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What do we mean by Risk?

Decomposition of financial risk
▶ First order risk vs. Second order risk

- Shepard (2009, WP) Details

- Bernardi, Leippold & Lohre (2019, RISK)

▶ Volatility vs. Uncertainty
- Aït-Sahalia, Matthys, Osambela & Sircar (2024, JoE) Details

- Anderson, Ghysels & Juergens (2009, JFE)

▶ Known risk vs. Unknown risk
- Ellsberg (1961, QJE): Ambiguity (= unquantifiable risk)
- Brenner & Izhakian (2018, JFE)

Statistical perspectives
▶ Standard deviation vs. Standard error Details

▶ Variability (from a distribution) vs. Model risk & Calibration risk
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(Classical) Mean-variance framework

Markowitz (1952) model for portfolio optimization
▶ Our primary focus lies within the estimation of Σ and Σ−1

▶ We don’t examine whether the risk factors are priced

minimize
1
2
ω⊤Σω

subject to ����XXXXµ⊤1 = µ

ω⊤1 = 1

Second Order Risk (SOR) issues
▶ Known to be (extremely) sensitive to parameter estimates (µ̂, Σ̂)

⇒ Small errors in the estimates of these values may substantially misstate
efficient allocations (i.e., error maximization)

⇒ The significance of estimation error on µ diminishes in short-horizon
optimization (e.g., by simply assuming µ ≈ 0)

▶ Mitigating the estimation error of Σ & Σ−1 is essential for determining
admissible portfolio compositions within a given risk budget
⇒ When the dimension becomes large, the estimation based on historical

observations is generally challenging PCA Finite-sample error
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Objectives

The main objective is to mitigate the second order risk (SOR)
originating from a dynamic factor model at the portfolio level by
extending T (i.e., TM → TL)

Specifically, this study aims to ... Motivation

(i) accurately forecast the population covariance matrix (Σ) and the
precision matrix (Σ−1) of many stock returns (i.e., N ≥ 2000)

(ii) on a short-term (i.e., daily) basis
(iii) within the Long-History PCA (LH-PCA) framework with

TL (> TM ∼ 250) days to mitigate the finite-sample error
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Practical Challenges

Recognizing (and addressing) SOR bias is crucial but difficult
▶ The true covariance matrix is unobservable in reality
▶ We need a proxy measure that is observable in practice

Extending covariance estimation to the temporal domain introduces
nontrivial challenges
▶ Extending T (from TM to TL) requires a Dynamic Factor Model

(DFM) approach
▶ The consistency of the principal component (PC) estimates needs to

be verified

Broad (strong) + narrow (weak) factor issue
▶ Narrow (weaker) factors impact only a portion of the underlying assets

and pose greater challenges in detection
▶ PCA blends narrow (weaker) factors with broad (stronger) factors
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Challenges / Approaches / Lessons

The estimation error (e.g., ∥Σ − Σ̂∥ ) is not directly observable in reality
▶ Realized Volatilities (RV) vs. Bias Statistics (BS) of MV portfolios

⇒ BS can serve as a more definitive SOR measure than RV of MV portfolios

The risk factor structure may not be static over (longer) time
▶ TM (≈ 1 ∼ 2 years) with Static Factor Model (SFM) vs. TL (≈ 5 ∼ 6 years) with a

Dynamic Factor Model (DFM)

⇒ Under DFM, PCA can consistently estimate Σ and Σ−1 under the ‘large-N &
large-T’ framework (subject to mild regularity conditions)

The factor strengths may not be homogeneous (strong + weak factors)
▶ Homogeneous (Broad only) vs. Heterogeneous (Broad + Narrow) factors

⇒ PCA with longer history can significantly reduce SOR bias in portfolio
optimization with simulated and empirical data with heterogeneous factor
strengths
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Restating our objectives

This study aims to ...
(i) accurately forecast the population covariance matrix (Σ) and the

precision matrix (Σ−1) of many stock returns (i.e., N ≥ 2000)
(ii) on a short-term (i.e., daily) basis
(iii) within the Long-History PCA (LH-PCA) framework with

TL (> TM ∼ 250) days
(iv) under dynamic factor model with weaker loadings
(v) across simulated and empirical datasets
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(Observable) SOR Bias Measures



Measurement of the Estimation Error

In practice, we can never observe the true covariance matrix Σ

Instead, we obtain an estimated covariance matrix Σ̂, which may
be contaminated by finite-sample estimation errors
▶ The finite-sample estimation errors produce the excess dispersion

bias in the estimated factor loadings (T ≪ N)
▶ The excess dispersion bias becomes more pronounced in the

presence of the weak (typically narrow) factors
▶ The estimated minimum variance portfolio is substantially more

volatile than predicted Sources of excess dispersion bias

Notations
▶ ω: the true GMVP weights based on Σ (unobservable)
▶ ω̂: the estimated GMVP weights based on Σ̂ (observable)
▶ σ(ω,Σ): the true volatility of ω from Σ (unobservable)
▶ σ(ω̂, Σ̂): the predicted volatility of ω̂ from Σ̂ (observable)
▶ σ(ω̂,Σ): the actual (= to-be-realized) volatility of ω̂ from Σ (observable)
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Portfolio Optimization (Review)

The true GMVP and its variance

ω =
Σ−11

1⊤Σ−11
⇒ σ2(ω,Σ) = ω⊤Σω =

1
1⊤Σ−11

The estimated GMVP and its predicted variance

ω̂ =
Σ̂−11

1⊤Σ̂−11
⇒ σ2(ω̂, Σ̂) = ω̂⊤Σ̂ω̂ =

1
1⊤Σ̂−11
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Estimation Error in Σ̂−1

Define ϵ ≜ Σ̂−1
− Σ−1 as the estimation error of the precision matrix

The predicted variance of the estimated GMVP

(Predicted variance of ω̂) = σ2(ω̂, Σ̂)

=
1

1⊤ (Σ−1 + ϵ) 1
=

1
1⊤Σ−11 + 1⊤ϵ1

A stylized fact is that the finite-sample estimation error in Σ̂−1

(typically) underpredicts the GMVP volatility as the error increases

σ2(ω̂, Σ̂) =
1

1⊤Σ−11 + 1⊤ϵ1︸︷︷︸
↑ as ∥ϵ∥↑

↓ as ∥ϵ∥ ↑
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Volatility Ratio vs. Actual Volatility

Define the volatility ratio (VR) as Derivation

(VR) ≜
σ(ω̂,Σ)
σ(ω̂, Σ̂)

=
(Actual volatility of ω̂)

(Predicted volatility of ω̂)
≈

√
1⊤Σ−11 + 2 · 1⊤ϵ1

1⊤Σ−11 + 1⊤ϵ1
≥ 1 ,

which is monotone increasing as ∥ϵ∥ gets larger (when ϵΣϵ negligible)

Notice that the actual volatility of ω̂
(
i.e., σ(ω̂,Σ)

)
may not have a monotone

relationship with ∥ϵ∥ as

σ(ω̂,Σ) = σ(ω̂, Σ̂)︸  ︷︷  ︸
↓ as ∥ϵ∥↑

· (VR)︸︷︷︸
↑ as ∥ϵ∥↑

This implies that (VR) is a better proxy than σ(ω̂,Σ) for measuring the
estimation error in Σ̂−1 across different approaches
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A (Simple) Numerical Experiment

N = 2000 stocks in the market
K = 5 uncorrelated factors
▶ Idiosyncratic returns are uncorrelated with each other as well as with

the factor returns

True factor loadings are drawn from a normal distribution with the
true dispersion θ0

Construct the estimated covariance matrix Σ̂ contaminated by
adding an excess dispersion θ

(Total dispersion) = (True dispersion)︸                ︷︷                ︸
=θ0

+ (Excess dispersion)︸                    ︷︷                    ︸
=θ

Scenarios drawn from 1000 different seeds
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A Simple Numerical Experiment (cont.)

(Average) Frobenious norm of the estimation error
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(b) Precision matrix error
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A Simple Numerical Experiment (cont.)

Volatility ratio is a definitive & observable measure of the error
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(a) (Ideal) SOR Bias
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A Simple Numerical Experiment (cont.)

Actual volatility may be misleading to measure the estimation error
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An ‘Illusion’ of the Actual variance

For Σ , Σ̂, suppose that ΣΣ̂−1 has an eigenvector close to the vector of
ones; i.e., ΣΣ̂−11 ≈ λ1 for some λ > 0

In this case, we have

1⊤Σ̂−1ΣΣ̂−11 ≈

(
1⊤Σ̂−11

)2

1⊤Σ−11

This implies that

(Actual variance of ω̂) =
1⊤Σ̂−1ΣΣ̂−11(

1⊤Σ̂−11
)2

≈

(
1⊤Σ̂−11

)2

1⊤Σ−11
1(

1⊤Σ̂−11
)2

=
1

1⊤Σ−11
= (The variance of the True GMVP)
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Summary on the SOR bias measures

We define ∥ϵ∥ = ∥Σ̂−1
− Σ−1

∥ as the (ideal) SOR bias measure,
which is unobservable in practice
▶ When ∥ϵ∥ > 0 underestimates the predicted volatility of the estimated

GMVP, the volatility ratio (VR) is a good proxy of ∥ϵ∥
▶ Bias Statistic (BS) is a statistical proxy for VR in the empirical analysis
▶ If the true covariance matrix Σ is time-varying, MRAD and/or

Q-statistics may be better than BS for measuring the SOR bias for
empirical studies Definitions of BS / MRAD / Q-statistics

On the other hand, the actual volatility, which can be statistically
proxied by the realized volatility (RV), of the estimated GMVP
cannot serve as a definitive measure of ∥ϵ∥
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Long-History PCA (LH-PCA)



Research Questions & Answers

(RQ1) Under the ‘large-N and large-T’ framework, can PCA be a
consistent method for estimating the dynamic factor model based
on variable factor and idiosyncratic volatility structure with
time-varying factor loadings?
⇒ Yes, under reasonably mild assumptions. Dynamic factor model

(RQ2) Does the LH-PCA approach with TL outperform variants of the
traditional PCA method with TM in mitigating the SOR bias in the
presence of both broad (strong) and narrow (weak) factors?
⇒ Yes, our simulation study and empirical findings support
this result. Weak factor model
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Main Contribution (Summary)

We show that LH-PCA consistently estimates factor loadings under
dynamic factor models Latent factor model DFM Weaker loadings

▶ It justifies the use of PCA in the setting of variable factor and
idiosyncratic volatilities with dynamic & weaker factor loadings

We demonstrate, both in simulation and empirically, that the use of
long histories (TL) substantially mitigates the SOR bias
▶ We estimate factor loadings with a longer history (TL ∼ 1500 days)
▶ ... and predict the portfolio volatility on the next day using the

Responsive Covariance Adjustment (RCA) scheme with a short
data history (half-life TS = 40 days) RCA
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Main Theorem in the ‘Large-N & Large-T’ Framework

Consider the N ×N population covariance matrix within the observation
time window T given by

ΣN(T) =
(
RT,N

)⊤ (
RT,N

)
T

and define

ΣN(T) = X
⊤

N diag

 1
T

T∑
t=1

(
µt·

)2

 XN + diag

 1
T

T∑
t=1

(νt·)
2

 .
Theorem (Convergence of population covariance matrices)
By letting N,T→∞, we have∥∥∥∥∥∥ 1

N

(
ΣN(T) − ΣN(T)

)∥∥∥∥∥∥
2

F

= Op

( 1
min{N,T}

)
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For Precision (= Inverse Covariance) Matrices

For all N,T, suppose that both ΣN(T) and ΣN(T) are invertible, and there
exists some ε > 0 such that

min
{
λmin

(
ΣN(T)

)
, λmin

(
ΣN(T)

)}
> ε ,

where λmin(A) represents the smallest eigenvalue of A

Corollary (Convergence of precision matrices)
By letting N,T→∞, we have∥∥∥∥∥∥ 1

N

(
Σ
−1
N (T) − Σ−1

N (T)
)∥∥∥∥∥∥

2

F

= Op

( 1
min{N,T}

)
.

(Note) The additional assumption regarding the uniform boundedness (away
from zero) of the minimum eigenvalue is consistent with the presence of a fixed
number of factors with non-zero factor volatilities.
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(Approximated) Factor-loading Estimation

Justification of using (LH-)PCA for estimating XN

Corollary (Variable volatility with time-varying factor loadings)
Fix k ∈ {1, . . . ,K}. By letting N,T→∞, we can choose the kth eigenvector of

ΣN(T) − diag

 T∑
t=1

(νt·)
2

T


converging in probability to the kth row of

(
XN

)
k·
.

(Note) The average error in estimating XN by (LH-)PCA vanishes at the rate

Op

(
1

min{N1+αK , T}

)
.

Refer to Proposition 2 of Bai & Ng (2023).
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Simulation Study



Extended Simulation: Setup

True (Strong & Weak) Factor Structure
▶ N = 2000 stocks in the market
▶ 4 Broad & 27 (= 11+16) Narrow Factors Factor structure

Variable Volatility Factor Structure
▶ Markov Regime Switching (MRS) MRS

Time-varying Factor-loading dynamics
▶ Mean-reverting Ornstein–Uhlenbeck process Mean-reverting Process

We institute the two-history scheme to forecast the Σ and Σ−1 that will be
realized on the next day RCA

▶ Estimated factor loadings come from LH-PCA over TL = 1500 days window
▶ Estimated GMVP based on RCA from EWMA with TS = 40-day half-life

Number of (eigen-)factors to extract Number of factors

▶ In our study, we employ the Bai & Ng (2002) estimator and determine the
number of PCA eigenfactors within each moving window
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Extended Simulation (cont.)

Prediction error vs. Volatility Ratio (Actual / Predicted); 1000 seeds
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Extended Simulation (cont.)

Prediction error vs. Volatility Ratio (Actual / Predicted); 1000 seeds

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

E
∥∥∥ 1
N

(
Σ−1 − Σ̂−1

)∥∥∥
F

1.00

1.05

1.10

1.15

1.20

1.25

1.30

E
(
σω̂,Σ

) /
E
(
σω̂,Σ̂

)

PCA GPS LH-PCA

24 38



Extended Simulation (cont.)

Prediction error vs. Actual vol. of the estimated GMVP; 1000 seeds
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Extended Simulation (cont.)

Prediction error vs. Actual vol. of the estimated GMVP; 1000 seeds
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Empirical Analysis



Empirical Analysis: Data and Samples

Datasets: CRSP and EURO (Compustat Global) data 2001-2021 (21 years)
▶ We need six-year history to make predictions, so predictions are for 15 years

2007-2021

We consider overlapping six-year windows, including stocks that are
present throughout each window (Average: 2,260 CRSP and 2,520 EURO)
▶ Our analysis is largely free of survivorship bias by addressing delisting issues
▶ All of the losses leading up to the demise of a stock were included in our

analysis for the appropriate day
Details on the data cleaning procedures

Confidence intervals can be approximated by bootstrapping samples of the
realized Z-scores with replacement for cross-validation
▶ Winsorized daily Z-scores at the 0.25th and 99.75th percentiles to mitigate the

distortionary impact of outliers
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Empirical Analysis (cont.)

Bias Statistics (CRSP & EURO; Bootstrapped)
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Empirical Analysis (cont.)

Bias Statistics (CRSP & EURO; Bootstrapped)
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Empirical Analysis (cont.)

MRAD (CRSP & EURO; Bootstrapped)
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Empirical Analysis (cont.)

MRAD (CRSP & EURO; Bootstrapped)
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Empirical Analysis (cont.)

Q-Statistics (CRSP & EURO; Bootstrapped)
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Empirical Analysis (cont.)

Q-Statistics (CRSP & EURO; Bootstrapped)
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Empirical Analysis (cont.)

Realized Volatility (CRSP & EURO; Bootstrapped)

5.5

6.0

6.5

7.0

7.5

Realized Volatility (CRSP, Annualized in %)

1.6

1.7

1.8

1.9

2.0

2.1

Realized Volatility (EURO, Annualized in %)

LW PCA GPS LH-PCA

34 38



Conclusion & Future Research



Conclusion

When ∥ϵ∥ = ∥Σ̂−1
− Σ−1

∥ > 0 underestimates the predicted volatility of the
estimated GMVP, the volatility ratio (VR), which can be statistically
approximated by the bias statistics (BS), is a good proxy of ∥ϵ∥
▶ The actual volatility, which can be statistically proxied by the realized volatility

(RV), of the estimated GMVP cannot serve as a definitive SOR measure

Variants of PCA with a one-year history of data generally performs poorly in
estimating Σ and Σ−1 when N gets larger with our empirical datasets

We show that LH-PCA can consistently estimate Σ−1 under the dynamic
factor structure with arbitrary variable volatility of factors and time-varying &
weaker loadings
▶ Theoretical justification + Simulation + Empirical evidence

Future research topics
▶ LH-PCA leaves room for further improvements

⇒ Optimal choice of TL guided by data + Eigenvector corrections
⇒ Sparse Dictionary Learning to better estimate the weak (narrow) factors

▶ Asset pricing implications by examining the (weaker) factor prices
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Thank you!
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Appendix



First order risk vs. Second order risk

“... Classical finance assumes the markets to be like a game of chance:
Although future events are uncertain, the distribution of these events is

known. ... Unfortunately, real financial markets do not behave like a
game of chance. ... Our estimates of financial risk are uncertain,

based on limited historical observation, extrapolated forward.”

“... Managing a portfolio to a risk model can tilt the portfolio toward
weaknesses of the model. As a result, the optimized portfolio acquires

downside exposure to uncertainty in the model itself, what we call
second order risk.”

- Shepard (2009)

“Second Order Risk”

Return



Volatility vs. Uncertainty

“... Although the notions of uncertainty and volatility are often used
interchangeably, the two concepts are inherently different:

volatility measures the dispersion of short-term shocks around a
long-term mean, while uncertainty measures the difficulty to

forecast the distribution of returns, including its long-term mean.”

- Aït-Sahalia, Matthys, Osambela and Sircar (2024)
“When Uncertainty and Volatility Are Disconnected: Implications for

Asset Pricing and Portfolio Performance”

Return



Standard deviation vs. Standard error

“... The standard deviation is a measure of the dispersion, or
scatter, of the data. ... In contrast, the standard error provides an

estimate of the precision of a parameter (such as a mean,
proportion, odds ratio, survival probability, etc) and is used when
one wants to make inferences about data from a sample to some

relevant population.”

- Biau (2011)
“In Brief: Standard Deviation and Standard Error”

Return



Latent factor models

In practice, the estimation typically focuses on a set of latent factors that
are computationally convenient (but less interpretable), characterized by
orthogonal exposure vectors with the identity covariance matrix
▶ For a given number of securities at each time, without loss of generality, one

can apply Gram-Schmidt to transform a correlated factor structure into a new
latent factor representation,

▶ ... where (latent) factors are uncorrelated in population and exhibit orthogonal
(latent) factor loadings

Latent factor models are extensively used by practitioners in finance
▶ Variants of PCA, a long-established method for dimension reduction, are used

in commercially available latent factor models Return



PCA estimation for linear factor models

PCA is attractive for predicting short-term risk

The traditional PCA approaches require temporal stability, assuming a
static factor structure
▶ In practice, risk factor structure changes its shape rapidly over time indicating a

dynamic evolution in the underlying factor structure

Most practitioners are unwilling to run PCA over data histories longer than
one or two years for large portfolios (T ≪ N)
▶ An exception is Northfield, which uses a hybrid model in which stock returns

are first regressed on various fundamental factors
▶ It uses exponentially weighted regressions over 60 months of monthly data; it

then extracts five PCA factors from the residuals
Return



Estimation error of Σ in finite samples

Finite-sample estimation error
▶ The sample covariance matrix based on the observed data is singular when

the dimension (N) is larger than the sample size (T)
▶ (e.g.) Shrinkage estimates of the sample covariance matrix (Ledoit &

Wolf 2004, LW)

PCA estimation of (linear) factor models (TM ≈ 250 ∼ 500 trading days)
▶ Linear factor model estimated by PCA with TM (→ Excess dispersion bias)
▶ Correction of the leading eigenvector (Goldberg, Papanicolaou &

Shkolnik 2022, GPS) based on PCA with TM

Commercially available factor models typically use a two-history algorithm
▶ A variant of PCA over a medium data history of TM to estimate the factor

loadings (+ bias correction)
▶ Exponentially Weighted Moving Average (EWMA) volatility model with a short

half-life, such as TS ∼ 40 days, to estimate current factor variances

We empirically observe that variants of this approach with TM suffer from a
significant amount of SOR bias Return



Motivation

Motivation Return

(i) Estimating Σ is a fundamental problem in statistics and finance
(e.g.) statistical inference, efficient asset allocation, portfolio risk
management, ...

- Estimated Σ−1 plays the pivotal role in determining the optimized
minimum-variance portfolios

(ii) Sometimes volatility changes become too rapid and extreme to be
reliably captured from low frequency observations

- Daily risk predictions are appropriate for short-term investors, such as
hedge funds and other leveraged institutional investors

- In addition, risk predictions at longer horizons typically take short-term
volatility as an input



Dynamic factor model assumptions

Bates et al. (2013)⇒ (RQ1) Return



Strong and weak factor model assumptions

Bai and Ng (2023)⇒ (RQ2) Return



Dynamic Factor Model of Stock Returns

For some T,N ∈N, the observable return matrix is given by RT,N ∈ RT×N,
▶ At time t ∈ {1, . . . ,T}, the return of the security n ∈ {1, . . . ,N} is generated by the

linear (latent) factor model as

Rtn =

K∑
k=1

ϕtk (Xt)kn + εtn ,

where Xt ∈ RK×N is the time-t factor exposures corresponding to the N
tradable securities

Factor returns (ϕtk) + idiosyncratic returns (εtn):
▶ We assume that E

(
ϕtk

)
= 0 and Var

(
ϕ2

tk

)
= µ2

tk for k = 1, . . . ,K
▶ µtk ∈ [0,M] is the factor volatility of ϕtk

▶ We further assume that Var (εtn) = ν2
tn, where νtn ∈ [0,M] is the idiosyncratic

volatility of εtn



Dynamic Factor Model of Stock Returns (cont.)

Time-varying factor loadings (Xt): (Bates et al., 2013)
▶ For each t, we follow Bates et al. (2013) by specifying the dynamics of Xt as

Xt = XN + hNTξ
N
t ,

where hNT ≥ 0 may depend on the pair of (N,T) and ξN
t ∈ R

K×N is a (possibly
degenerate) stochastic process

Bates et al. (2013) show that some mild regularity conditions satisfy
(i) white noise, (ii) random walk, (iii) (single) large break of Xt

with practically reasonable form of hNT:
▶ Conditions in Assumption 4 (Factor Loading Innovations)
▶ Assumptions of Corollary 1

Return



Strong & Weak (baseline) factor loadings

Strong (only) factor loadings (Bai & Ng, 2002, and many others)
▶ For each N ∈N, XN has rank K and the rows of XN are orthogonal, and there

exists some diagonal matrix D ∈ RK×K such that

1
N

XNX
⊤

N
p
→ D as N→∞

Strong + Weaker factor loadings (Bai & Ng, 2023)
▶ Intuition: For some α ∈ (0, 1],

(
1
N →

1
Nα

)
1

Nα
XNX

⊤

N
p
→ D as N→∞

▶ Allowing the strengths of baseline loadings to vary across factors, let
1 ≥ α1 ≥ · · · ≥ αK > 0 so that the weakest baseline loading has strength
αK ∈ (0, 1]

▶ Define the K × K normalization matrix

BN = diag
(
N
α1
2 , . . . ,N

αK
2

)
▶ There exists some diagonal matrix D ∈ RK×K such that Return

B−1
N XNX

⊤

NB−1
N

p
→ D as N→∞



Assumptions of Xt

There exist envelope functions Q1(N,T), Q2(N,T) and Q3(N,T) such that
the following conditions hold for all N, T and factor indices p, q, r, ℓ = 1, . . . ,K

sup
s,t≤T

N∑
i,j=1

∣∣∣∣E(
(ξN

s )ip(ξN
t )jqϕspϕtq

)∣∣∣∣ ≤ Q1(N,T),

T∑
s,t=1

N∑
i,j=1

∣∣∣∣E(
(ξN

s )ip(ξN
s )jqϕspϕsqϕtrϕtℓ

)∣∣∣∣ ≤ Q2(N,T),

T∑
s,t=1

N∑
i,j=1

∣∣∣∣E(
(ξN

s )ip(ξN
s )jq(ξN

t )ir(ξN
t )jℓϕspϕsqϕtrϕtℓ

)∣∣∣∣ ≤ Q3(N,T),

The following conditions hold:

h2
NT Q1(N,T) = O(N)

h2
NT Q2(N,T) = O(NT2)

min{N,T} h4
NT Q3(N,T) = O(N2T2)

Return



Related Literature

Kan and Smith (2008)
▶ ... prove under the i.i.d. normality assumption of returns that the finite-sample

minimum-variance frontier is a significantly biased estimator of the true
population frontier

▶ As such, optimizing a stock portfolio using an estimated (sample) covariance
matrix, or an estimated covariance matrix that has been dimensionally reduced
by PCA, is problematic in terms of the out-of-sample performance

Ledoit and Péché (2011) and Wang and Fan (2017) among others
▶ ... propose corrections of the eigenvalues (= variances) to mitigate this

problem

Goldberg, Papanicalaou and Shkolnik (2022; hereafter GPS)
▶ ... identified excess dispersion in the estimated dominant eigenvector as a key

source of the problems with optimized portfolios
▶ They propose a correction to the estimated eigenvector (= exposure)

corresponding to the largest eigenvalue
▶ ... in a theoretical one-factor model and in a simulation involving only broad

factors
Return



Sources of Dispersion Bias: Factor Loading Estimation

PCA estimation: R ∼ VW by minimizing ∥R − VW∥22 Return

▶ V is a T × K matrix of estimated factor returns with |V·k | = 1
▶ W is a K ×N matrix of estimated stock factor loadings
▶ U is an N × K matrix, where V = RU

W = U⊤R⊤R = U⊤
(
X⊤ϕ⊤ϕX + X⊤ϕ⊤ε +

(
X⊤ϕ⊤ε

)⊤
+ ε⊤ε

)

By assumption, factor returns and idiosyncratic returns are uncorrelated:

ϕ⊤ε ≡ 0

In a finite sample, the factor returns and idiosyncratic returns appear
correlated, and

ϕ⊤ε , 0
▶ The estimated factor loadings are contaminated and exhibit excess dispersion

in finite sample
▶ Estimated factor loadings of some stocks appear to be smaller than they

actually are, and the optimizer will choose to increase their weights in the
portfolio (and vice versa)⇒ Underestimation of MV portfolio risk



Sources of Dispersion Bias: Narrow Factors

Narrow (weak) factors cannot be captured cleanly by PCA
▶ To properly evaluate the risk of a portfolio, and especially to produce optimized

portfolios, we need our estimated covariance matrix to accurately reflect the
narrow factors

When K ≪ T ≪ N, the idiosyncratic returns of some stocks will appear to
be very significantly correlated with the returns of some weak factors
▶ The finite-sample error contaminates the narrow and braod factor loadings

together, but the relative contamination of the narrow factor is much
greater than that of the broad (e.g., market) factor

▶ This contamination assigns nonzero estimated factor loadings on the narrow
factors, when the stocks are NOT exposed to them

▶ One can think of this as excess dispersion of the estimated factor loadings that
are, in fact, zero (= infinite relative error)

Return



Actual variance of the estimated GMVP

Define Σ̃ ≜ Σ̂Σ−1Σ̂ as the sandwich covariance matrix
The actual variance of the estimated GMVP

(Actual variance of ω̂) = σ2(ω̂,Σ)
= ω̂⊤Σω̂

=
1⊤Σ̂−1ΣΣ̂−11

(1⊤Σ̂−11)2

=
1⊤Σ̃−11

(1⊤Σ̂−11)2

=
σ4(ω̂, Σ̂)
σ2(ω̃, Σ̃)

=
(Predicted variance of ω̂)2

(Predicted variance of ω̃)
,

where ω̃ is the weight vector of the estimated GMVP based on Σ̃

⇒ σ2(ω̂, Σ̂)︸   ︷︷   ︸
Medium Var.

is the geometric mean of σ2(ω̂,Σ)︸   ︷︷   ︸
Large Var.

and σ2(ω̃, Σ̃)︸   ︷︷   ︸
Small Var.



Error quantification of σ2(ω̃, Σ̃)

By the definition of ϵ ≜ Σ̂−1
− Σ−1, we have

Σ̃−1 = Σ̂−1ΣΣ̂−1

=
(
Σ−1 + ϵ

)
Σ

(
Σ−1 + ϵ

)
= Σ−1 + 2ϵ + ϵΣϵ ≈ Σ−1 + 2ϵ ,

where the approximation is justified by small ∥ϵ∥

It follows that

σ2(ω̃, Σ̃)︸   ︷︷   ︸
Small Var.

=
1

1⊤Σ̃−11
≈

1
1⊤Σ−11 + 2 · 1⊤ϵ1︸︷︷︸

↑ as ∥ϵ∥↑

≤ σ2(ω̂, Σ̂)︸   ︷︷   ︸
Medium Var.

,

and the following ratio is (typically) monotone increasing in ∥ϵ∥:

σ2(ω̂, Σ̂)
σ2(ω̃, Σ̃)

=
(Medium Var.)
(Small Var.)

≥ 1



Volatility Ratio

Define the volatility ratio (VR) as

(VR) ≜
σ(ω̂,Σ)
σ(ω̂, Σ̂)

=
(Actual volatility of ω̂)

(Predicted volatility of ω̂)

=

√
(Large Var.)

(Medium Var.)
=

√
(Medium Var.)
(Small Var.)

=
σ(ω̂, Σ̂)
σ(ω̃, Σ̃)

≥ 1 ,

which is monotone increasing as ∥ϵ∥ gets larger

Return



True Factor Structure in (baseline) Simulation

Our setup of the return generating process is empirically calibrated
Return

Broad Factors (K0 = 4) Country Factors (K1 = 16)
Volatility No. of Stocks Volatility No. of Stocks

Market 16.00% 2000 Country 1 13.00% 154
Style 1 8.00% 2000 Country 2 12.38% 69
Style 2 4.00% 2000 Country 3 18.53% 159
Style 3 4.00% 2000 Country 4 15.91% 76

Industry Factors (K2 = 11) Country 5 24.93% 178
Industry 1 11.51% 143 Country 6 18.14% 99
Industry 2 12.74% 291 Country 7 11.86% 177
Industry 3 13.00% 131 Country 8 17.57% 19
Industry 4 15.08% 144 Country 9 16.43% 203
Industry 5 13.99% 115 Country 10 24.41% 73
Industry 6 17.80% 251 Country 11 14.31% 56
Industry 7 14.07% 258 Country 12 12.03% 247
Industry 8 12.22% 53 Country 13 13.33% 171
Industry 9 9.80% 109 Country 14 13.79% 75

Industry 10 13.11% 171 Country 15 18.29% 135
Industry 11 21.23% 334 Country 16 22.59% 109



Extended Simulation: Variable Volatility Factors

Variable Volatility Factor Structure Return

▶ Factor volatility switches between normal and crisis states according to a
Markov regime-switching (MRS) mechanism as a latent Markov chain st ∈ {0, 1}

▶ The transition matrix P containing the probabilities

pi|j = P
(

st = i| st−1 = j
)

of switching from regime j at time t − 1 to regime i at time t

P =
[
p0|0 p1|0
p0|1 p1|1

]
=

[
0.998 0.002
0.008 0.992

]
,

where the expected durations given by

D0 = 1/(1 − p0|0) = 500 (days) = 2.0 (years)

D1 = 1/(1 − p1|1) = 125 (days) = 0.5 (years)

▶ During the normal period (i.e., st = 0), the factor volatilities are drawn from the
same distribution as the baseline simulation setup

▶ For the crisis regime (i.e., st = 1), we assume that the volatilities of the (market,
style, country, industry, idiosyncratic) factors are multiplied by (2.0, 1.5, 1.5,
1.5, 1.25), respectively



Extended Simulation: Time-varying Factor Loadings

We extend the simulation setup by allowing variable factor loadings
over time
▶ We assume that the broad factor exposures are time-varying based

on the mean-reverting Ornstein–Uhlenbeck process

dβi
t = κ

(
β

i
− βi

t

)
dt + σidZt ,

where βi
t =

[
βi

0,t, β
i
1,t, β

i
2,t, β

i
3,t

]⊤
is the time-t broad factor loadings

specific to firm i, and Zt is a K0-dimensional standard Brownian motion
▶ For simplicity, we assume that the narrow factor loadings are binary

constants
▶ We set the initial broad factor loadings and the long-run mean level of

the factor loadings as the true broad factor exposures in the baseline
simulation setup

Return



Responsive adjustments for Daily Prediction

Responsive Covariance Adjustments (RCA) Return

▶ As N,T→∞, the LH-PCA scheme consistently estimates the asymptotic
covariance matrix, which is given by limN,T→∞ ΣN(T)

▶ This estimate is distinct from the covariance matrix that will be encountered on
the subsequent day of estimation, when dealing with dynamic factor models

▶ This disparity has the potential to lead to empirically inaccurate out-of-sample
predictions of the true covariance matrix on a daily basis

We institute a Responsive Covariance Adjustment (RCA) estimating
current covariance matrix
▶ Exponentially weighted moving average with 40-day half-life
▶ Applied separately to the factor returns, on the one hand, and the idiosyncratic

factor returns, on the other hand, to correct for changing factor volatilities



Responsive Covariance Adjustment (RCA)

In real-world financial markets, volatility is constantly changing with
clustering property Return

▶ Standard practice is to address variable factor volatility based on the
Exponentially Weighted Moving Averages (EWMA) model using a
Responsive Covariance Adjustment (RCA)

Practitioners often assign more weight to recently realized returns than
distant observations to capture the contemporaneous volatility structure
▶ Within each trailing window of T days, a decay factor η ∈ (0, 1) yields the

adjusted factor-based return covariance
▶ Simply put, the daily forecast of factor-based return covariance matrix

estimated on day t is given by

Σ̂N×N(t + 1) =
T−1∑
m=0

ωmξ
⊤

t−mξt−m ,

where the weights satisfy
∑T

m=1 wm = 1 and decrease by fixed proportion as
ωm+1 = ηωm

▶ A half-life of TS trading days corresponds to setting η = exp
( log 0.5

TS

)
as the

decay factor.
▶ In our study, we set TS = 40 days so that the decay factor is η ≈ 0.9828



Number of PCA Eigenfactors to extract

Determining the Number of PCA Eigenfactors Return

▶ Existing literature highlights that the consistent principal component
estimation of weak factors and their associated loadings depends on
the degree of their weakness; refer to, for example, Freyaldenhoven
(2022), Uematsu & Yamagata (2023), and Bai & Ng (2023)

▶ Corollary 2 in Uematsu & Yamagata (2023) points out that the Bai &
Ng (2002) estimators remain valid for determining the number of
relevant (eigen)factors under more general (yet reasonably mild)
conditions

▶ ..., where principal component estimates of the factors are consistent
with potentially variable weak factor loadings



Definitions of BS / MRAD / Q-statistics

Z-score: zt =
(Realized GMVP return)t+1

(Predicted GMVP volatility)t
=

Rt+1 ω̂t

σ(ω̂t, Σ̂t)
▶ zt is a realized GMVP return after standardization with its predicted volatility

Bias Statistics: BSt(τ) =

√√
1
τ

t∑
k=t−τ+1

z2
k

▶ τ is the number of (moving) windows in the testing period
▶ If the forecasts are accurate, the realized BS should be close to one

Mean Rolling Absolute Deviation:

MRADt(u; τ) =
1

τ − u + 1

t∑
k=t−τ+u

∣∣∣∣BSk(u) − 1
∣∣∣∣

▶ The rolling window moves forward one day at a time to the end of the entire
sample period

▶ We set the block size u = 12 trading days following conventional practice

Q-statistics: z2
t − log z2

t (Patton, 2011) Return



Empirical Analysis: Data cleaning procedures

CRSP: following the standard finance literature, we use stocks that are
▶ identified as common stocks (share code 10, 11)
▶ listed on AMEX, NASDAQ, and NYSE (exchange code 1, 2, and 3)
▶ not investment funds, trusts, REITS (exclude SIC code 6722, 6726, 6798,

6799)
▶ Micro stocks (maximum closing price < $5) are dropped from our sample

EURO: in the similar context, we incorporate stocks that are
▶ identified as common, ordinary stocks (tpci code 0)
▶ not investment funds, trusts, REITS (exclude SIC code 6722, 6726, 6798,

6799)
▶ holidays are removed
▶ Illiquid stocks (the percentage of the imputed closing prices > 50% of the total

sample for each security) are dropped from our sample

We include all of the tradable stocks in the market
▶ When a stock does not trade on a given day, we use the average of the closing

Bid and Ask as the closing price for CRSP dataset
▶ Since closing Bid and Asks are not available for EURO dataset, we interpolate

the closing price linearly between the last previous and next future closing price
Return
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