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WHAT Do WE MEAN BY Risk?

m Decomposition of financial risk

> First order risk vs. Second order risk
- Shepard (2009, WP)  @EED
- Bernardi, Leippold & Lohre (2019, RISK)

> Volatility vs. Uncertainty
- Ait-Sahalia, Matthys, Osambela & Sircar (2024, JoE) @EEEED
- Anderson, Ghysels & Juergens (2009, JFE)

> Known risk vs. Unknown risk

- Elisberg (1961, QJE): Ambiguity (= unquantifiable risk)
- Brenner & Izhakian (2018, JFE)

m Statistical perspectives
> Standard deviation vs. Standard error @EEETD
> Variability (from a distribution) vs. Model risk & Calibration risk



https://www.risk.net/journal-of-risk/6310451/second-order-risk-of-alternative-risk-parity-strategies
https://www.sciencedirect.com/science/article/abs/pii/S0304405X09001275
https://www.sciencedirect.com/science/article/abs/pii/S0304405X18301831

(CLassicAL) MEAN-VARIANCE FRAMEWORK

m Markowitz (1952) model for portfolio optimization

> Our primary focus lies within the estimation of © and ©!
> We don’t examine whether the risk factors are priced

. 1
minimize -o'Xw

2
subjectto TH=1
w'l1=1

m Second Order Risk (SOR) issues
> Known to be (extremely) sensitive to parameter estimates (g, )

= Small errors in the estimates of these values may substantially misstate
efficient allocations (i.e., error maximization)

= The significance of estimation error on p diminishes in short-horizon
optimization (e.g., by simply assuming p ~ 0)

> Mitigating the estimation error of £ & ! is essential for determining

admissible portfolio compositions within a given risk budget
= When the dimension becomes large, the estimation based on historical

observations is generally challenging




OBJECTIVES

= The main objective is to mitigate the second order risk (SOR)
originating from a dynamic factor model at the portfolio level by
extending T (i.e., Tar — T1)

m Specifically, this study aims to ...
(i) accurately forecast the population covariance matrix (X) and the
precision matrix (X!) of many stock returns (i.e., N > 2000)
(i) on a short-term (i.e., daily) basis
(iii) within the Long-History PCA (LH-PCA) framework with
T, (> Ty ~ 250) days to mitigate the finite-sample error




PRACTICAL CHALLENGES

m Recognizing (and addressing) SOR bias is crucial but difficult

> The true covariance matrix is unobservable in reality
> We need a proxy measure that is observable in practice

m Extending covariance estimation to the temporal domain introduces
nontrivial challenges
> Extending T (from Ty to T1) requires a Dynamic Factor Model
(DFM) approach
> The consistency of the principal component (PC) estimates needs to
be verified

m Broad (strong) + narrow (weak) factor issue
> Narrow (weaker) factors impact only a portion of the underlying assets
and pose greater challenges in detection
> PCA blends narrow (weaker) factors with broad (stronger) factors




CHALLENGES / APPROACHES / LESSONS

m The estimation error (e.g., ||Z — £|| ) is not directly observable in reality
> Realized Volatilities (RV) vs. Bias Statistics (BS) of MV portfolios
= BS can serve as a more definitive SOR measure than RV of MV portfolios

m The risk factor structure may not be static over (longer) time
> Tum (= 1~ 2 years) with Static Factor Model (SFM) vs. T; (~ 5 ~ 6 years) with a
Dynamic Factor Model (DFM)
= Under DFM, PCA can consistently estimate = and Z~! under the ‘large-N &
large-T" framework (subject to mild regularity conditions)

m The factor strengths may not be homogeneous (strong + weak factors)
> Homogeneous (Broad only) vs. Heterogeneous (Broad + Narrow) factors

= PCA with longer history can significantly reduce SOR bias in portfolio
optimization with simulated and empirical data with heterogeneous factor

strengths




RESTATING OUR OBJECTIVES

m This study aims to ...

(i) accurately forecast the population covariance matrix (X) and the
precision matrix (X') of many stock returns (i.e., N > 2000)

(i) on a short-term (i.e., daily) basis

(ifi) within the Long-History PCA (LH-PCA) framework with
T, (> Ty ~ 250) days

(iv) under dynamic factor model with weaker loadings

(v) across simulated and empirical datasets




(OBservaBLE) SOR Bias MEeAsURES




MEASUREMENT OF THE ESTIMATION ERROR

m In practice, we can never observe the true covariance matrix

m Instead, we obtain an estimated covariance matrix £, which may
be contaminated by finite-sample estimation errors
> The finite-sample estimation errors produce the excess dispersion
bias in the estimated factor loadings (T < N)
> The excess dispersion bias becomes more pronounced in the
presence of the weak (typically narrow) factors
> The estimated minimum variance portfolio is substantially more

volatile than predicted » Sources of excess dispersion bias

m Notations
> w: the true GMVP weights based on X (unobservable)
> &: the estimated GMVP weights based on . (observable)
> o(w,X): the true volatility of w from £ (unobservable)
> o(d,%): the predicted volatility of & from 3 (observable)
> a(d,X): the actual (= to-be-realized) volatility of & from X (observable)



PortroLio OpTimizATION (REVIEW)

m The true GMVP and its variance

z=i1] ) . 1
W= T = (wl)=w Xo= T
m The estimated GMVP and its predicted variance
31 a A 1
o= ZA LI (0,2 =0 Ed = —
17211 17211




EsTiMATION ERROR IN 3,71

= Define e 2 £~' — £~ as the estimation error of the precision matrix
m The predicted variance of the estimated GMVP

(Predicted variance of ®) = 6*(®, %)
_ 1 _ 1
T 1T (El+e)l 1Tl +17el

= A stylized fact is that the finite-sample estimation error in £
(typically) underpredicts the GMVP volatility as the error increases

- 1
2/ A
,Z = as |le
*(@,8) = ==L as [lell1
N——

T as |lellT




VoLATiLiTY RATIO vs. AcTUAL VOLATILITY

= Define the volatility ratio (VR) as

(VR) = o(@,X) _  (Actual volatility of @) ~ [17TZ11+2-17¢l 51
T o(@,%) (Predicted volatilty of @) = V 171+ 17el 7

which is monotone increasing as ||e|| gets larger (when eXe negligible)

= Notice that the actual volatility of @ (i.e., o(@, Z)) may not have a monotone
relationship with |le]| as

(@, %) = o(@,%) - (VR)
—_—— ~—
lLas|elr 1TaslelT

m This implies that (VR) is a better proxy than o(®, Z) for measuring the
estimation error in &' across different approaches




A (SimpLe) NUMERICAL EXPERIMENT

m N = 2000 stocks in the market

m K =5 uncorrelated factors

> |diosyncratic returns are uncorrelated with each other as well as with
the factor returns

m True factor loadings are drawn from a normal distribution with the
true dispersion 6,

m Construct the estimated covariance matrix £ contaminated by
adding an excess dispersion 6

(Total dispersion) = (True dispersion) + (Excess dispersion)

=0, =6

m Scenarios drawn from 1000 different seeds




A SimpLE NUMERICAL EXPERIMENT (CONT.)

(Average) Frobenious norm of the estimation error
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A SivpLe NumMERICAL EXPERIMENT (CO

Volatility ratio is a definitive & observable measure of the error

& (-5 Volatilty ratio (= Actual/Predicted) of the estimated GMVP
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A SivpLe NumMERICAL EXPERIMENT (CO

Actual volatility may be misleading to measure the estimation error
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AN ‘ILLUSION’ OF THE ACTUAL VARIANCE

m For T # %, suppose that 22! has an eigenvector close to the vector of
ones;i.e., LY 1 ~ A1 for some A > 0

= In this case, we have

m This implies that
. Iz s il
(Actual variance of ) = ———
(17£-11)
A 2
(re)
IETL (qrgag)
1
~ el

= (The variance of the True GMVP)



SummMARY oN THE SOR BIAS MEASURES

m We define |le] = ||£~! — 27| as the (ideal) SOR bias measure,
which is unobservable in practice
> When |le|| > 0 underestimates the predicted volatility of the estimated
GMVP, the volatility ratio (VR) is a good proxy of ||e||
> Bias Statistic (BS) is a statistical proxy for VR in the empirical analysis

> If the true covariance matrix X is time-varying, MRAD and/or
Q-statistics may be better than BS for measuring the SOR bias for

empirical studies

m On the other hand, the actual volatility, which can be statistically
proxied by the realized volatility (RV), of the estimated GMVP
cannot serve as a definitive measure of |||




Long-History PCA (LH-PCA)




ResearRcH QUESTIONS & ANSWERS

(RQ1) Under the ‘large-N and large-T" framework, can PCA be a
consistent method for estimating the dynamic factor model based
on variable factor and idiosyncratic volatility structure with
time-varying factor loadings?
= Yes, under reasonably mild assumptions.

(RQ2) Does the LH-PCA approach with T} outperform variants of the
traditional PCA method with T, in mitigating the SOR bias in the
presence of both broad (strong) and narrow (weak) factors?

= Yes, our simulation study and empirical findings support
this result.




MAIN CONTRIBUTION (SUMMARY)

m We show that LH-PCA consistently estimates factor loadings under
dynamic factor models

> |t justifies the use of PCA in the setting of variable factor and
idiosyncratic volatilities with dynamic & weaker factor loadings

m We demonstrate, both in simulation and empirically, that the use of
long histories (T;) substantially mitigates the SOR bias
> We estimate factor loadings with a longer history (T, ~ 1500 days)
> ... and predict the portfolio volatility on the next day using the
Responsive Covariance Adjustment (RCA) scheme with a short
data history (half-life Ts = 40 days)




MAIN THEOREM IN THE ‘LARGE-N & LARGE-T’ FRAMEWORK

m Consider the N x N population covariance matrix within the observation
time window T given by

(Rrn)" (Rrn)

In(T) = T

and define

7 T
TN(T) = Y:, diag[% Z (yt,)Z]YN + diag(% Z (vt,)z] )
t=1

t=1

Theorem (Convergence of population covariance matrices)

By letting N, T — oo, we have

2

1 = 1
HN(ZN(T) - ZN(T)) . O (min{N, T})




For PRrecisioN (= INVERSE CovARIANCE) MATRICES

m Forall N, T, suppose that both Zy(T) and Zx(T) are invertible, and there
exists some ¢ > 0 such that

min {/\min(ZN(T))r /\min(EN(T))} >é&,

where Anin(A) represents the smallest eigenvalue of A

Corollary (Convergence of precision matrices)

By letting N, T — oo, we have

2

j"v(m)-

H %(E;fm - 2;,1<T>)

(Note) The additional assumption regarding the uniform boundedness (away
from zero) of the minimum eigenvalue is consistent with the presence of a fixed
number of factors with non-zero factor volatilities.



(APPROXIMATED) FACTOR-LOADING ESTIMATION

® Justification of using (LH-)PCA for estimating Xy

Corollary (Variable volatility with time-varying factor loadings)

Fixk e {1,...,K}. By letting N, T — oo, we can choose the k' eigenvector of

[y o)
ZN(T) - dlllg Z T

t=1

converging in probability to the k'™ row of (iN)k.'

(Note) The average error in estimating Xy by (LH-)PCA vanishes at the rate

1
O (min{NHax, T}) '
Refer to Proposition 2 of Bai & Ng (2023).



SIMULATION STuDY




EXTENDED SIMULATION: SETUP

= True (Strong & Weak) Factor Structure

> N = 2000 stocks in the market
> 4 Broad & 27 (= 11+16) Narrow Factors

m Variable Volatility Factor Structure
> Markov Regime Switching (MRS)

= Time-varying Factor-loading dynamics
> Mean-reverting Ornstein—Uhlenbeck process

m We institute the two-history scheme to forecast the = and ! that will be
realized on the next day

> Estimated factor loadings come from LH-PCA over T; = 1500 days window
> Estimated GMVP based on RCA from EWMA with Ts = 40-day half-life

= Number of (eigen-)factors to extract

> In our study, we employ the Bai & Ng (2002) estimator and determine the
number of PCA eigenfactors within each moving window



EXTENDED SIMULATION (CONT.)

Prediction error vs. Volatility Ratio (Actual / Predicted); 1000 seeds
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EXTENDED SIMULATION (CONT.)

Prediction error vs. Volatility Ratio (Actual / Predicted); 1000 seeds
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EXTENDED SIMULATION (CONT.)

Prediction error vs. Actual vol. of the estimated GMVP; 1000 seeds
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EXTENDED SIMULATION (CONT.)

Prediction error vs. Actual vol. of the estimated GMVP; 1000 seeds
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EmPIRICAL ANALYSIS




EmPIRICAL ANALYSIS: DATA AND SAMPLES

m Datasets: CRSP and EURO (Compustat Global) data 2001-2021 (21 years)

> We need six-year history to make predictions, so predictions are for 15 years
2007-2021

m We consider overlapping six-year windows, including stocks that are
present throughout each window (Average: 2,260 CRSP and 2,520 EURO)

> Qur analysis is largely free of survivorship bias by addressing delisting issues
> All of the losses leading up to the demise of a stock were included in our
analysis for the appropriate day

» Details on the data cleaning procedures

m Confidence intervals can be approximated by bootstrapping samples of the
realized Z-scores with replacement for cross-validation

> Winsorized daily Z-scores at the 0.25"" and 99.75!" percentiles to mitigate the
distortionary impact of outliers



EMPIRICAL ANALYSIS (CONT.)

Bias Statistics (CRSP & EURO; Bootstrapped)
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EMPIRICAL ANALYSIS (CONT.)

Bias Statistics (CRSP & EURO; Bootstrapped)

Bias Statistics (CRSP) Bias Statistics (EURO)
2.0

L A
|l . <

[ PCA [ GPS [ LH-PCA




EMPIRICAL ANALYSIS (CONT.)

MRAD (CRSP & EURO; Bootstrapped)
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EMPIRICAL ANALYSIS (CONT.)

MRAD (CRSP & EURO; Bootstrapped)
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EMPIRICAL ANALYSIS (CONT.)

Q-Statistics (CRSP & EURO; Bootstrapped)
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EMPIRICAL ANALYSIS (CONT.)

Q-Statistics (CRSP & EURO; Bootstrapped)
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EMPIRICAL ANALYSIS (CONT.)

Realized Volatility (CRSP & EURO; Bootstrapped)
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ConcLusioN & Future RESEARCH




CONCLUSION

When [le|| = |£7! — 27| > 0 underestimates the predicted volatility of the
estimated GMVP, the volatility ratio (VR), which can be statistically
approximated by the bias statistics (BS), is a good proxy of ||e||

> The actual volatility, which can be statistically proxied by the realized volatility
(RV), of the estimated GMVP cannot serve as a definitive SOR measure

Variants of PCA with a one-year history of data generally performs poorly in
estimating = and =~! when N gets larger with our empirical datasets

We show that LH-PCA can consistently estimate =~! under the dynamic
factor structure with arbitrary variable volatility of factors and time-varying &
weaker loadings

> Theoretical justification + Simulation + Empirical evidence

Future research topics

> LH-PCA leaves room for further improvements

= Optimal choice of T} guided by data + Eigenvector corrections
= Sparse Dictionary Learning to better estimate the weak (narrow) factors

> Asset pricing implications by examining the (weaker) factor prices



Thank you!
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APPENDIX




FIRST ORDER RISK VS. SECOND ORDER RISK

“... Classical finance assumes the markets to be like a game of chance:
Although future events are uncertain, the distribution of these events is
known. ... Unfortunately, real financial markets do not behave like a
game of chance. ... Our estimates of financial risk are uncertain,
based on limited historical observation, extrapolated forward.”

“... Managing a portfolio to a risk model can tilt the portfolio toward
weaknesses of the model. As a result, the optimized portfolio acquires
downside exposure to uncertainty in the model itself, what we call
second order risk.”

- Shepard (2009)
“Second Order Risk”



VOLATILITY vS. UNCERTAINTY

“.. Although the notions of uncertainty and volatility are often used
interchangeably, the two concepts are inherently different:
volatility measures the dispersion of short-term shocks around a
long-term mean, while uncertainty measures the difficulty to
forecast the distribution of returns, including its long-term mean.”

- Ait-Sahalia, Matthys, Osambela and Sircar (2024)

“When Uncertainty and Volatility Are Disconnected: Implications for
Asset Pricing and Portfolio Performance”



STANDARD DEVIATION VS. STANDARD ERROR

“.. The standard deviation is a measure of the dispersion, or
scatter, of the data. ... In contrast, the standard error provides an
estimate of the precision of a parameter (such as a mean,
proportion, odds ratio, survival probability, etc) and is used when
one wants to make inferences about data from a sample to some
relevant population.”

- Biau (2011)
“In Brief: Standard Deviation and Standard Error”



LATENT FACTOR MODELS

= In practice, the estimation typically focuses on a set of latent factors that
are computationally convenient (but less interpretable), characterized by
orthogonal exposure vectors with the identity covariance matrix

> For a given number of securities at each time, without loss of generality, one
can apply Gram-Schmidt to transform a correlated factor structure into a new

latent factor representation,
> ... where (latent) factors are uncorrelated in population and exhibit orthogonal

(latent) factor loadings

m Latent factor models are extensively used by practitioners in finance
> Variants of PCA, a long-established method for dimension reduction, are used
in commercially available latent factor models



PCA ESTIMATION FOR LINEAR FACTOR MODELS

m PCA is attractive for predicting short-term risk

m The traditional PCA approaches require temporal stability, assuming a
static factor structure

> In practice, risk factor structure changes its shape rapidly over time indicating a
dynamic evolution in the underlying factor structure

= Most practitioners are unwilling to run PCA over data histories longer than
one or two years for large portfolios (T < N)
> An exception is Northfield, which uses a hybrid model in which stock returns
are first regressed on various fundamental factors
> It uses exponentially weighted regressions over 60 months of monthly data; it
then extracts five PCA factors from the residuals



ESTIMATION ERROR OF X IN FINITE SAMPLES

m Finite-sample estimation error
> The sample covariance matrix based on the observed data is singular when
the dimension (N) is larger than the sample size (T)
> (e.g.) Shrinkage estimates of the sample covariance matrix (Ledoit &
Wolf 2004, LW)

m PCA estimation of (linear) factor models (T =~ 250 ~ 500 trading days)
> Linear factor model estimated by PCA with T, (— Excess dispersion bias)

> Correction of the leading eigenvector (Goldberg, Papanicolaou &
Shkolnik 2022, GPS) based on PCA with Ty,

m Commercially available factor models typically use a two-history algorithm
> A variant of PCA over a medium data history of T, to estimate the factor
loadings (+ bias correction)
> Exponentially Weighted Moving Average (EWMA) volatility model with a short
half-life, such as Ts ~ 40 days, to estimate current factor variances

m We empirically observe that variants of this approach with Ty, suffer from a
significant amount of SOR bias



MoTIVATION

m Motivation @D
(i) Estimating X is a fundamental problem in statistics and finance
(e.g.) statistical inference, efficient asset allocation, portfolio risk
management, ...
- Estimated X! plays the pivotal role in determining the optimized
minimum-variance portfolios

(i) Sometimes volatility changes become too rapid and extreme to be
reliably captured from low frequency observations
- Daily risk predictions are appropriate for short-term investors, such as
hedge funds and other leveraged institutional investors

- In addition, risk predictions at longer horizons typically take short-term
volatility as an input



DYNAMIC FACTOR MODEL ASSUMPTIONS

m Bates et al. (2013) = (RQ1)
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STRONG AND WEAK FACTOR MODEL ASSUMPTION

= Bai and Ng (2023) = (RQ2)
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Dynamic FAcTor MobpEL oF Stock RETURNS

m For some T, N € IN, the observable return matrix is given by Ry € RTN,

> Attime t €{1,...,T}, the return of the security n € {1, ..., N} is generated by the
linear (latent) factor model as

K
Ry = Z (Ptk (Xt)kn + &,
k=1

where X; € RK*N is the time-t factor exposures corresponding to the N
tradable securities

m Factor returns (¢ ) + idiosyncratic returns (e,):
> We assume that E (¢tk) =0and Var( fk) =y fork=1,..., K
>y € [0,M] is the factor volatility of ¢

> We further assume that Var (¢4,) = vfn, where vy, € [0, M] is the idiosyncratic
volatility of &4,



Dynamic FAcTor MobpEL oF Stock RETURNS (CONT.)

m Time-varying factor loadings (X;): (Bates et al., 2013)
> For each t, we follow Bates et al. (2013) by specifying the dynamics of X; as

X; = Xy + e,

where hyr > 0 may depend on the pair of (N, T) and &N € RV is a (possibly
degenerate) stochastic process

m Bates et al. (2013) show that some mild regularity conditions satisfy
(i) white noise, (ii) random walk, (iii) (single) large break of X;
with practically reasonable form of hyr:

> Conditions in Assumption 4 (Factor Loading Innovations)
> Assumptions of Corollary 1



STRONG & WEAK (BASELINE) FACTOR LOADINGS

m Strong (only) factor loadings (Bai & Ng, 2002, and many others)

> Foreach N € N, )_(N has rank K and the rows of XN are orthogonal, and there
exists some diagonal matrix D € RX*K such that

1— —
ZT]XNX,T,AD as N—

m Strong + Weaker factor loadings (Bai & Ng, 2023)
> Intuition: For some a € (0,1], (% — 1)
%XNX;—]LD as N - o

> Allowing the strengths of baseline loadings to vary across factors, let
1>a; >--- > ag > 0 so that the weakest baseline loading has strength
ag € (0,1]

> Define the K x K normalization matrix
By = diag(NTl,...,NTK)
> There exists some diagonal matrix D € R®*K such that

BIXNXyBl B D as N— oo
N ANANPN



ASSUMPTIONS OF X;

m There exist envelope functions Q;(N, T), Q»(N, T) and Qs(N, T) such that
the following conditions hold for all N, T and factor indices p,q,r,{ =1,...,K

gmzﬁgnﬁWm@M<@WD,

ij=1
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m The following conditions hold:
e Qi(N, T) = O(N)
e Q2(N, T) = ONT?)
min{N, T} iy, Q3(N, T) = O(N°T?)



RELATED LITERATURE

= Kan and Smith (2008)
> ... prove under the i.i.d. normality assumption of returns that the finite-sample
minimum-variance frontier is a significantly biased estimator of the true
population frontier
> As such, optimizing a stock portfolio using an estimated (sample) covariance
matrix, or an estimated covariance matrix that has been dimensionally reduced
by PCA, is problematic in terms of the out-of-sample performance

m Ledoit and Péché (2011) and Wang and Fan (2017) among others
> ... propose corrections of the eigenvalues (= variances) to mitigate this
problem

= Goldberg, Papanicalaou and Shkolnik (2022; hereafter GPS)
> ... identified excess dispersion in the estimated dominant eigenvector as a key
source of the problems with optimized portfolios
> They propose a correction to the estimated eigenvector (= exposure)
corresponding to the largest eigenvalue
> ... in a theoretical one-factor model and in a simulation involving only broad
factors



SourcEs ofF DispersioN Bias: FACTOR LoADING ESTIMATION

m PCA estimation: R ~ VW by minimizing |IR — VW|]2

> VisaT x K matrix of estimated factor returns with |V ;| =1
> W is a K x N matrix of estimated stock factor loadings
> Uis an N x K matrix, where V = RU

W=URR=UT (XT¢T¢X +XTpTe+(XToTe) + eTs)

m By assumption, factor returns and idiosyncratic returns are uncorrelated:
¢Te=0
= In a finite sample, the factor returns and idiosyncratic returns appear
correlated, and
¢Te#0
> The estimated factor loadings are contaminated and exhibit excess dispersion
in finite sample
> Estimated factor loadings of some stocks appear to be smaller than they

actually are, and the optimizer will choose to increase their weights in the
portfolio (and vice versa) = Underestimation of MV portfolio risk



SouRces oF DisPersioN Bias: NARRoOw FACTORS

m Narrow (weak) factors cannot be captured cleanly by PCA
> To properly evaluate the risk of a portfolio, and especially to produce optimized
portfolios, we need our estimated covariance matrix to accurately reflect the
narrow factors

m When K <« T <« N, the idiosyncratic returns of some stocks will appear to
be very significantly correlated with the returns of some weak factors

> The finite-sample error contaminates the narrow and braod factor loadings
together, but the relative contamination of the narrow factor is much
greater than that of the broad (e.g., market) factor

> This contamination assigns nonzero estimated factor loadings on the narrow
factors, when the stocks are NOT exposed to them

> One can think of this as excess dispersion of the estimated factor loadings that
are, in fact, zero (= infinite relative error)



ACTUAL VARIANCE OF THE ESTIMATED GMVP

m Define £ £ $£¥-15 as the sandwich covariance matrix
m The actual variance of the estimated GMVP

(Actual variance of ®) = ¢?(d, X)
=0 Zd
_1TE ey
o @TE)
_1TE
@ty
o*(®,%) (Predicted variance of ®)
- 2(@, %) ~ (Predicted variance of @) ’

where @ is the weight vector of the estimated GMVP based on &

= 0%(&,%) isthe geometric mean of ¢*(®,X) and o*(@,%)
~— ~— ~—
Medium Var. Large Var. Small Var.



ERROR QUANTIFICATION OF 02(@, X)

= By the definition of e 2 &' — 21, we have
IR i) 2 I
(Zl+e)(z ™ +¢)

=Yl 4+2c+eXex X! +2¢,

where the approximation is justified by small ||e]|
m It follows that
1 1

o} (@,%) = — = T = < dX (@, %) ,
— 7 1TE 1T 42 1Tel T 2
Small Var. 1 as Il Medium Var.

and the following ratio is (typically) monotone increasing in |le||:

0%(@®,£) _ (Medium Var.)
o2(@,%)  (Small Var.)




VoLaTiLiTy RATIO

m Define the volatility ratio (VR) as

o(@,L)  (Actual volatility of @)

(VR) = o(0, %) (Predicted volatility of &)
_ | (LargeVar)  [(Medium Var) o(®,%) .
~ \ (Medium Var) = YV (SmallVar) ~ o(@,%) =

which is monotone increasing as ||e|| gets larger



TRUE FACTOR STRUCTURE IN (BASELINE) SIMULATION

m Our setup of the return generating process is empirically calibrated

Broad Factors (K, = 4) Country Factors (K; = 16)
Volatility ~ No. of Stocks Volatility ~ No. of Stocks

Market 16.00% 2000 Country 1 13.00% 154
Style 1 8.00% 2000 Country2  12.38% 69
Style 2 4.00% 2000 Country 3 18.53% 159
Style 3 4.00% 2000 Country 4 15.91% 76
Industry Factors (K, = 11) Country 5 24.93% 178
Industry 1 11.51% 143 Country 6 18.14% 99
Industry 2 12.74% 291 Country 7 11.86% 177
Industry 3 13.00% 131 Country 8  17.57% 19
Industry 4  15.08% 144 Country 9 16.43% 203
Industry 5 13.99% 115 Country 10 24.41% 73
Industry 6 17.80% 251 Country 11 14.31% 56
Industry 7 14.07% 258 Country 12 12.03% 247
Industry 8 12.22% 53 Country 13 13.33% 171
Industry 9 9.80% 109 Country 14 13.79% 75
Industry 10 13.11% 171 Country 15 18.29% 135
Industry 11 21.23% 334 Country 16 22.59% 109




EXTENDED SIMULATION: VARIABLE VOLATILITY FACTORS

® Variable Volatility Factor Structure

> Factor volatility switches between normal and crisis states according to a
Markov regime-switching (MRS) mechanism as a latent Markov chain s; € {0, 1}
> The transition matrix P containing the probabilities

pij =P (st =ilsp-1 =)
of switching from regime j at time ¢ — 1 to regime i at time ¢

~10.008 0.992

P- pop  Pipof _ (0998 0.002
Pon  Pin ’

where the expected durations given by

Do =1/(1 = pojp) = 500 (days) = 2.0 (years)
Dy =1/(1 - p1p) = 125 (days) = 0.5 (years)

> During the normal period (i.e., s; = 0), the factor volatilities are drawn from the
same distribution as the baseline simulation setup

> For the crisis regime (i.e., s; = 1), we assume that the volatilities of the (market,
style, country, industry, idiosyncratic) factors are multiplied by (2.0, 1.5, 1.5,
1.5, 1.25), respectively



EXTENDED SiMuLATION: TIME-VARYING FACTOR LOADINGS

m We extend the simulation setup by allowing variable factor loadings
over time

> We assume that the broad factor exposures are time-varying based
on the mean-reverting Ornstein—Uhlenbeck process

ipi = « (Bi - p;’)dt + o'z,

where B, = [ﬁf),t, B (B ﬁgrt]T is the time-t broad factor loadings
specific to firm i, and Z; is a Ky-dimensional standard Brownian motion
> For simplicity, we assume that the narrow factor loadings are binary
constants
> We set the initial broad factor loadings and the long-run mean level of

the factor loadings as the true broad factor exposures in the baseline
simulation setup



REsSPONSIVE ADJUSTMENTS FOR DAILY PREDICTION

m Responsive Covariance Adjustments (RCA) @D

> As N,T — o, the LH-PCA scheme consistently estimates the asymptotic
covariance matrix, which is given by limy 1, Zn(T)

> This estimate is distinct from the covariance matrix that will be encountered on
the subsequent day of estimation, when dealing with dynamic factor models

> This disparity has the potential to lead to empirically inaccurate out-of-sample
predictions of the true covariance matrix on a daily basis

m We institute a Responsive Covariance Adjustment (RCA) estimating
current covariance matrix
> Exponentially weighted moving average with 40-day half-life

> Applied separately to the factor returns, on the one hand, and the idiosyncratic
factor returns, on the other hand, to correct for changing factor volatilities



ResponsivE CovARIANCE AbJusTMENT (RCA)

m In real-world financial markets, volatility is constantly changing with
clustering property

> Standard practice is to address variable factor volatility based on the
Exponentially Weighted Moving Averages (EWMA) model using a
Responsive Covariance Adjustment (RCA)

m Practitioners often assign more weight to recently realized returns than
distant observations to capture the contemporaneous volatility structure

> Within each trailing window of T days, a decay factor n € (0, 1) yields the
adjusted factor-based return covariance

> Simply put, the daily forecast of factor-based return covariance matrix
estimated on day t is given by

T-1
Inxn(t+1) = Z wmég—_mét—m ’

m=0

where the weights satisfy ):,Tnzl wy, = 1 and decrease by fixed proportion as
W+l = NWm

> A half-life of Ts trading days corresponds to setting 1 = exp(k’ng‘s) as the
decay factor.

> In our study, we set Ts = 40 days so that the decay factor is  ~ 0.9828




Numser oF PCA EIGENFACTORS TO EXTRACT

m Determining the Number of PCA Eigenfactors ~ @GEID
> Existing literature highlights that the consistent principal component
estimation of weak factors and their associated loadings depends on
the degree of their weakness; refer to, for example, Freyaldenhoven
(2022), Uematsu & Yamagata (2023), and Bai & Ng (2023)

> Corollary 2 in Uematsu & Yamagata (2023) points out that the Bai &
Ng (2002) estimators remain valid for determining the number of
relevant (eigen)factors under more general (yet reasonably mild)
conditions

> ..., where principal component estimates of the factors are consistent
with potentially variable weak factor loadings



Derinimions oF BS / MRAD / Q-sTaTisTICS

(Realized GMVP return),.; Ry @
(Predicted GMVP volatility), — o(c,, £,)
> z; is a realized GMVP return after standardization with its predicted volatility

t
m Bias Statistics: ~ BSy(1) = ! Z z
Tk:t—'r+1

>t is the number of (moving) windows in the testing period
> If the forecasts are accurate, the realized BS should be close to one

m Z-score: Z; =

= Mean Rolling Absolute Deviation:

|\/|RADt(u;T)=T_1m 2 ‘BSk(u)—l'

k=t—t+u

> The rolling window moves forward one day at a time to the end of the entire
sample period
> We set the block size u = 12 trading days following conventional practice

m Q-statistics: 22 — log z? (Patton, 2011)  @GEID



EmPIRICAL ANALYSIS: DATA CLEANING PROCEDURES

m CRSP: following the standard finance literature, we use stocks that are
> identified as common stocks (share code 10, 11)
> listed on AMEX, NASDAQ, and NYSE (exchange code 1, 2, and 3)
> not investment funds, trusts, REITS (exclude SIC code 6722, 6726, 6798,
6799)
> Micro stocks (maximum closing price < $5) are dropped from our sample

m EURQO: in the similar context, we incorporate stocks that are
> identified as common, ordinary stocks (tpci code 0)
> not investment funds, trusts, REITS (exclude SIC code 6722, 6726, 6798,
6799)
> holidays are removed
> llliquid stocks (the percentage of the imputed closing prices > 50% of the total
sample for each security) are dropped from our sample

= We include all of the tradable stocks in the market
> When a stock does not trade on a given day, we use the average of the closing

Bid and Ask as the closing price for CRSP dataset
> Since closing Bid and Asks are not available for EURO dataset, we interpolate
the closing price linearly between the last previous and next future closing price
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