%

◮ Balanced accuracy: 100%+0%
2 = 50%

22 / 33

Selecting the jump penalty

23 / 33

Parameter estimates based on 1000 simulations

γ12 γ21 Accuracy 1 Accuracy 2 BAC
True .002 .012 .997 (.015) .875 (.234) .954 (.103)

250
MLE .288 (.242) .371 (.285) .775 (.203) .829 (.235) .752 (.188)
Spec .100 (.054) .161 (.059) .718 (.187) .759 (.189) .692 (.153)
Jump .006 (.006) .024 (.028) .861 (.146) .826 (.240) .830 (.146)

500
MLE .181 (.231) .229 (.261) .865 (.189) .865 (.207) .829 (.185)
Spec .077 (.056) .146 (.060) .791 (.187) .773 (.190) .756 (.155)
Jump .003 (.002) .020 (.021) .920 (.124) .846 (.210) .874 (.138)

1000
MLE .096 (.180) .138 (.214) .937 (.133) .885 (.178) .896 (.145)
Spec .053 (.046) .133 (.057) .852 (.160) .794 (.163) .814 (.125)
Jump .003 (.002) .019 (.016) .967 (.073) .873 (.151) .917 (.094)

24 / 33

Robustness to misspecification

γ12 γ21 Accuracy 1 Accuracy 2 BAC
Conditional Gaussian distributions
True .002 .012 .997 (.015) .875 (.234) .954 (.103)
MLE .181 (.231) .229 (.261) .865 (.189) .865 (.207) .829 (.185)
Spec .077 (.056) .146 (.060) .791 (.187) .773 (.190) .756 (.155)
Jump .003 (.002) .020 (.021) .920 (.124) .846 (.210) .874 (.138)

Conditional t5-distributions
True .002 .012 .987 (.023) .824 (.275) .929 (.123)
MLE .118 (.134) .415 (.349) .926 (.110) .694 (.293) .837 (.146)
Spec .057 (.040) .147 (.065) .802 (.163) .689 (.242) .748 (.135)
Jump .004 (.011) .039 (.043) .937 (.122) .743 (.294) .859 (.150)

Negative binomial sojourn-time distributions
True .002∗ .012∗ .974 (.137) .833 (.327) .938 (.145)
MLE .309 (.242) .345 (.253) .768 (.217) .788 (.255) .740 (.200)
Spec .107 (.058) .152 (.056) .719 (.226) .744 (.219) .694 (.176)
Jump .005 (.009) .019 (.023) .866 (.186) .843 (.251) .842 (.165)

25 / 33

Online parameter estimates

γ12 γ21 Accuracy 1 Accuracy 2 BAC
True .002 .012 .970 (.074) .801 (.277) .937 (.115)

250
MLE .246 (.235) .491 (.303) .701 (.233) .710 (.241) .718 (.186)
Jump .015 (.036) .068 (.100) .842 (.180) .664 (.346) .802 (.178)

500
MLE .149 (.212) .385 (.323) .792 (.230) .778 (.248) .806 (.194)
Jump .011 (.018) .061 (.091) .898 (.163) .712 (.321) .859 (.168)

1000
MLE .069 (.139) .274 (.312) .856 (.213) .841 (.231) .868 (.163)
Jump .007 (.013) .061 (.113) .949 (.099) .722 (.300) .895 (.143)

26 / 33

Online parameters estimates with intraday data

γ12 γ21 Accuracy 1 Accuracy 2 BAC
True .002 .012 .970 (.074) .801 (.277) .937 (.115)

1 .011 (.018) .061 (.091) .898 (.163) .712 (.321) .859 (.168)

2 .011 (.036) .056 (.100) .902 (.157) .751 (.333) .868 (.169)

5 .009 (.020) .046 (.086) .903 (.160) .776 (.332) .877 (.170)

10 .008 (.017) .053 (.115) .907 (.159) .799 (.313) .886 (.159)

Each series consists of 500 observations for in-sample estimation and 250 observations
for out-of-sample testing. The leftmost column shows the daily sampling frequency
used in estimating the standard deviation features.

27 / 33

Application to the S&P 500

28 / 33

Let us return to the S&P 500
So what is the state sequence?

29 / 33

S&P 500 state sequence estimation

30 / 33

Conclusions
Main take-aways about the jump estimator for state classification:
◮ Learns hidden state sequence and model parameters

simultaneously
◮ Provides control over transition rate
◮ Converges quickly and is less sensitive to initial values
◮ Delivers more accurate estimates of transition probabilities and

states
◮ Is more robust to misspecification than alternatives
◮ Its feature space can be easily extended, thereby improving

accuracy

31 / 33

Extensions
Machine learning:
◮ Including additional (exogenous) features and feature selection

(submitted paper; Nystrup, Kolm, and Lindström (2021))
◮ Fading memory and time-varying parameters
◮ Application of other loss functions

Financial applications:
◮ Strategic asset allocation with regimes
◮ Portfolio construction with regimes
◮ Regime and state identification in limit order books

32 / 33

References

Bemporad, Alberto et al. (2018). “Fitting jump models”. In: Automatica 96, pp. 11–21.

Hardy, Mary R. (2001). “A Regime-Switching Model of Long-Term Stock Returns”. In: North American
Actuarial Journal 5.2, pp. 41–53.

Nystrup, Peter, Petter N. Kolm, and Erik Lindström (2020). “Greedy Online Classification of Persistent
Market States Using Realized Intraday Volatility Features”. In: Journal of Financial Data Science 2.3,
pp. 25–39.

— (2021). “Feature Selection in Jump Model”. In: submitted paper.

33 / 33

