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Optimized portfolios and the impact

of estimation error



Optimized portfolios

Since (Markowitz 1952), quantitative investors have constructed

portfolios with mean-variance optimization.
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The impact of estimation error

In practice, optimization relies on an estimate of the mean and

covariance matrix (Σ̂ estimates Σ).

Estimation error leads to two types of errors:

• You get the wrong portfolio: Estimation error distorts

portfolio weights so optimized portfolios are never optimal.

• And it’s probably risker than you think it is: A risk-minimizing

optimization tends to materially underforecast portfolio risk.

We measure both errors in simulation.
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Measuring the impact of estimation

error in simulation



Measuring errors in weights

(Squared) tracking error of an optimized portfolio ŵ measures its

distance from the optimal portfolio w∗:

T 2
ŵ = (ŵ − w∗)>Σ (ŵ − w∗)

Tracking error is the width of the distribution of return differences

between w∗ and ŵ. Ideally, tracking error should be as close to 0.
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Measuring errors in risk forecasts

Variance forecast ratio measures the error in the risk forecast as:

Rŵ =
ŵ>Σ̂ŵ

ŵ>Σŵ

Ideally, the variance forecast ratio should be as close to 1.
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Error metrics in simulation

In simulation,

• generate returns, estimate Σ̂, compute ŵ;

• compute w∗ using Σ (accessible in simulation);

• measure the errors.

T 2
ŵ = (ŵ − w∗)>Σ (ŵ − w∗)

Rŵ =
ŵ>Σ̂ŵ

ŵ>Σŵ
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Minimum variance



Why minimum variance?

Theory

Error amplification: Highly sensitive to estimation error.

Error isolation: Impervious to errors in expected return.

Insight into a general problem: Informs our understanding of how

estimation error distorts portfolios and points to a remedy.

Practice

Large investments: For example, the Shares Edge MSCI Min Vol

USA ETF had net assets of roughly $14 billion on Sept. 8, 2017.
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True and optimized minimum variance portfolios

The true minimum variance portfolio w∗ is the solution to:

min
x∈RN

x>Σx

x>1N = 1 .

In practice, we construct an estimated minimum variance portfolio,

ŵ, that solves the same problem with Σ̂ replacing Σ.
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Factor models



Factor models and equity markets

Beginning with the development of the Capital Asset Pricing

Model (CAPM) in (Treynor 1962) and (Sharpe 1964), factor

models have been central to the analysis of equity markets.

In a fundamental model, human analysts identify factors.

Fundamental models have been widely used by equity portfolio

managers since (Rosenberg 1984) and (Rosenberg 1985).

In a statistical model (such as PCA, factor analysis, etc), machines

identify factors. An enormous academic literature on PCA models

has descended from (Ross 1976).

PCA is the focus of our analysis.
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A one-factor model

The return generating process is specified by

R = φβ + ε

where φ is the return to a market factor, β is the N -vector of

factor exposures, δ2 is the N -vector of diversifiable specific returns.

When the φ and ε are uncorrelated, the security covariance matrix

can be expressed as

Σ = σ2ββ> + ∆,

where σ2 is the variance of the factor and the diagonal entries of

∆ are specific variances, δ2.
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Estimation error in factor models

In practice, we have only estimates: σ̂2, β̂ and δ̂2.

Σ̂ = σ̂2β̂β̂> + ∆̂

We measure the errors in estimated parameters, of course.

But our focus is how errors in parameter estimates affect portfolio

metrics: tracking error and variance forecast ratio.
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Motivating example



Parameter errors → portfolio metric errors

A large literature on random matrix theory identifies and corrects

biases in estimated eigenvalues.

It turns out, however, that in a simple PCA model, portfolio

metrics for a minimum variance portfolio are insensitive to errors in

eigenvalues.

But errors in the dominant eigenvector make a difference.
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Selective error correction in minimum variance

Results communicated by Stephen Bianchi
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The dispersion bias



The dispersionless vector

14



Geometry of the problem
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Sample eigenvector behavior
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The dispersion bias
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Estimation error in minimum variance portfolio metrics

For fixed T and large N , let r =
γβ,z
γβ̂,z

.

T 2
ŵ �

σ2N
N

(r − γβ,β̂)2

Rŵ �
δ̂2

σ2N (r − γβ,β̂)2 + δ2

PCA estimator has Rŵ → 0 and T 2
ŵ positive as N becomes large.

Decreasing the magnitude of r − γβ,β̂ lowers tracking error and

raises variance forecast ratio (both desirable), and it amounts to

decreasing θβ,β̂.
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Correcting the dispersion bias



Dispersion bias correction for a standard one-factor model

Almost surely, some shrinkage of β̂ toward z along the geodesic

on the sphere connecting the two points lowers tracking error and

raises variance forecast ratio of a minimum variance portfolio.

The oracle estimate of β is given by:

β̂∗ ∝ β̂ + ρ∗z

where

ρ∗ =
γβ,z − γβ,β̂γβ̂,z
γβ,β̂ − γβ,zγβ̂,z

.

For the oracle, r − γβ,β̂ is 0, and ρ∗ has a useful limit as N →∞.
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Moving in the right direction
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Eigenvalue bias correction for a standard one-factor model

For a large N minimum variance portfolio, (bias in) the largest

eigenvalue does not affect tracking error and variance forecast

ratio...

... as predicted by the Bianchi experiment, which shows that

replacing an estimated eigenvector with a true eigenvector

improves portfolio metrics even when the estimated eigenvalue is

not corrected.

But eigenvalue correction is important for other portfolios, so we

do it.

σ̂2ρ∗ =

(
γβ̂,z
γβ̂∗,z

)2

σ̂2
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Impact of bias correction theorem for a standard one-factor

model

For fixed T with N →∞

Model Tracking error Variance forecast ratio

PCA bounded away from 0 → 0

Oracle → 0 → 1

Target 0 1
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A bona fide shrinkage estimator

Our estimate begins with the asymptotic (large N) formula for the

oracle estimator

ρ∗ =
γβ,z

1− γ2β,z

(
Ψ−Ψ−1

)
,

where Ψ is a positive random variable that is expressed in terms of

χT and asymptotic estimates for eigenvalues.

We rely on (Yata & Aoshima 2012) for the latter.
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Stand on the shoulders of giants

The emphasis of the fixed T large N regime dates back to (Connor

& Korajczyk 1986) and (Connor & Korajczyk 1988).

Our proofs rely heavily on (Shen, Shen, Zhu & Marron 2016) and

(Wang & Fan 2017).
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Numerical results



Calibrating the one-factor model

Parameter Value Comment

β normalized so ||β||2 = 1 factor exposure

γβ,z 0.5–1.0 controls dominant

factor dispersion

σ2 dominant eigenvalue of Σ annualized factor

volatility of 16%

δ2 specific variances annualized specific

volatilities drawn

from [10%, 64%]
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Numerical results from a one-factor model, γβ = 0.90

Simulation based on 50 samples

26



Numerical results from a one-factor model, N = 500

Simulation based on 50 samples
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Beta shrinkage has been used by

practitioners since the 1970s



The innovators

In the 1970s, Oldrich Vasicek and Marshall Blume observed excess

dispersion in betas estimated from time series regressions, and they

proposed adjustments.

(Vasicek 1973) shrinks estimated betas toward their cross-sectional

mean using a Bayesian formula.

(Blume 1975) uses the empirically observed average shrinkage of

betas on individual stocks in the current period relative to a

previous period to adjust forecast betas for the next period.

An ultra-simplifed version of the Blume adjustment is on the exam

taken by aspiring Chartered Financial Analysts (CFA)s.

28



The CFA Level II Exam
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Chat about Blume on AnalystForum.com
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Covariance Shrinkage methods



Capital Fund Management

A flat market mode acknowledged as a target by Bouchaud, Bun,

& Potters.
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Honey, I shrunk the sample covariance matrix

Seminal work (Ledoit & Wolf 2004) introduced a linear shrinkage

correction to the sample covariance utilizing a constant correlation

target

C = αE + (1− α)[(1− ρ)I + ρeeT ] .

Our vector z represents a constant correlation mode so there are

parallels.

We also take aim at a specific misbehaving artifact in factor

models and minimum variance portfolios and leverage a different

asymptotic theory.
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Summary and ongoing research



Summary

We identified a large, damaging dispersion bias in PCA-estimated

factor models.

We determined an oracle correction that elevates portfolio

construction and risk forecasting for a minimum variance portfolios

for fixed T as N →∞.

And we have developed a bona fide (data-driven) correction that

has proven effective in empirically-calibrated simulation.

Our results can be viewed as an extension and formalization of

ideas that have been known by practitioners since the 1970s.
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Ongoing research

Extension to multi-factor models.

Application to sparse low rank factor extractions.

Investigation of a wider class of portfolios.

Empirical studies.
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Thank you

Photograph by Jim Block
35



References

Blume, Marshall E. (1975), ‘Betas and their regression tendencies’,

The Journal of Finance 30(3), 785–795.

Connor, Gregory & Robert A. Korajczyk (1986), ‘Performance

measurement with the arbitrage pricing theory: A new framework

for analysis’, Journal of financial economics 15, 373–394.

Connor, Gregory & Robert A. Korajczyk (1988), ‘Risk and return

in equilibrium apt: Application of a new test methodology’,

Journal of financial economics 21, 255–289.

Ledoit, Oliver & Michael Wolf (2004), ‘Honey, i shrunk the sample

covariance matrix’, The Journal of Portfolio Management

30, 110–119.

36



References

Markowitz, Harry (1952), ‘Portfolio selection’, The Journal of

Finance 7(1), 77–91.

Rosenberg, Barr (1984), ‘Prediction of common stock investment

risk’, The Journal of Portfolio Management 11(1), 44–53.

Rosenberg, Barr (1985), ‘Prediction of common stock betas’, The

Journal of Portfolio Management 11(2), 5–14.

Ross, Stephen A (1976), ‘The arbitrage theory of capital asset

pricing’, Journal of economic theory 13(3), 341–360.

Sharpe, William F (1964), ‘Capital asset prices: A theory of market

equilibrium under conditions of risk’, The Journal of Finance

19(3), 425–442.

37



References

Shen, Dan, Haipeng Shen, Hongtu Zhu & Steve Marron (2016),

‘The statistics and mathematics of high dimensional low sample

size asympotics’, Statistica Sinica 26(4), 1747–1770.

Treynor, Jack L (1962), Toward a theory of market value of risky

assets. Presented to the MIT Finance Faculty Seminar.

Vasicek, Oldrich A. (1973), ‘A note on using cross-sectional

information in bayesian estimation of security betas’, The Journal

of Finance 28(5), 1233–1239.

Wang, Weichen & Jianqing Fan (2017), ‘Asymptotics of empirical

eigenstructure for high dimensional spiked covariance’, The

Annals of Statistics 45(3), 1342–1374.

38



References

Yata, Kazuyoshi & Makoto Aoshima (2012), ‘Effective pca for

high-dimension, low-sample-size data with noise reduction via

geometric representations’, Journal of multivariate analysis

105(1), 193–215.

39


	Optimized portfolios and the impact of estimation error
	Measuring the impact of estimation error in simulation
	Minimum variance
	Factor models
	Motivating example
	The dispersion bias
	Correcting the dispersion bias
	Numerical results
	Beta shrinkage has been used by practitioners since the 1970s
	Covariance Shrinkage methods
	Summary and ongoing research

