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Abstract

We study a continuous-time principal-agent problem where the risk-neutral agent can pri-

vately and meaningfully choose the drift and volatility of a cash flow, while the risk-neutral

principal only continuously observes the managed cash flows over time. Our model contributes

a result that is hitherto relatively unexplored in both the continuous-time dynamic contracting

and the delegated portfolio management literatures. Firstly, even though there is no direct moral

hazard conflict between the principal and the agent on their preferred volatility choices, but to

avoid inefficient termination and compensation from excess diffusion, this first best choice is not

reached; this is the “reverse moral hazard” effect. Secondly, the dollar incentives the principal

gives to the agent critically depends on the volatility choice, endogenous quasi-risk aversion of

the principal, and the elasticity to the exogenous factor level; this is the “risk adjusted sensi-

tivity” (RAS) effect. In a delegated portfolio management context, our model suggests outside

investors should prefer investment funds with the characteristics: (i) the investment fund has an

“internal fund” available only to management, or equivalently, a “flagship fund” that is closed

to new outside investors; (ii) the “external fund” for the outside investors closely tracks the

investment strategy and value of the internal fund; and (iii) has dynamic incentive fee schemes.

JEL classification: D82, D86, G32, J32

Keywords: continuous-time principal-agent problem, dynamic contracting, delegated portfolio

management, stochastic volatility control

∗Department of Finance, Haas School of Business, University of California, Berkeley. Email:

r leung@haas.berkeley.edu. I am deeply indebted to and grateful for the countless hours, encouragement, patience

and comments of both of my advisers, Robert M. Anderson and Gustavo Manso, on this project and other research

endeavors. I also thank Xin Guo, Dmitry Livdan, Alexei Tchistyi, and Johan Walden for very helpful discussions.

Comments and suggestions from the seminar attendees of the UC Berkeley Center for Risk Management Research,

UC Berkeley-Haas Real Estate Student Seminar, UC Berkeley-Haas Finance Student Seminar, and Berkeley-Stanford

Joint Finance Student Seminar are gratefully appreciated. All remaining errors are mine and mine alone.



1 Introduction

As of 2009, $71.3 trillion is invested into managed portfolios worldwide 1, and the vast majority of

these managed portfolios are under active management. Despite the prevalence and importance of

delegated portfolio management in the modern capital markets, surprisingly little is known about its

optimal contracting characteristics in a dynamic environment. The difficulty of approaching these

problems is succinctly captured by a remark in Cuoco and Kaniel (2011):

“A distinctive feature of the agency problem arising from portfolio management is that

the agent’s actions (the investment strategy and possibly the effort spent acquiring infor-

mation about securities’ returns) affect both the drift and volatility of the relevant state

variable (the value of the managed portfolio), although realistically the drift and the

volatility cannot be chosen independently. This makes the problem significantly more

complex than the one considered in the classic paper by Holmström and Milgrom (1987)

and its extensions. With a couple of exceptions, as noted by Stracca (2006) in his recent

survey of the literature on delegated portfolio management, ‘the literature has reached

more negative rather than constructive results, and the search for an optimal contract

has proved to be inconclusive even in the most simple settings’ ”.

To emphasize the point, the ability to influence the volatility of a managed cash flow is critical

in a delegated portfolio management context. Indeed, numerous papers have recognized that risk

shifting 2 behavior of the portfolio manager as an important source of moral hazard that is typically

not present in traditional principal-agent contexts, such as employer-employee and landlord-tenant

relationships.

Here, we present a continuous-time principal-agent model that represents both a first step in the

literature in dynamic contracting theory whereby the agent can explicitly and meaningfully privately

choose volatility, and equally important, also as a first step into understanding dynamic contracting

environment in the context of delegated portfolio management. We consider a dynamic contracting

environment in continuous-time with a risk-neutral agent and a risk-neutral principal, whereby the

agent can privately choose effort and volatility levels that affect both the mean and overall risk of

the cash flows. The principal can continuously observe the cash flows, but not the hidden choices

of effort and volatility that the agent chooses. In line with the literature, the agent enjoys a private

benefit from exerting low levels of effort (“job shirking”), and we also further assume that the agent

enjoys a private benefit from choosing high level volatility control (“lazy quality management”).

The expected payoff of the managed cash flows (i.e. the drift) is a “reward function” of both the

effort and volatility chosen by the agent. This is to roughly capture the classical “risk-reward trade

off” intuition of financial economics, particularly in portfolio choice theory. Here, effort is a binary

choice but volatility is chosen from a closed interval. The problem of drift only control, to various

degrees of sophistication, has been extensively studied in recent years (see Section 2 for a literature

review).

1Wermers (2011)
2See Stoughton (1993) and Admati and Pfleiderer (1997); see also Stracca (2006) for a summary on how the

delegated portfolio management problem presents unique challenges that are not present in standard principal-agent
problems.
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However, to the best knowledge of this author, continuous volatility control when the principal

can continuously observe the cash flows has been given little to no attention in the models commonly

used in the literature, and for good reason. Specifically, if the principal can continuously observe

the cash flows and the agent directly controls the volatility term of the cash flow, the principal can

compute the quadratic variation of the cash flow process, and thereby infer directly the choice of

volatility that the agent has been using. Hence, if indeed the agent has deviated from the principal’s

prescribed volatility level, the principal could in effect apply a “grim trigger” strategy and punish

the agent indefinitely thereon. By using this argument, the agent will never have any incentive to

deviate from the principal’s desired and prescribed volatility level, and thus, volatility control by

the agent can essentially be abstracted away. Yet economically, the absence of meaningful volatility

control by the agent is very unsatisfying. There are several important situations where allowing

the agent to influence the volatility of the cash flows is economically significant; for example, the

classical considerations of asset substitution in corporate finance 3 and risk shifting in delegated

portfolio management. Thus to have any meaningful volatility control by the agent, a richer model

of the agent managed cash flows is required.

The key ingredient of our model is to introduce an exogenous factor level component to the

overall diffusion term of the managed cash flows. In particular, we will allow the instantaneous

diffusion of the cash flows be a product of an exogenous factor level process that is completely not

managed by the agent, and a component that is directly controlled by the agent. The agent can

observe this exogenous factor term, and off equilibrium, this exogenous factor level is unobservable

to the principal, even though at equilibrium becomes observable to the principal. Thus when the

principal computes the quadratic variation of this cash flow process, the principal can at best observe

the product of an unobservable exogenous factor level and a controlled volatility term, but not the

two components separately. So economically, even if the principal observes high instantaneous cash

flow volatility through the computation of the quadratic variation, the principal cannot disentangle

whether this high volatility is due to a high realization of the exogenous factor level, high volatility

control by the agent, or both. Clearly, the principal should only punish or reward the agent for

the endogenous volatility control by the agent and not for the exogenous component. As well, in

line with the models of drift-only control by the agent, the principal must put the agent at risk to

induce the agent to work according to the principal’s desired and prescribed plan. However, given

that the agent can choose the volatility of the cash flows, the agent can effectively undo or weaken

some of the risks that the principal imposes on him. Thus, the incentives involved in a model with

combined drift and volatility control are, perhaps understandably, considerably more difficult than

a case with only drift control.

Let us now discuss economically the form of the optimal contract. The two relevant state variables

here are the agent’s continuation value process and also the exogenous factor level. The use of

the agent’s continuation value as a tracker to punish or reward the agent is a standard argument

in this literature (see Sannikov (2008)). The principal will terminate the agent when the agent’s

continuation value falls below the agent’s outside option, and the principal will receive some recovery

value of the firm. In addition, there exists a free boundary that is a function of the factor level,

3Say Leland (1998), among many others.
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so namely not a constant, such that when the agent’s continuation value first hits this boundary,

a lump sum compensation is made immediately from the principal to the agent. As it is common

with principal-agent problems both in discrete or continuous time, the principal needs to incentivize

and impose sufficient amount of risk to the agent’s payoff to ensure the agent will make those

latent choices that the principal desires. However, since the agent can directly influence the level of

uncertainty in this economy, namely through the agent’s choice of volatility, the agent effectively can

partially undo or weaken the amount of risk the principal imposes on him. Furthermore, the existence

of an exogenous factor level that affects both the principal and the agent further affects the amount

of risk the principal can directly impose on the agent. Thus, to this end, we will introduce a concept

labeled risk adjusted sensitivity (RAS) to represent the amount of risk the principal imposes on the

agent, or equivalently, the dollar-per-performance the agent is entitled to. Most notably, RAS is

identically a constant in drift-only control models like DeMarzo and Sannikov (2006) and He (2009),

and many others, but this is not the case here. Indeed, we can decompose and understand RAS

as coming from the volatility precision chosen by the agent, the “endogenous risk aversion” of the

principal, and the “elasticity of exogenous factor level”.

Bringing back the discussion and concrete application of delegated portfolio management, when

outside investors are seeking an investment firm, of which the prototypical example is a hedge fund,

with good corporate governance, our model suggests the outside investors should actively look for

investment firms with the following characteristics: (i) the firm has an internal fund available only to

management, and an external fund only available to external investors; (ii) the investment strategies

of the internal fund and of the external fund are closely correlated to each other; and (iii) the firm

has dynamic watermark compensation schemes.

2 Related Literature

This paper contributes to: (i) a growing literature on continuous-time principal-agent problems; and

(ii) continuous-time delegated portfolio management problems.

One of the first papers that considered a continuous-time principal agent problem is Holmström

and Milgrom (1987). Recent papers in the continuous-time principal-agent problem include DeMarzo

and Sannikov (2006) (of which DeMarzo and Fishman (2007) is the discrete-time counterpart), Biais,

Mariotti, Plantin, and Rochet (2007), Sannikov (2008), He (2009), Adrian and Westerfield (2009),

Hoffmann and Pfeil (2010), Grochulski and Zhang (2011), He (2011), Williams (2011), DeMarzo,

Fishman, He, and Wang (2012), He (2012), Szydlowski (2012), Miao and Zhang (2013), Miao and

Rivera (2013), Zhu (2013), DeMarzo, Livdan, and Tchistyi (2013), Giat and Subramanian (2013) and

Hoffmann and Pfeil (2013). We note that Biais, Mariotti, and Rochet (2011), Sannikov (2012a), and

Sannikov (2013) all give an excellent survey and overview of the current state in this literature. Please

see Table 1 for a selected survey of the models used in the literature; note that even though the table

enumerates the agent’s managed cash flow form, these papers often have very different assumptions

on the preferences of the agent and the principal, and some also have different assumptions of the

timing in which the principal can observe the cash flows.

All the aforementioned papers allow the agent to manage a cash flow in the form of a stochastic
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differential equation, of various levels of complexity, but the common setup is that the agent can

only exert effort to influence the drift of the cash flow but not its volatility. But in these sorts of

papers, the volatility parameter is held constant, known both to the principal and the agent. This

is without loss of generality in the case when the noise term of the cash flow is driven exclusively

by Brownian motion. DeMarzo, Livdan, and Tchistyi (2013) is an interesting example whereby the

cash flows have a jump component and the agent can influence the jump, but nonetheless, the agent

still does not (and cannot meaningfully) influence the volatility. To our best knowledge, there are

some notable exceptions and we will describe these below in Section 2.1 but regardless, none of them

allow for meaningful volatility control as in our context.

The setup of this model lends itself naturally to delegated portfolio management problems. As

emphasized by Stoughton (1993) and Admati and Pfleiderer (1997), and summarized in Stracca

(2006), delegated portfolio management problems present challenges that are not commonly con-

sidered in standard principal-agent problems; in particular, the portfolio manager has the ability to

influence both the expected return and also volatility of the managed returns or cash flows. While

managing expected return part, usually modeled as moral hazard hidden effort selection, is common

in standard principal-agent problems, managing volatility is not. Ou-Yang (2003) is one of the key

models in the delegated portfolio management literature but modeled in continuous time and we

will further discuss this case in Section 2.1.

The problem of “risk shifting”, namely changing volatility of the managed cash flows, is well

recognized as a key moral hazard component in the delegated portfolio management literature.

Basak, Pavlova, and Shapiro (2007) considers a portfolio manager’s risk taking incentives induced

by an increasing and convex relationship of fund flows to relative performance, and how this objective

could give rise to risk-shifting incentives. However, it should be noted that the contract in Basak

et al. (2007) is exogenously given and there is no explicit principal-agent modeling. Other papers

that investigate into risk shifting behavior by portfolio managers include: Chevalier and Ellison

(1997), Rauh (2008), Giambona and Golec (2009), Hodder and Jackwerth (2009), Foster and Young

(2010) and Huang et al. (2011). Stracca (2006) and Ang (2012) offer excellent recent surveys on the

literature in delegated portfolio management.

2.1 Selected important special cases

Several papers in the literature have some level of volatility control in the dynamic principal-agent

problem in continuous-time. However, all of them place various levels of restrictive assumptions on

the way the agent can control volatility, which is not imposed in our setup.

2.1.1 Sung (1995, 2004)

The papers by Sung (1995) and Sung (2004) are the closest in terms of volatility control but still

does not resolve the problem that we have in mind for this paper.

Let’s first review Sung (1995). The author considers a finite time horizon, [0, 1]. The cash flows

under management is of the form dYt = µtdt+ σtdBt, where the drift µt and volatility σt are under
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Cash flow dynamics References

Brownian motion
with controlled drift

dYt = µtdt+ σdBt Holmström and Milgrom
(1987), Biais, Mariotti,
Plantin, and Rochet (2007),
Sannikov (2008), DeMarzo
and Sannikov (2006),
Adrian and Westerfield
(2009), Zhu (2013)

Geometric Brow-
nian motion with
controlled drift

dYt = µtYtdt+ σYtdBt He (2009)

General Ito diffusion
with controlled drift

dYt = f(t, Y,µ)dt+ σ(t, Y )dBt Schaettler and Sung (1993)

Brownian motion
with controlled drift
and controlled jump

dYt = (α + ρµt)dt + σdBt − DµtdNt,
α, ρ,D constants

DeMarzo, Livdan, and
Tchistyi (2013)

Brownian motion
with controlled
drift via long run
incentives

dYt = δtdt+σdBt, δt =
∫ t

0
f(t−s)µsds Sannikov (2012b)

Controlled Poisson
intensity

dYt = CdNt, N has intensity process
{µt}t≥0, C > 0 constant

He (2012)

Linear Ito diffusion
with controlled drift
and volatility

dYt = f(µt,σt)dt+ σtdBt (∗) Sung (1995, 2004)

Geometric Brownian
motion with same
control on drift and
volatility

dYt = [rYt + µt(α − r)]dt + µtκdBt,
r, α, κ constants

(∗) Ou-Yang (2003)

Geometric Brow-
nian motion with
controlled drift and
volatility

dYt = κYtdt + δµtdt + ασtVtdt +
σtVtdBt, κ, δ, α constants

(∗) Cadenillas, Cvitanić,
and Zapatero (2004)

Table 1: A selected survey of agent’s managed cash flows in the existing literature. Here, B denotes a
standard Brownian motion and N denotes a Poisson process. For consistency, the notations here
differ from that of the original papers. The agent’s control (in bold for emphasis) is µ = {µt}t≥0

(and where relevant, σ = {σt}t≥0). For the (∗) starred cases where volatility is (seemed to be)
under control, please see section 2.1 for discussions of their key caveats.
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the agent’s control. A contract is signed between the principal and the agent at time t = 0 and

the agent is compensated at time t = 1. The agent incurs an integrated cost
∫ 1

0
c(µt, σt)dt for

choosing between the drift µt and σt over the investment horizon [0, 1]. The principal is restricted to

compensate the agent according to an exogenously fixed “salary function” S. The author considers

two cases. In the first case, the principal observes the entire path of {Yt}t∈[0,1] and hence can also

observe σt across this path (i.e. via the quadratic variation of Y ). Hence, there is no need for the

principal to provide incentives to control the volatility σt. In the second case, the principal can only

observe the ending cash flow value Y1. In such a case, the principal cannot know what volatility

control σt the agent had chosen over the investment horizon [0, 1].

Sung (2004) is similar to Sung (1995), except that the author allows for a more general specifi-

cation of the cash flow process, and restrict to the second case setup of Sung (1995), whereby the

principal can only observe the initial Y0 cash flow and the terminal Y1 cash flow. Specifically, Sung

(2004)’s specification is of the form dYt = f(µt, σt) + σtdBt, where the agent controls both the drift

µt and volatility σt. The details in the preferences of the agent and principal differ slightly between

Sung (1995) and Sung (2004) and we defer the reader to the actual papers for details.

Unlike Sung (1995) and Sung (2004), in this paper we will explicitly allow the principal to observe

the agent’s managed cash flow process at all times.

2.1.2 Ou-Yang (2003)

In Ou-Yang (2003), the principal-agent problem is the in form of an investment manager (i.e. agent)

has to manage a portfolio for an investor (i.e. principal). Asset returns follow the familiar geometric

Brownian motion and together with the risk free asset, it induces a wealth process for the portfolio.

The agent can choose the portfolio process and the conflict arises when the investor cannot observe

the manager’s chosen portfolio policy 4 . In this setup, the portfolio choice variable is attached

to the diffusion term of the wealth process. But as duly noted in Ou-Yang (2003, Page 178): “If

the investor observes both the stock price vector P (t) and the wealth process W (t) of the portfolio

continuously, then she can infer precisely the manager’s portfolio policy vector A(t) from the fact

that the instantaneous covariance between W (t) and P (t) equals diag(P )σσTA(t). Since σσT is

invertible by assumption, the manager’s policy vector A(t) is completely determined. Hence we

must assume that the investor does not observe the wealth and stock processes simultaneously.”

Hence, through this, rather strong, assumption in restricting what the investor can observe over

time, volatility can be controlled without detection by the principal. In this paper, we will not

impose such a strong assumption that restricts the principal’s information set.

4The wealth process, referring to Ou-Yang (2003, Equation (1)), has the form,

dW (t) = [rW (t) +A(t)(µ− r)]dt+A(t)σdBt,

where r is the risk free rate, and µ is the expected return of risky assets, and A(t) is the portfolio choice policy. Note
in particular the choice variable A(t) enters both into the drift and volatility of the wealth process.
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2.1.3 Cadenillas, Cvitanić, and Zapatero (2004, 2007)

Cadenillas et al. (2004) does allow the agent to have explicit drift and volatility control but the

compensation type is exogenously given. Using the original notation of Cadenillas et al. (2004,

Equation (2)), the agent (manager) manages the value of assets V under the agent’s management

evolves according to,

dVt = µVtdt+ δµtdt+ αvtVtdt+ vtVtdWt,

where u and v are the agent’s controls. Moreover, the paper assumes that while effort (drift) u

control for the agent is costly, project selection (volatility) v control incurs no cost on the agent, but

only implicitly matters to the agent through the principal’s compensation. The principal (outside

investors) is exogenously allowed to only compensate the agent with stock that becomes vested at

a terminal time T . The principal simply needs to choose the number of shares of stock to give to

the agent and the level of debt of the firm 5 . In all, taken in this light, Cadenillas et al. (2004)’s

interesting approach of the problem does not have the key ingredients that are present in this paper.

Firstly, we do not exogenously fix what the compensation contract the principal must give to the

agent, and indeed the compensation structure is dynamic and endogenous. And secondly, the agent

does incur private benefits (or equivalently, negative private costs) of controlling the unobservable

volatility level of cash flows and so the principal must provide incentives on both effort and volatility.

Cadenillas et al. (2007) allows for the agent to control both the drift and volatility but they

explicitly consider a first-best risk-sharing setup whereby agency problems are absent.

2.1.4 Cvitanić, Possamäı, and Touzi (2014)

The closest work in the literature to our paper is the contemporary work by Cvitanić, Possamäı,

and Touzi (2014). 6 The goal of that paper is also to investigate under what conditions would there

be meaningful volatility control by the agent. The authors propose that if the principal can only

observe managed cash flows Y continuously overtime, and if the agent controls a vector of volatilities

ν ∈ Rd
+, so that the managed cash flows have the form,

Yt =

∫ t

0

νs · (bdt+ dBt),

where B is a d-dimensional Brownian motion, and b ∈ Rd is a common knowledge constant vector.

Again, since the principal can continuously observe the managed cash flows Y , then the principal

can compute the quadratic variation of Y and obtain an (integrated) matrix,

d[Y ]t = νt · νtdt,
5It should be noted that in a similar spirit, Carpenter (2000) considers a delegated portfolio choice problem of

which through the portfolio choice policy, the agent can choose the volatility of the value of the asset portfolio. There
are no private benefits or costs to the agent in choosing a particular portfolio choice policy. Exogenously, the principal
compensates the agent (only) with a call option with the strike price being the terminal value of the managed portfolio.

6This author was not aware of the presence of this paper (with a working date of March 7, 2014) until mid April
2014, but by then, a well working draft of this current paper had already been written and indeed circulated in small
private circles.
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where, of course, ν ·ν′ is a scalar. But given that the principal can only observe Y , there is no way the

principal can decipher the individual managed elements of ν · ν. Thus, this yields to a setup where

there is meaningful volatility control. It should be immediately noted that in the setup of Cvitanić

et al. (2014), the dimensionality d plays a critical role. That is, if d = 1, then we collapse back to

the case where there is no meaningful volatility control. Hence, in their setup, the dimensionality

must be d ≥ 2.

Cvitanić et al. (2014) considers a setup where the agent is only paid at a final deterministic time

T and both the principal and the agent have identical CARA utility, and the agent has a quadratic

cost in volatility choices. In contrast, our paper considers only risk neutral principal and agent,

but allow for intertemporal compensation from the principal to the agent, endogenous termination

of the agent, and also private effort and volatility choices by the agent. Moreover, fundamentally,

our methods for “hiding” volatility control are fundamentally different in that Cvitanić et al. (2014)

relies on a dimensionality argument, whereas this paper relies on reconsidering economically the

modeling method of the noise term. It could be an interesting extension for future research to

combine both of these approaches.

3 Model Motivation in Discrete-Time

To motivate the continuous-time model of the paper, and also to highlight how existing drift-only

control principal-agent models in the literature cannot be used to appropriately model delegation

portfolio management problems, we first draw an analogy to a simple discrete-time asset pricing

factor models. Suppose in the current period, a group of investors hire a portfolio manager to

manage a portfolio that will deliver excess returns R − rf that is observable to the investor, where

rf is the risk free return. The investors know a priori that the manager has skill so ex-ante the

investors are willing to invest into the portfolio manager. What is not known to the investors is

whether the manager is exerting sufficient effort to maximize his skills. Suppose further the fund

operates like a mutual fund, so that the investment holdings of the fund are somewhat transparent,

and so the investors know and can observe what is the appropriate market factor, say RM − rf , to

price the portfolio, and moreover, the investors can precisely choose their desired factor loading. 7

Thus, the portfolio returns are driven by a factor form,

R− rf = α(e) + β0
M × (RM − rf ) + ε, (3.1)

where β0
M is the factor loading onto the factor RM − rf , and ε is the idiosyncratic risk with zero

mean, and independent of RM − rf .
8 Since β0

M had been a priori selected by the principal, there

7Indeed, commercial services like Morningstar regularly report the appropriate investment style or factor (i.e.
“value”, “growth”, “big cap”, etc.) of the majority of mutual funds available, and they also report a CAPM beta
value to the investors.

8Another way to view (3.1) is to view the mutual funds types are indexed by their factor loading {β0
M,j}j . But

there the investors can perfectly see the type, and so according to their preferences, select their desired type, say β0
M .

Once this type has been selected, the investors then proceed to construct contracts to motivate the managers to exert
high effort to maximize their skills. But it should be noted that this type selection argument is only valid because
the investors know precisely the appropriate market factor is RM − rf , and hence can compute for themselves the
expected risk premium E[RM − rf ]. If this were unknown, then this argument does not hold.
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is no need to condition on this anymore. Thus, conditioning on the effort e the manager will exert,

the investors’ expected returns from this managed portfolio is,

E[R− rf | e] = α(e) + β0
ME[RM − rf ], (3.2)

where we assumed that effort choice e is independent of the market risk factor RM . Thus, we see

that the expected returns, conditional on effort e is increasing in effort e. Note here that since the

investors know the appropriate risk factor RM − rf , he can also compute the expected risk premium

E[RM − rf ]. That is, the entire term β0
ME[RM − rf ] is common knowledge to both the manager

and the investor. Referring to Table 1, the prototypical model in the existing continuous-time

principal-agent literature takes the form,

dYt = µtdt+ σdBt, (3.3)

where µt is a choice that the agent can privately select, and the models in the literature specify µt

to various degrees of sophistication; see also Section A.1 for further discussion. Mapping (3.3) to

the asset pricing model in (3.1), existing drift-only control models can effectively be viewed as,

dYt ≈ R− rf , µtdt ≈ E[R− rf | e] = α(e) + β0
ME[RM − rf ], σdBt ≈ β0

M (RM − rf ) + ε. (3.4)

In particular, we note that for the noise term σdBt ≈ β0
M (RM − rf ) + ε, as mentioned earlier, the

risk loading β0
M is a priori known to the investor, and also the risk factor RM − rf is also observable

to the investor. Thus, for the overall noise term, the only term that is unobservable to the investor is

the idiosyncratic risk ε. And indeed, mapping to the dynamic model, this corroborates well with the

notion that the overall noise is simply a Brownian motion dBt (i.e. continuous-time random walk).

While the viewpoint (3.1), and by extension the continuous-time formulation (3.3) with no volatil-

ity control, may be plausible for, say, mutual funds that have fairly transparent investment proce-

dures, this is not the case for numerous other delegated portfolio management practices in the

market. Most notably, hedge funds and private equity funds, unlike mutual funds, are not subject

to regulation to reveal their investment positions or trading strategies. And indeed, the investment

strategies and positions of these funds are precisely their “secret sauce” or “black box”, of which

they are very protective of its details. As such, unlike (3.1), a far more appropriate model here is

the form,

R− rf = α(e) + βZ × (RZ − rf ), (3.5)

where RZ−rf is the excess return of an exogenously priced factor that is observable to the manager,

but unknown to the investor, and βZ is the factor loading the manager can privately and endoge-

nously control. Note that unlike (3.1), in (3.5) we consider an extreme case and do not write an

idiosyncratic term ε. That is because since the factor loading βZ is endogenously controlled by the

manager, in a sense all the idiosyncrasies are due to the manager’s decision; and also, this creates

a clearer mapping to the continuous-time model to be discussed in Section 4. Concretely speaking,

if a hedge fund manager claims that it is a “global macro fund” but does not disclose its actual
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positions and trading strategies, there is no way the investor can infer what is the appropriate risk

factor to benchmark the fund at. And indeed, even looking at other peer “global macro funds” only

give at best a noisy proxy to what the fund in question is actually doing. In particular, that means

that unlike the case of mutual funds as per (3.1), the investor cannot a priori view and select the

factor loading of the fund. Thus, conditional on the effort e and the factor loading βZ as chosen by

the manager, the expected returns of the managed portfolio are,

E[R− rf | e, βZ ] = α(e) + βZE[RZ − rf ], (3.6)

where the effort e and factor loading βZ are independent of the risk factor RZ −rf . Note that unlike

(3.2), the last term βZE[RZ − rf ] is not common knowledge to both the investor and the manager.

Indeed, even if the investor knew that there is a positive risk premium E[RZ − rf ] > 0 associated

with the risk factor RZ − rf , the investor still does not know which factor loading βZ the manager

chose.

In all, this means to have a principal-agent model that represents the practices of hedge funds,

private equity firms, and other “secret sauce” investment funds, we need at least two additional

ingredients, on top of the skill term α(e): (i) exogenous factor term RZ − rf observable to the

manager but unobservable to the investor; and (ii) endogenous factor loading term βZ that can

be privately controlled by the manager. This represents the starting point of our continuous-time

model.

4 Model Outline

Let (Ω,F , P ) be a complete probability space and let {Bt}t≥0 be a standard Brownian motion on

this probability space and let {Ft}t≥0 be the filtration generated by this Brownian motion, suitably

augmented. We will write E as the expectation operator under probability measure P . The agent can

choose an action process A = {(et, σt)}t≥0, where for all times t ≥ 0, (et, σt) ∈ {eL, eH} × [σL, σH ],

where eH > eL > 0 and σH > σL > 0. We will call {et}t≥0 the effort control (process) and {σt}t≥0

volatility control (process). 9 10 Consider a function κ : {eL, eH} × [σL, σH ] → [µL, µH ] that maps

both the effort and volatility chosen by the agent to the (expected) return of the (cumulative) cash

flow process Y ; that is, consider (e, σ) 7→ κ(e, σ) = µ. We will call κ as the reward function and

we will discuss further on the assumptions and properties of this function in Section 4.2 below. The

cash flow process Y has dynamics that depend on the agent’s action process 11 ,

dYt = κ(et, σt)dt+ σtdMt, Y0 = y0 (4.1)

dMt =MtdBt, M0 = m0, (4.2)

9Of course, strictly speaking in the usual language of stochastic differential equations, we would call σtmt as the
(stochastic) volatility of Y . However, since in this setup, mt is an exogenous process, and only σt is being directly
controlled by the agent, it would be more natural to think and call σt as volatility that is being managed by the agent.

10Throughout this article, we will use e to denote the effort parameter / process, and use e to denote the exponential
function.

11Specifically, the action process A is progressively measurable with respect to {Ft}.
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where m0 > 0 and note we have denoted µt := κ(et, σt). Given an action process A, we will call

{µt}t≥0 = {κ(et, σt)}t≥0 the drift (process) of the cash flow Y 12 . The principal cannot observe

the agent’s action process but can only observe the cash flow Y . The agent can also observe the

cash flow Y . Let {FY
t }t≥0 be the (suitably augmented) filtration generated by the cash flow process

Y , which represents the principal’s information set. The extra term mt in (4.1) and its dynamics

(4.2) is different from the prevailing literature (see Table 1). We shall call {Mt}t≥0 as the exogenous

factor.

Finally, for illustrative purposes only, Figure 1 plots this cash flow process against some other

cash flow processes that have been used in the literature.

Both the principal and the agent are risk neutral. The principal discounts time at rate r1 > 0

and the agent discounts time at rate r0 > 0. As per DeMarzo and Sannikov (2006), we assume that

the agent is less patient than investors; so we assume r0 > r1. The principal needs to compensate

the agent and is modeled via the {FY
t }t≥0-adapted stochastic process X = {Xt}t≥0 and assuming

limited liability, we restrict the compensations to be non-negative, so dXt ≥ 0. The principal also

has the ability to terminate the agent at some FY
t -measurable random time τ ∈ [0,∞]. Upon

termination, the firm is liquidated for value 13 L > 0 and the agent receives retirement value 14

R > 0. A contract is the tuple (A,X, τ), which specifies the recommended action process A, a

compensation for the agent X and the termination time τ .

Fix a contract (A,X, τ) and suppose the agent follows the principal’s recommended action A.

The agent’s payoff at time t = 0,

W0(A) := EA

[∫ τ

0

e−r0t

(
dXt +

[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1

)]
dt

)
+ e−r0τR

]
, (4.3)

where ϕe, ϕσ > 0 are constants known to both the principal and the agent. Here, we denote EA as

the expectation under the probability measure PA induced 15 by the agent’s chosen action process A.

We will further discuss the properties of the agent’s payoffs and incentives in Section 4.3. Likewise,

the principal’s payoff at time t = 0 is, 16

EA

[∫ τ

0

e−r1t(dYt − dXt) + e−r1τL

]
= EA

[∫ τ

0

e−r1tκ(et, σt)dt−
∫ τ

0

e−r1tdXt + e−r1τL

]
. (4.4)

Further discussion of the conflict between the agent and principal is deferred until Section 4.3.

We collect some assorted remarks, largely technical in nature, about the model in Section B.

12 Throughout the paper, we will interchange the notation µt and κ(et, σt) to denote the drift part of the cash flow
process. This is for notational brevity. Thus, given an action process A = {(et, σt)}t≥0, we will also with some abuse
of notation, also call and denote A = {(µt, σt)}t≥0 as the action process, with the understanding that µt ≡ κ(et, σt).

13We will be more specific about this liquidation value L in Section 5.
14We will be more specific regarding this retirement value R in Section 6.
15 See Section B for details.
16In the second equality, we applied Doob’s Optional Stopping Theorem. While τ could have been unbounded

(i.e. never terminating the agent) but a standard argument using bounded sequences of stopping times and an usual
application of the Dominated Convergence Theorem will also show the result. We will omit these details.

12
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(c) Integrated GBM with drift

Figure 1: Illustrations of various types of commonly used cash flow processes. Here, the (constant) param-
eters are chosen to be µ = 0.5, σ = 0.3, Y0 = 1,m0 = 1, and we simulate over 1000 discrete evenly
spaced points over the time interval t ∈ [0, 1]. Subfigure (1a) describes the linear Brownian mo-
tion with drift cash flow process, dYt = µdt+σdBt, that is used in the models by Holmström and
Milgrom (1987), DeMarzo and Sannikov (2006), Sannikov (2008) and several others; see Table 1.
Subfigure 1b describes the geometric Brownian motion process, dYt = µdYtdt+ σYtdBt, that is
used by He (2009) (note, He (2009) calls this the firm value process). Finally, subfigure (1c) de-
scribes an an integrated Geometric Brownian motion with drift, dYt = µdt+σdMt, dMt = MtdBt,
as it will be used in this paper. Note also the parameters used in generating this figure are for
illustrative purposes only. Unless specified otherwise, these parameters are not enforced through-
out the paper.
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4.1 Mapping back to the discrete-time model

Mapping back to the discrete-time specification in Section 3, and in particular to (3.5), we can map

the terms analogously as,

dYt ≈ R− rf ,

κ(et, σt)dt ≈ E[R− rf | e, βZ ] = α(e) + βZE[RZ − rf ],

σt ≈ βZ ,

dMt ≈ RZ − rf .

(4.5)

As discussed, the specification (3.5) and now to the continuous-time extension of (4.1), (4.2), can

be viewed as a more appropriate model of delegated portfolio management than existing drift-only

control models in the literature.

In particular, in contrast to the mapping in (3.4) where the noise term is mapped like σdBt ≈
β0
M (RM −rf )+ε, the mapping in (4.5) for the noise term is mapped like dMt ≈ RZ −rf . These two

forms of mappings represent a fundamental difference in how investors view whether a risk factor

is observable or unobservable to them. As explained in Section 3, when the risk factor RM − rf is

known and observable to the investors, the term β0
M (RM − rf ) is common knowledge to both the

manager and the investor. Thus, the only source of uncertainty to the managed cash flows in that

case is the idiosyncratic risk ε, of which its appropriate continuous-time counterpart is a Brownian

motion σdBt, which is essentially a pure noise random walk in continuous-time. In contrast, in

the setting where the investors do not know and cannot observe the risk factor RZ − rf , then the

uncertainty is more “informative”. Firstly, the risk loading βZ is no longer common knowledge.

Secondly, the risk factor RZ − rf , in continuous-time, cannot be appropriately viewed as a random

walk. Indeed, in accordance to the tradition of classic asset pricing theory, assets have returns that

are log-normally distributed; in particular, the Black-Scholes economy risky asset also models the

returns of a risky asset as a geometric Brownian motion. Here, in setting dMt ≈ RZ − rf , we

have simply modeled M as a geometric Brownian motion with zero drift and unit variance; it is

straightforward, but algebraically cumbersome, to put in a non-zero drift and non-unit variance.

Remark 4.1. Although slightly beyond the original motivation scope of the paper, it should be

noted that in modeling the managed cash flows dYt, we have that the expected value κ(et, σt)dt is

dependent on both effort and volatility, and this modeling form has found precedence in the recent

empirical and theoretical asset pricing literature. In Buraschi, Kosowski, and Sritrakul (2013), the

authors note:

“. . . [The traditional alpha measure that is independent of beta] raises the question

of how well a reduced-form alpha measures the true managerial skill of a hedge fund

manager. An answer to this question depends on the determinants of the optimal allo-

cation θ∗At made by that manager. If the optimal allocation is constant and determined

exclusively by the risk and return characteristics of the investment opportunity set (as in

a traditional Merton model without agency distortions), then reduced-form alpha is an

unbiased estimate of managerial skill. However, if the optimal allocation is influenced by
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nonlinear agency contracts, then reduced-form alpha is a misspecified estimate of true

skill. For instance, a high reduced-form alpha could be the fortunate result of too much

leverage as managers aim to maximize their incentive options. Of course, high leverage

increases not only the manager’s expected return (because of the call option) but also

the likelihood of large negative returns.”

Thus, Buraschi et al. (2013) suggests that the managed portfolio alpha, under the influence of

“nonlinear agency contracts”, could depend on leverage and investment opportunities.

In addition, although absent of any agency considerations, Frazzini and Pedersen (2014) also

considers an overlapping generations model that implies a factor model structure for risky asset

returns, and show that the alpha term could depend explicitly on the factor loading. Also in

empirical research of hedge fund performance, Bollen and Whaley (2009) also notes:

“Accurate appraisal of hedge fund performance must recognize the freedom with

which managers shift asset classes, strategies, and leverage in response to changing mar-

ket conditions and arbitrage opportunities. The standard measure of performance is the

abnormal return defined by a hedge fund’s exposure to risk factors. If exposures are

assumed constant when, in fact, they vary through time, estimated abnormal returns

may be incorrect.”

4.2 Reward Function κ

We need to be more specific about the way the agent can control the drift and volatility of the

cash flows. It should be noted in drift-control only models, the specification of the drift is usually

quite simple (i.e. linear). But in our case, given the volatility control, we must be more careful in

modeling and giving economic meaning to link the volatility and drift controls. Note that one possible

characterization is to have the agent control drifts and volatilities that are completely unrelated to

each other. But this case is not economically meaningful since it destroys the traditional link of

risk-return trade-offs of financial economics, particularly that of portfolio choice theory. We will

now more specifically define the reward function κ as follows.

Definition 4.1. A strictly positive real valued function κ : {eL, eH}× [σL, σH ] → [µL, µH ], (e, σ) 7→
κ(e, σ) = µ, that is twice-continuously differentiable in the second argument, is called a reward

(drift) function if it that has the following properties:

(a) Higher effort, higher reward : κ(eH , σ) > κ(eL, σ), for all σ;

(b) Higher risk, higher reward but at decreasing rate: κσ(e, σ) > 0 and κσσ(e, σ) < 0, for all (e, σ);

(c) Risk cannot substitute for effort : κ(eH , σ) > κ(eL, σ
′) for all σ, σ′.

(d) Range of effort greater than range of risk : ϕe

eH
(eH − eL) >

ϕσ

σL
σH , and κ(e, σ) > ϕe for all (e, σ).
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The requirement (a) is natural to interpret; that is, if the agent exerts higher effort to running

the project, then the expected payoff should be higher, regardless of the choice of volatility. Require-

ment (b) is the traditional risk-reward type trade off. One would expect that by choosing a riskier

project (higher volatility) over a safer project (lower volatility), it is so that one could enjoy higher

expected returns, but we impose that the rate of return from increasing risk is decreasing. Thus,

requirements (a) and (b) should have good natural interpretations. Requirement (c) means that

exerting high effort always gives a higher return, regardless of the level of risk taken. Effectively,

that means that effort and risk are not “substitute goods”; hence, this requirement explicitly rules

out a case where the agent can exert low effort and take on a high level of risk such that this return

is equal or greater to one with high effort and any level of risk. Note that clearly (c) implies (a) but

we write them out separately as (a) is effectively the only requirement assumed in the controlled

drift-only models (i.e. when κ is a function only of effort e). 17 More generically, early studies

between project selection (viewed as volatility in the current context), risk and effort can be found

in Lambert (1986) and Hirshleifer and Suh (1992).

We now given an example that satisfies Definition 4.1 and hence directly showing that the set of

reward functions is nonempty.

Example 4.1. Consider the reward function of the form,

κ(e, σ) = α1e
α0(e−eL) log σ,

where α0, α1 > 0 are deterministic constants. Here, we restrict σL, σH such that σL = c, σH ≈ 1.763,

where 1 < c < σH , and that ϕe, ϕσ > 0 are such that ϕe

ϕσ

1
eH

(eH − eL) >
σH

σL
. Note here that

µL = κ(eL, σL) and µH = κ(eH , σH). See Figure 2 for an illustration.

Proof. See the Appendix for proof of this Example and all subsequent proofs throughout this article.

4.3 Principal and Agent Conflict

With the reward function specified in Definition 4.1, we are now ready to discuss the sources of

conflicts between the principal and the agent. From the agent’s payoff in (4.3), we see that the agent

dislikes exerting high effort et = eH and likes to exert low effort et = eL, and the agent likes to

choose high volatility σt = σH and dislikes to choose low volatility σt = σL. In contrast, from the

principal’s payoff in (4.4), and the properties of the reward function as given in Definition 4.1, the

principal likes high effort et = eH and dislikes low effort et = eL. Moreover, by the properties of the

reward function, and also effectively by the risk neutrality of the principal, the principal also seems

to like high volatility σt. The assumption that the agent likes to job shirk while the principal does

not is common in the principal-agent literature.

17Strictly speaking (d) is not an requirement of the reward function κ(e, σ) but rather an assumption on the
parameters ϕe, ϕσ , eH , eL, σH , σL, but we will collect this here for subsequent convenient reference.
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Figure 2: Illustration of Example 4.1 with the parameters: α0 = 0.3, α1 = 2, eL = 3, eH = 5, σL =
1.01, σH = 1.763.

However, in this context, the specification of volatility warrants more discussion. It seems like

since both the agent and the principal prefers higher level of volatility, then volatility is not a source

of moral hazard conflict between the principal and the agent. However, this is not entirely correct.

As it is standard in the principal-agent literature, to incentivize the agent, the principal must put the

agent’s payoff at risk, and specifically meaning the agent’s payoff must be sensitive to the agent’s

managed cash flows. However, such sensitivity here is also further affected both by the agent’s

volatility choice σt and also the exogenous factor Mt. Hence, even though both the principal and

the agent prefers the volatility choices in the same direction, but since volatility choice also affects

the overall uncertainty in this economy, this uncertainty indirectly causes the conflict between the

agent and the principal. We will have more to say about this important feature of volatility choice

in Section 8.2.

5 First Best

Let’s begin by characterizing the first best result. At this point, we should further impose a restriction

on the recovery value L of the firm upon termination. In line with the literature, we will assume

that termination is inefficient so that never terminating τ = +∞ is indeed optimal in the first best

case.

Assumption 5.1. We assume that termination is inefficient. That is, the salvage value of the firm

L is such that,

0 < L <

∫ ∞

0

e−r1tκ(eL, σL)dt =
κ(eL, σL)

r1
. (5.1)
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Recalling Definition 4.1, the right-hand side of (5.1) is precisely the “worst case” indefinite payoff

scenario for the principal.

Suppose the principal can and will operate the firm without the agent. In this case, the principal

does not need to pay any compensation, so X ≡ 0, nor is there any need for termination, so τ ≡ +∞.

Recalling (4.4), the principal has the optimization problem,

bFB
0 := sup

e,σ
E
[∫ ∞

0

e−r1tκ(et, σt)dt

]
= sup

e,σ

∫ ∞

0

e−r1tκ(et, σt)dt (5.2)

Proposition 5.2. Suppose there are no agency conflicts so the principal does not need to hire the

agent to run the firm. Then the principal will pay zero compensation, X ≡ 0, and never terminate,

τ ≡ +∞. The principal will always exert high effort at all times, so et ≡ eH for all t, and always

choose high volatility σt = σH for all times. The first best value of the firm bFB
0 at time t = 0 is,

bFB
0 =

∫ ∞

0

e−r1tκ(eH , σH)dt =
κ(eH , σH)

r1
. (5.3)

The first best value of the firm is deterministic and stationary. That is, the time t = 0 value bFB
0

does not depend on any state variable, and this is economically intuitive. Given that the principal

only derives payoff from the reward function κ(et, σt), there are no exogenous state variables (namely,

say the exogenous factor M) involved.

6 Continuation value and Incentive compatible contracts

Now we proceed to the main focus of the paper. As it is standard in the literature, following

the arguments like DeMarzo and Sannikov (2006) and Sannikov (2008), we consider the agent’s

continuation value as a state variable to capture the dynamic incentive compatibility constraints.

However, again because of the richer volatility setup of (4.1) than the ones in the current literature,

we must take more care in deriving the results.

Firstly, we make a trivial substitution that will substantially simplify the problem. Throughout

this section, let’s fix an arbitrary contract (A,X, τ). In particular, note that the action process 18

has the form, A = {(et, σt)}t≥0. As noted in footnote 12, defining µt ≡ κ(et, σt), we will also call

A = {(µt, σt)}t≥0 as the action process. Define, the agent’s time t continuation value (or promised

value),

Wt(A) := EA

[∫ τ

t

e−r0(s−t)

(
dXs +

[
ϕe

(
1− es

eH

)
+ ϕσ

(
σs
σL

− 1

)]
ds

)
+ e−r0(τ−t)R

∣∣∣ FY
t

]
.

(6.1)

Note here on the left-hand side of (6.1), we have suppressed the notation for the dependence on the

payment X and termination time τ , but retained the notation emphasis on the action process A.

18 We should be clear on the word “fixed” action process here. Although the agent chooses an action process that
just needs to be {Ft}-adapted, but when the principal fixes a recommended action A to the agent, this recommended
action process A is known to the principal and hence A is also {FY

t }-adapted. That is, the recommended action must
be known to the principal but any general deviation away from the recommended action by agent is not known to the
principal.
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6.1 Incentive compatible contracts

Definition 6.1. A contract (A,X, τ) at time 0 with expected agent payoff W0(A) is incentive

compatible if

(1) (a) Wt(A) ≥ R for all times t ≤ τ ; , where the retirement value R > 0 is such that,

R >
1

r0
ϕσ

(
σH
σL

− 1

)
; (6.2)

(b) Mt ≥ m, for all times t ≤ τ , where m > 0; and

(2) W0(A) ≥W0(A
†), for all other action processes A†.

The optimal contracting problem is to find an incentive-compatible contract that maximizes the

principal’s time 0 expected payoff.

Requirement (1) of Definition 6.1 is also more aptly called agent’s individual participation (IR)

constraints. In particular, (1a) says that the agent’s continuation value Wt must be at all times

greater than or equal to the agent’s reservation value R. This is a standard definition of the IR

constraint in the literature. The addition of (1b) warrants slightly more discussion as this is not

standard in the literature. Requirement (1b) effectively requires when the agent manages the cash

flows dYt, the agent will only manage it only when the exogenous factor level Mt at any point in

time t is not too low, and in particular it must be greater than this lower bound m. See further

detailed discussions in Remark 6.1, where we also discuss the justification of the retirement value R

in (6.2). Finally, requirement (2) is the usual incentive compatibility condition in the literature.

Remark 6.1 (Justification for Definition 6.1(1b) and retirement value R of (6.2)). Let’s discuss

the economic justification of (1b). If the exogenous factor level M , which again is a geometric

Brownian motion so M > 0, is too low, say when Mt ≈ 0 (even though Mt = 0 happens on a set

of measure zero), then all sources of uncertainty in this economy vanishes. Indeed, suppose in the

extreme that we indeed have M ≡ 0. And when that happens, the managed cash flows thus become

dYt = κ(et, σt)dt, without any additional noise term. But this implies the principal, upon observing

cash flows dYt continuously over time, can precisely detect the choice of effort et and choice of

volatility σt that the agent has chosen 19 , and clearly then, the principal would instruct the agent

to choose the first best effort and volatility choices. However, first best effort and volatility choices

are clearly not beneficial for the agent.

Without the presence of uncertainty (so when M ≡ 0), the principal no longer needs to com-

pensate the agent, X ≡ 0. Mapping back to the context of delegated portfolio management and

recalling the discussion in Section 3, when M ≡ 0, it is equivalent to saying the outside investor is

getting precisely zero premia for the factor exposure of this particular managed fund. In that case,

the investor has no particular reason to compensate the manager for management anymore. Indeed,

in this case, if the manager does not choose the first best case of highest effort (et ≡ eH) and choose

19This is possible since the reward function κ of Definition 4.1 is bijective and non-crossing in effort e and volatility
σ.
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the appropriate investment opportunity (σt ≡ σH), the investor will simply walk away. Anticipating

this, the agent is conceivably better off to “walk away” from managing the project before the ex-

ogenous factor level M is too low, namely at m, and still manage to extract some information rent

from the principal. More precisely, the agent’s retirement value R is such that,

Payoff to agent with positive exogenous factor M ≥ m > 0, and arbitrary actions︷ ︸︸ ︷∫ τ

0

e−r0tdXt +

∫ τ

0

e−r1τ

[
ϕe

(
1− es

eH

)
+ ϕσ

(
σs
σL

− 1

)]
dt

≥ R

>

∫ ∞

0

e−r0tϕσ

(
σH
σL

− 1

)
dt =

1

r0
ϕσ

(
σH
σL

− 1

)
︸ ︷︷ ︸

Payoff to agent with always zero exogenous factor M ≡ 0, and first best actions

.

This discussion hence also justifies the retirement value R as specified in (6.2).

Remark 6.2 (Retirement value too low). With Remark 6.1 in mind, we should also consider the

counter case. What if the retirement value R is too low? Specifically, what if, unlike (6.2), R is such

that,
1

r0
ϕσ

(
σH
σL

− 1

)
≥ R > 0. (6.3)

If the retirement value R is such that (6.3) holds, when the exogenous factor level is identically zero

M ≡ 0, we will see that it may be not optimal for the agent to walk away from the contract. That

is, if M ≡ 0, again as per the argument in Remark 6.1, the principal can credibly instruct the agent

to take on the first best action et ≡ eH and σt ≡ σH , and pay zero compensation X ≡ 0. That

is, the agent simply then receives the instantaneous private benefit of ϕσ

(
σH

σL
− 1

)
dt. Even though

the agent knows that there are some positive information rent to extract from the principal if the

exogenous factor level is strictly positive, but even at the identically zero exogenous factor level case,

his instantaneous private benefit still exceeds the outside retirement value R. So if (6.3) holds, it

implies there is a possibility that the principal can give the agent zero compensation and yet the

agent will still happily remain employed.

We rule this case out. Specifically, we assume that at time t = 0, the agent can anticipate such

effects, and negotiate, ex-ante, with the outside labor market to secure a sufficiently high retirement

value R that satisfies (6.2), rather than a low retirement value of (6.3). In the context of delegated

portfolio management, we may think of a high retirement value R to represent an outside fund

management opportunity that’s available to the portfolio manager.

6.2 Continuation value dynamics

The dynamics of the agent’s continuation value is given as follows.

Theorem 6.3. Fix a contract (A,X, τ). Then for t ∈ (0, τ), the agent’s continuation value Wt(A)
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of (6.1) has dynamics,

dWt(A) = r0Wt(A)dt−
(
dXt +

[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1

)]
dt

)
+ βt (dYt − µtdt) + dϵ⊥,A

t ,

(6.4)

where ϵ⊥,A
t :=

∫ t

0
er0sdV ⊥,A

s , µt := κ(et, σt), and where βt and V
⊥,A
t are given in Proposition D.3.

Let’s discuss economic meaning of the dynamics of the agent’s continuation value as characterized

in (6.4) of Theorem 6.3. Here, βt represents the sensitivity of the agent’s continuation value to output

dYt. When the agent takes the recommended action process A as given in the contract, the term

dYt − µtdt = dYt − κ(et, σt)dt = σtMtdBt is a mean-zero noise term. The term dϵ⊥,A
t (explained

in more detail below) also has mean zero. Economically and intuitively (though mathematically

incorrect), we can view (6.4) in this alternative way:

Et[r0Wt(A)dt] ≈ Et[dWt(A)] + Et

[
dXt +

[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt
σL

− 1

)]
dt

]
(6.5)

Hence, viewed in this way, we can think of the expected growth of the agent’s continuation value

Et[r0Wt(A)dt], when the agent follows the recommended action process A, can be decomposed

into the expected change from the previous continuation value Et[dWt(A)], plus the expected com-

pensation from the principal Et[dXt], and plus the expected benefits from taking not the highest

effort (et ̸= eH) and not the lowest volatility (σt ̸= σL), which yields a strictly positive value

Et

[[
ϕe

(
1− et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt
]
. Note that if the agent were to really take the highest effort

level (et = eH) and the lowest volatility (σt = σL), then the agent’s private benefits vanishes.

The economic interpretation of (6.4) in terms of a logic like (6.5) is similar across models with

only drift control, say for instance, DeMarzo and Sannikov (2006) and Sannikov (2008). However, the

economic interpretations of the two noise terms βt(dYt − µtdt) and dϵ
⊥,A
t warrant more discussion.

Firstly, observe that we have two noise terms here, rather than one, as in essentially all the papers

with drift-only control. Secondly, while the interpretation of βt as the sensitivity of the agent’s

continuation value to output here is still in line with the existing models, the noise term dYt −
µtdt (being multiplied by the sensitivity βt) is different. Note also (as we will see in subsequent

development) βt still retains the interpretation as the minimal amount of risk the principal wants to

subject and incentivize the agent, as in line with the literature. However, since the agent can control

the volatility σt, and if we read the diffusion term of the agent’s continuation value process dWt as

βt(dYt − µtdt) = βtσtMtdBt, then we see that even if the principal can dictate the sensitivity βt for

the agent, the agent still has the ability to “counteract” this dictation by choosing a volatility level

σt to shift the overall diffusion term βtσtMt (recall M is exogenous). Thus, we can already see that

in a model where the agent can control volatility σt, the principal’s tools to incentivize the agent

may be weakened, as compared to a model where the agent can only control the drift. This effect

is distinctly not present in models without volatility control. Finally, the additional term dϵ⊥,A
t is

also related to the fact that in this model the agent can control volatility. Recalling that the cash

flows are of the form dYt = µtdt + σtMtdBt. If there were no volatility control, so the cash flow
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takes on the form dYt = µtdt+MtdBt, then uncertainty (as seen by the diffusion term Mt) cannot

be dictated by the agent. However, in this current case, the diffusion term in the cash flow is σtMt,

meaning that the agent can actually endogenously change the uncertainty of the cash flows, and as

seeing from the discussions with regards to the quadratic variation (see Section A), this change of

uncertainty cannot be detected by the principal if the agent does not follow an incentive compatible

action process. Hence, that is why the term dϵ⊥,A
t is there to capture this source of extra (orthogonal)

uncertainty (see Proposition D.3). Note that, as shown in Lemma 7.3, when we consider incentive

compatible contracts, this term dϵ⊥,A
t will become identically zero. The economic intuition is simply

that when the principal offers incentive compatible contracts, as opposed to any arbitrary contracts

to the agent, the principal knows that the agent will have no incentive deviate from the principal’s

recommendations. In particular, this also implies the principal can see the instantaneous diffusion

of the cash flows σtMt and hence there is no source of extra uncertainty that we’d described earlier.

6.3 Incentive compatibility conditions

Now, the following is a necessary and sufficient condition to characterize the incentive compatible

contracts in this context.

Lemma 6.4. Fix a contract (A,X, τ) and consider the process β as given in Proposition D.3. Then

we have the following equivalence.

(i) The action A = {(et, σt)}t≥0 is such that,

0 ≥ − ϕe
eH

(e′ − et) +
ϕσ
σL

(σ′ − σt) + βt(κ(e
′, σ′)− κ(et, σt)) (6.6)

for all (e′, σ′) ∈ {eL, eH} × [σL, σH ].

(ii) Contract (A,X, τ) is incentive compatible.

The following corollary is a simple rewriting of Lemma 6.4 but will be useful for the subsequent

discussion.

Corollary 6.5. Under the same setup of Lemma 6.4, if β = {βt} is a nonnegative process, then a

given action process A = {(et, σt)} is incentive compatible if and only if for all times t:

(i) If et = eH ,

βt ≥
1

κ(eH , σt)− κ(eL, σH)

[
ϕe
eH

(eH − eL) +
ϕσ
σH

(σH − σt)

]
. (6.7)

(ii) If et = eL,

0 ≤ βt ≤
1

κ(eH , σH)− κ(eL, σt)

[
ϕe
eH

(eH − eL) +
ϕσ
σL

(σt − σH)

]
(6.8)

Remark 6.6. We should note that in Corollary 6.5, the right hand side of (6.7) is strictly positive

for all choices of σt. Also, recalling Definition 4.1, the right hand side of the second inequality of

(6.8) is also strictly positive for all choices of σt.
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Remark 6.7. At this point, we can make a direct comparison to the case when only the drift, but

not the volatility, is under the agent’s control. That drift only control case has been considered in

DeMarzo and Sannikov (2006) and He (2009) but given our current linear cost form, a more direct

comparison is with He (2009). It should be noted that in He (2009), the agent manages a geometric

Brownian motion (which He (2009) regards as firm value, rather than cash flow). Nonetheless,

consider He (2009, Proposition 1) and they derive the analogous necessary and sufficient condition

to be,

βt ≥ ϕµ
σ

µH
. (6.9)

Note in (6.9), the multiplicative factor by σ is to reflect the fact that the agent managed process in

He (2009) is a geometric Brownian motion (with managed drift µt and unmanaged constant volatility

σ), rather than our linear setup.

What is most striking about the characterization in (6.9) and Lemma 6.4(i) is that on the right-

hand side of (6.9), there are no other agent choice variables involved; indeed, the entire incentive-

compatible contract is characterized by this single — perhaps rather “static” — inequality. In

contrast, on the right-hand side of the inequality in Lemma 6.4(i), there still remains a choice

variable by the agent; indeed, this type of characterization is very similar to the one that is provided

in Sannikov (2008, Appendix A, Proposition 2), even though in that problem, there is still no

volatility control.

Remark 6.8. Despite the addition of volatility control, and in particular that volatility σt is chosen

from an interval [σL, σH ] in our model, it might seem surprising that incentive compatibility can still

be completely be characterized by two inequalities, (6.7) and (6.8) of Corollary 6.5, much alike binary

hidden effort or drift choice models of DeMarzo and Sannikov (2006) and He (2009). Economically,

it is because the volatility choice σt here is not a direct source of moral hazard conflict. That is, both

the principal and the agent prefer the same direction of volatility, even though they may disagree on

the level. Hence, the principal need not be concerned with providing direct incentives by altering the

sensitivity βt, and hence the optimal choice of sensitivity βt should just focus on providing incentives

to motivate the correct effort level, and since there are just two effort choices here, this corresponds

to the two inequalities. As mentioned earlier, the volatility choice is an indirect source of moral

hazard conflict. In particular, even though the principal and the agent may agree on the general

direction of volatility choices 20 , the fact that the agent can directly alter the uncertainty of this

economy implies the agent’s volatility choice complicates the principal’s task of providing incentives

to the agent.

Remark 6.9. At this point, one might step back and ponder about this question: The principal here

can only observe a one-dimensional managed cash flow Y , but why is it that it can provide incentives

to induce the agent to make the appropriate choices for a two-dimensional moral hazard term (e, σ),

that being effort and volatility choices? The essential explanation lies in the monotonicity of the

reward function κ(e, σ) in both arguments and also the way that the volatility term σ enters linearly

into the diffusion term σtdMt of the managed cash flows dYt. For instance, if we had considered an

20A far more difficult characterization happens when the principal and the agent disagree on their preferences of
the volatility level. This is left for future research.
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alternative reward function form, say like κ(e, σm), for Mt = m, and that the diffusion term is more

complicated, like in the form σtYtdMt, then we can see that the above argument will not hold.

7 Principal’s Problem

Once the incentive compatible contracts have been characterized as in Lemma 6.4, we are now ready

to consider the principal’s problem.

7.1 Strengthening the IC condition

If we take the necessary and sufficient IC condition as characterized by Corollary 6.5, it will be

difficult to ensure that the resulting principal’s value function will be concave in the agent’s contin-

uation value w. Hence, we will strengthen the IC condition and consider a sufficient IC condition

for Corollary 6.5, and also we will restrict the set of sensitivities to be bounded above.

Assumption 7.1. Suppose we restrict the set of sensitivities to be,

B :=
{
β : K ≥ β ≥ β

}
, (7.1)

for some sufficiently large K > 0, and where we define,

β :=
1

κ(eH , σL)− κ(eL, σH)

[
ϕe
eH

(eH − eL) +
ϕσ
σL

(σH − σL)

]
. (7.2)

Remark 7.2. Note that since σ 7→ 1
κ(eH ,σ)−κ(eL,σH)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σH − σ)

]
is monotonically

decreasing, it is clear that (7.1) is a sufficient condition that satisfies the IC condition as characterized

in Corollary 6.5. Furthermore, also note that β > 0. As well, we impose an upper bound K on

B to ensure that the set B is compact. If the set B is not upper bounded, and in particular not

compact, then it is conjectured that most of the arguments henceforth will still go through but one

might need more sophisticated proof techniques.

7.2 Principal’s optimization problem

Henceforth, we will restrict our attention to incentive compatible contracts. And when we write

the probability measure P and expectation E and other processes where there is dependence on the

action process A, we will denote them without the superscript A notation. The following result

significantly simplifies the principal’s optimization problem.

Lemma 7.3. Fix an incentive compatible contract (A,X, τ). Then under the recommended action

A, we have that,

(i) {FY
t }t≥0 = {Ft}t≥0, where {Ft}t≥0 is the natural filtration generated by Brownian motion B.

(ii) dε⊥t ≡ 0, P-a.s.
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Thus, with Lemma 7.3(ii) in hand, we are now ready to consider the principal’s optimization

problem. For the remainder of the discussion, we will only consider the case when the principal

wants to induce the agent to choose high effort et = eH at all times t, but the principal still needs

to induce the agent to optimally choose the volatility level σt. In binary effort models like DeMarzo

and Sannikov (2006) and He (2009), the authors also look for an always high effort implementation

of the optimal contract. Zhu (2013) considers the model of DeMarzo and Sannikov (2006) and shows

that it is possible to induce the agent to choose high effort and switch to low effort shirking at times.

We acknowledge this possibility that inducing the agent to shirk could yield a potentially higher

payoff for the principal, but for this paper we will only look for an always high effort equilibrium.

It should be noted that we do not place such a restriction on the volatility choice; for instance, we

do not insist on looking for an equilibrium where the principal induces the agent to always choose

high volatility. That is because in our model, as discussed earlier, there is no direct moral hazard

conflict between the principal and agent’s desired direction of volatility. However, there remains an

indirect moral hazard conflict arising due to volatility choice as the agent can effectively alter the

level of uncertainty directly in this economy and thereby making it more difficult for the principal

to provide incentives.

Recalling the principal’s time t = 0 payoff form in (4.4), the principal’s optimization problem,

when the principal desires to induce always high effort et = eH , is thus,

ṽ(w,m) := sup
σ,X,β,τ

E
[∫ τ

0

e−r1tκ(eH , σt)dt−
∫ τ

0

e−r1tdXt + e−r1τL

]
, (P’)

subject to state value dynamics,
dWt =

[
r0Wtdt− ϕσ

(
σt
σL

− 1

)]
dt− dXt + βtσtMtdBt, W0 = w,

dMt =MtdBt, M0 = m,

(S)

7.3 Optimal termination time

In (P’) the principal maximizes over the set of effort control processes e = {et} where et ∈ {eL, eH},
volatility control processes σ = {σt} where σt ∈ [σL, σH ], compensation processes X = {Xt} which

is cadlag and nondecreasing, the sensitivity process β = {βt}, where βt ∈ B, and the termination

stopping time τ ; of course, all of the above must be {Ft}-adapted.
At this point, we will note the following. Let’s considered the relaxed principal’s optimizaton

problem, of which we simply remove maximizing over τ in (P’). That is to say, consider,
v(W0,M0) := sup

e,σ,X,β
E
[∫ τ

0

e−r1tκ(et, σt)dt−
∫ τ

0

e−r1tdXt + e−r1τL

]
,

τ := inf{t ≥ 0 :Wt ≤ R = 0 orMt ≤ m},
(P)

subject to the state dynamics (S).

Using an argument similar to Cvitanić and Zhang (2012, Chapter 7, Lemma 7.3.2), and also in
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accordance to the intuition that the principal would want to hire the agent as long as the agent is

getting paid at least his outside option of R = 0 (i.e. individual participation constraint), we can

show that the problem of (P) subject to (S), and the problem of (P’) subject to (S), are equivalent.

7.4 Heuristic HJB

Considering problem (P) subject to (S), this is a stochastic optimal control problem with continuous

controls (i.e. the volatility recommendation σ, and the sensitivity β) and singular controls (i.e.

compensation process X). Hence, standard results in the optimal control literature suggests the

value function v is a solution to the Hamilton-Bellman-Jacobi (HJB) equation,

max
{
− r1ψ(w,m) + max

σ
sup
β

[(LeHψ)(w,m;σ, β) + κ(eH , σ)] ,

− ψw(w,m)− 1
}
= 0.

(7.3)

And here, LeH is the second order differential operator,

(LeH ξ)(w,m, ;σ, β) :=

[
r0w − ϕσ

(
σ

σL
− 1

)]
ξw(w,m) +

1

2
m2ξmm(w,m)

+ βσm2ξwm(w,m) +
1

2
β2σ2m2ξww(w,m),

(7.4)

and where we maximize over σ ∈ [σL, σH ] and β ∈ B. Also, where not specified, when we write

maxσ and supβ , for notational brevity, it is understood that we are maximizing over σ ∈ [σL, σH ]

and β ∈ B. For convenience, we will also denote the set of admissible controls at initial state (w,m)

as Aw,m, with a typical control element denoted as α = (σ,X, β).

Let us denote the state space for the agent’s continuation value as ΓW := (R,∞), and the state

space for the exogenous factor as ΓM := (m,∞), and the overall state space be Γ := ΓW ×ΓM . The

appropriate boundary conditions of this problem are:

v(w,m) = L, for (w,m) ∈ ∂Γ. (7.5)

7.5 Key illustrations of the value function

Detailed properties of the value function are showed in Section E. The most critical qualitative

behaviors of the value function are shown in Figures 3 and 4.

8 Optimal Contract Discussion

In this section we will heuristically discuss the properties of the optimal contract and the implemented

actions. The emphasis is on the economic intuition and hence we will suppress the mathematical

details in this section. In particular, for the sake of discussion in this section, we will assume outright

that the value function is sufficiently smooth such that all the partial derivatives make sense.
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Figure 3: Illustration of the state space Γ. The continuation region is the set C , and the payment condition
is the set D . Here, the free (moving) boundary that separates between the continuation region
and the payment condition is m 7→ W̄ (m). It should be noted that the shape of W̄ as drawn is
only meant to be illustrative.
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Figure 4: Illustration of the value function in the w-slice. That is, for each m ∈ ΓM , we plot the value
function w 7→ v(w,m).

8.1 Optimal sensitivity

Let’s first begin by discussing the optimal choice of sensitivity β. Fix any σ ∈ [σL, σH ]. From the

HJB equation (7.3), when (w,m) is in the no payment region, the optimal choice of sensitivity must

thus be,

sup
β∈B

βσvwm(w,m) +
1

2
β2σ2vww(w,m), (8.1)

and recall the definition of B in (7.1).

Before we proceed to discuss the form of the optimal sensitivity β choice in the optimization

problem (8.1), let’s first discuss the diffusion term of the agent’s continuation value dynamics dWt

in (S), and in particular, highlight how this makes our model significantly different from the drift-only

control models. If we recall back to agent’s continuation value dynamics dWt (S), the overall diffusion

term is βtσtMtdBt. Hence, even focusing on the choices of (β, σ) on the agent’s continuation value

diffusion term alone, we see several effects at play. On the one hand, the principal wants to provide

the cheapest or lowest amount of sensitivity β to induce the agent to adhere to his recommended

actions. But on the other hand, the amount of risk (i.e. the diffusion term of the agent’s continuation

value) is not solely just based on the principal’s imposed sensitivity β. It is indeed determined by the

product of the sensitivity β, volatility choice σ, and the exogenous factor level Mt = m. That is to

say, in contrast to drift-only control models, where the total amount of risk (i.e. again, meaning the

diffusion term of the agent’s continuation value) is of the form βtdBt, so the principal can directly

dictate the amount of risk he wants to subject the agent to through the choice of sensitivity β. In

contrast, in our case, the principal’s choice of sensitivity β is not the only source of risk the agent
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is facing — the agent faces the product βtσtMt, of which σt remains to be a term that the principal

wants to recommend and dictate for direct payoff reasons, and Mt is an exogenous factor level not

controlled by the agent nor the principal. In all, that is to say when the principal wants to provide

incentives through the sensitivity β, the principal must thus take into account providing incentives

for an optimal volatility choice σ, and also the exogenous factor level m. It is precisely in this sense,

the ability for the principal to provide incentives to the agent to induce the agent to take on the

recommended action is weakened, relative to a drift-only control model.

Once we understand the incentive concerns in the diffusion term of the agent’s continuation value

dynamics dWt, we can now be more specific about what the principal needs to consider in choosing

the optimal sensitivity β to choose, as in the optimization problem (8.1). Again, we immediately

note several effects that are distinctly not present in drift-only control models. The optimal choice

of sensitivity β now clearly depends on the volatility choice σ, the cross marginal effect vwm(w,m)

of the agent’s continuation value Wt = w and the exogenous factor level Mt = m, and the second

order effect vww(w,m) of the agent’s continuation value. Let’s assume that vww(w,m) < 0 in the no

payment region, implying that the principal, although is risk neutral, becomes “endogenously quasi

risk averse” with respect to the agent’s continuation value. Then the objective function (8.1) is a

concave quadratic continuous function in β over a compact convex set B. Thus, a unique maximizer

β∗(σ;w,m) exists. Let us also define the sets on [σL, σH ],

GL(w,m) :=

{
σ ∈ [σL, σH ] : − vwm(w,m)

σvww(w,m)
< β

}
(8.2a)

GM (w,m) :=

{
σ ∈ [σL, σH ] : K ≥ − vwm(w,m)

σvww(w,m)
≥ β

}
(8.2b)

GH(w,m) :=

{
σ ∈ [σL, σH ] : − vwm(w,m)

σvww(w,m)
> K

}
. (8.2c)

Note that ∪j∈{L,M,H}Gj(w,m) = [σL, σH ], and Gj(w,m)∩Gk(w,m) = ∅ for j, k ∈ {L,M,H}, j ̸= k.

Then by a usual constrained optimization argument, we see that the optimal sensitivity choice

β∗(σ;w,m) is given by the following. 21

Proposition 8.1. The optimal choice of sensitivity associated with the optimization problem (8.1)

is,

β∗(σ;w,m) =


β, if σ ∈ GL(w,m)

− vwm(w,m)
σvww(w,m) , if σ ∈ GM (w,m)

K, if σ ∈ GH(w,m).

(8.3)

Proof. The proof is immediate by the usual constrained optimization methods via the Kuhn-Tucker

conditions.

As it is with drift-only control models, the object β is the sensitivity, or “incentives”, that the

principal must subject and provide to the agent in order to induce the agent to take the principal’s

21We denote j ∈ {L,M,H} for the sets Gj(w,m) to, respectively, mean “low”, “medium” and “high”. The reason
is that if j = L and σ ∈ GL(w,m), then the optimal sensitivity β∗(σ;w,m) is chosen to be the one at the lowest value;
and likewise for the other cases of j.
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desired action. In this case, we see that the sensitivity β that the principal wants to subject the

agent to is underline by two distinct channels: (i) the level of the exogenous factor at Mt = m;

and (ii) the volatility level σt = σ that should be implemented. For the rest of this discussion, let’s

hold the recommended volatility level σ as fixed. Also, we recognize that when (w,m) is in the no

payment, we only have that vw(w,m) ≥ −1. Thus, it is distinctly possible that vw(w,m) = 0. We

will suppose that vw(w,m) > 0 for the sake of this economic discussion, but this is not enforced

anywhere else. 22

In the expressions (8.2), we see that the object − vwm(w,m)
σvww(w,m) plays a significant role to determin-

ing the optimal choice of sensitivity in (8.3). To highlight its importance, we will label the term

− vwm(w,m)
σvww(w,m) as risk adjusted sensitivity (RAS). Economically, we can decompose RAS as follows:

− vwm(w,m)

σvww(w,m)
=

(a) Precision of volatility choice︷︸︸︷
1

σ
×

(b) ”Risk tolerance”︷ ︸︸ ︷(
− vw(w,m)

vww(w,m)

)
×

(c) ”Elasticity of exogenous factor”︷ ︸︸ ︷(
vwm(w,m)

vw(w,m)

)
.

(8.4)

We see that RAS depends on three different terms: (a) precision of volatility choice; (b) “risk

tolerance”; and (c) “elasticity of exogenous factor”.

Let’s first discuss the economic channel for which RAS would induce the optimal sensitivity β

to be low, that is β∗(σ;w,m) = β in (8.3). Noting the form of GL(w,m), in order for the set to

be nonempty, we see that while −vww(w,m) > 0, given that β > 0, there are no particular sign

restrictions on vwm(w,m). Economically, this is the case when the principal does not care or want

exposure to the exogenous factor level, that is roughly to say, the principal is relatively “inelastic”

to the exogenous factor Mt = m. Once the principal does not care about the exogenous factor.

then indeed, we return to the perhaps more familiar economic logic of drift-only control models. As

well, the precision of volatility choice here must be relatively low, so that the choice of volatility is

relatively high. Also, we can infer also here that the principal must have low risk tolerance, which

implies the principal wants to achieve the lowest overall volatility of cash flow diffusion, and this is

achieved when the principal subjects the agent to the lowest sensitivity β∗(σ;w,m) = β.

Next, let’s discuss the economic channel for which RAS would induce the optimal sensitivity β

choice to be high, that is β∗(σ;w,m) = K in (8.3). Firstly, noting the form of GH(w,m) in (8.2c),

we see that since −vww(w,m) > 0, if we vwm(w,m) ≤ 0, then the set GH(w,m) = ∅. So let us

suppose and discuss the case when GH(w,m) ̸= ∅, which implies vwm(w,m) > 0. If σ ∈ GH(w,m),

then it implies that the precision of volatility choice is high, or that the volatility choice is relatively

low. Furthermore, the “risk tolerance” term must also be relatively high, and the “elasticity of

exogenous factor” is also relatively high. This is effectively the scenario when the cash flow volatility

σ is relatively low, the principal is relatively risk tolerance and so is willing to take on more risk,

and hence is willing to let the exogenous factor to give the extra “risk” bump, and so justifying why

vwm(w,m) > 0. In such a case, the principal wants to put the highest sensitivity or incentives to

22Indeed, for the rest of this discussion, the sign and value of vw(w,m) is largely irrelevant. However, including the
term vw(w,m) allows us to identify terms like −vw(w,m)/vww(w,m) as “risk tolerance” as it is traditionally defined
(when we view the agent’s continuation valueWt = w as a “consumption good”) 23 , and view vwm(w,m)/vw(w,m) as
an “elasticity” in the traditional economic sense. But even without this normalization by vw(w,m), all of the economic
reasoning here goes through, except that it may not be appropriate to keep on using the traditional economic labels.
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the agent.

Finally, let’s discuss the economic channel for which RAS would induce the optimal sensitivity β

choice to be medium, that is β∗(σ;w,m) = RAS = − vwm(w,m)
σvww(w,m) . And it is through this medium case,

which is effectively the interior solution to the optimization problem in (8.1), why we think the label

risk adjusted sensitivity (RAS) is appropriate. Note that unlike the case when the optimal sensitivity

β∗(σ;w,m) = p(σ) is low, and similar to the high case, here for GM (w,m) to be nonempty, there

must be a sign restriction on vwm(w,m). In particular, we require that vwm(w,m) > 0 and also not

too high, nor too low. This case of which σ ∈ GM (w,m) as in (8.2b) is exactly the “Goldilocks zone”

and the optimal sensitivity β∗(σ;w,m) = − vwm(w,m)
σσww(w,m) is almost like a “Goldilocks” sensitivity. That

is, the precision of volatility choice is neither too high nor too low, the risk tolerance of the principal

is neither too high nor too low, and the principal’s appetite for the exogenous factor is neither too

high nor too low.

In all, the above discussion not only suggests that a model with volatility control differs substan-

tially to drift-only control models on how the optimal sensitivity β should be chosen, but equally

important, our model suggests that how it is chosen is through the decomposition of the RAS term

in (8.4).

8.2 Optimal volatility

Once the optimal sensitivity has been characterized, as discussed in Section 8.1 and in (8.3), we are

now ready to discuss the optimal volatility σ choice. The choice of volatility here also highlights an

interesting economic result — while the principal and the agent both desire higher volatility as seen

from their direct payoffs, so seemingly there is no moral hazard conflict effect, but there still exist a

distinctive presence of a reverse moral hazard effect.

Firstly, it should be noted that while we have emphasized and focused the case when the principal

implements the high effort et ≡ eH at all times, in the case of volatility control σ, it is a priori unclear

whether it is possible to say which fixed volatility level that is prevalent at all time is optimal for

both the agent and the principal. While there is indeed some loss of generality in focusing and

implementing a high effort choice at all time, and this point is made clear in Zhu (2013) based on

the effort-only control model of DeMarzo and Sannikov (2006), the motivation is that high effort at

all times is “part of” the first best action. Recall again from the discussion in Section 5, the first

best action is indeed to implement high effort et ≡ eH at all times, and also high volatility σt ≡ σH

at all times.

But it is perhaps difficult to motivate and justify how and why the principal would find it desirable

to implement the first best volatility choice, that being the high volatility choice, at all times. It is

here that we can pinpoint the source of this reverse moral hazard effect. Recalling the payoffs of

both the agent in (4.3) and principal in (4.4), it would appear that there is no direct moral hazard

conflict between the principal and the agent in volatility choice at all. That is, both the principal and

agent strictly prefer higher levels of volatility. Thus, it might appear that in the optimal contract,

the principal should be able to implement the first best level of volatility, namely setting σt ≡ σH

to the highest level, at all times. But in light of the discussion in Section 8.1 of the overall risk or
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diffusion term of the agent’s continuation value dWt, we can see that fixing at the high volatility

choice at all times leads to the overall diffusion term βtσHMtdBt. Recall again that in this setup,

termination is inefficient. In particular, that implies up to the IR conditions of the agent being met,

economically the principal would want to keep the agent employed as long as possible. Then there

are now two tensions. While the principal’s instantaneous direct payoff κ(eH , σt) is maximized when

choosing σt = σH (again, the first best result), if the principal recommends a higher volatility σt at

time t, it also boosts the probability that the agent’s continuation value Wt will hit the termination

boundary (i.e. when the first time when Wt = R = 0), and thereby the principal will only get the

inefficient liquidation value L. This is precisely the reverse moral hazard effect. By the IR condition,

so Wt ≥ R = 0, it is clear that it is better for the agent to be employed than to be terminated. But

to keep employment, even though the agent desires a higher volatility choice through his private

benefits, the agent must at the same time also desire lower volatility to maintain employment.

Similarly, while the principal obtains a higher direct payoff from recommending a higher volatility

choice, it is endogenously in the interest of the principal to not recommend too high of a volatility

choice for fear of terminating the agent and receiving the inefficient liquidation value.

In all, this implies that it is not necessarily optimal for the principal to recommend the first

best volatility choice at all times. And indeed, the above discussion highly suggests that the reverse

moral hazard effect will endogenously lead the principal to shade down the choice of volatility. And

also, by choosing a higher volatility σt, and also observing the decomposition of RAS in (8.3) and

the sets (8.2), it also implies that the choice of sensitivity β will tend to be lower. In all, and already

suggested in Section 8.1, there is an interplay of effects between the optimal choice of volatility and

optimal choice of sensitivity. Let us make this precise below.

With the optimal sensitivity choice β∗(σ;w,m) characterized in (8.3), we define first the objective

function,

G(σ;w,m) :=ϕσ

(
σ

σL
− 1

)
vw(w,m) + β∗(σ;w,m)σm2vwm(w,m)

+
1

2
β∗(σ;w,m)σ2m2vww(w,m) + κ(eH , σ),

(8.5)

and the optimization problem,

max
σ∈[σL,σH ]=∪jGj(w,m)

G(σ;w,m). (8.6)

Economically, we see that when the principal recommends the volatility choice, there are several

effects at play. The first three terms of (8.5) are for the principal to internalize the agent’s concerns.

The first term ϕσ

(
σ
σL

− 1
)
vw(w,m) are the direct payoffs to the agent for choosing volatility level

σ, multiplied by the weight vw(w,m). The weight vw(w,m) ≥ −1 represents the marginal value of

the principal’s value function with respect to an increase to the agent’s continuation value. So if

vw(w,m) > 0, then it is marginally beneficial for the principal to increase the agent’s continuation

value, and in that case, the principal would prefer to recommend a higher volatility choice, which is

also a private benefit again for the agent; vice-versa, if −1 ≤ vw(w,m) < 0, then the principal would
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want to decrease the agent’s continuation value, and this is achieved by picking a lower volatility

level that incurs a private benefit cost to the agent. And if vw(w,m) = 0, then the principal is

indifferent. The second and third terms β∗(σ;w,m)σm2vwm(w,m) + 1
2β

∗(σ;w,m)σ2m2vww(w,m)

of (8.5) capture the sensitivity effects as discussed in Section 8.1, which effectively captures the cost

to providing incentives to the agent, except now the exogenous factor level effect Mt = m is now

explicitly present. Finally, the last term κ(eH , σ) captures the principal’s concerns. In all, that

means in the problem of choosing and recommending the optimal volatility, the principal must trade

off the agent’s incentives, the cost and sensitivity to providing correct incentives to the agent, and

also the principal’s own desired preferences.

At this point, to consider the optimization problem (8.5), we effectively need to partition the

volatility control σ into three different regions, according to (8.2) and accordingly change the value

of β∗(σ;w,m) as given in (8.3). While GM (w,m) is clearly a compact subset of [σL, σH ], it is

clear that GL(w,m) and GM (w,m) are just half-open interval subsets of [σL, σH ]. So from an

optimization perspective, optimizing over non-compact intervals might have serious non-existence

issues. However, this is not a concern in our current case. For instance, recalling (8.2c), if we pick

σ ∈ GH(w,m) such that β∗(σ;w,m) = K, and if it is indeed the optimizer σ is at the boundary K of

the set GH(w,m), then that effectively means − vwm(w,m)
σvww(w,m) = K and hence we are no different from

optimizing over the closure GH(w,m) or evaluating the objective function at σ ∈ GM (w,m) such

that − vwm(w,m)
σvww(w,m) = K. Either case, the optimal sensitivity is β∗(σ;w,m) = K and so the overall

objective function G(σ;w,m) of (8.5) remains the same. Similar arguments apply to the case when

we consider GL(w,m) of (8.2a). Thus, with this argument in mind, we modify our optimization

problem and consider,

max
σ∈∪jGj(w,m)

G(σ;w,m). (8.7)

We will consider the optimization each case at a time. When we pick σ ∈ Gj(w,m), for j = L,M,H,

then the objective function respectively becomes,

G(σ;w,m)
∣∣
GL(w,m)

= ϕσ

(
σ

σL
− 1

)
vw(w,m) + p(σ)σm2vwm(w,m)

+
1

2
p(σ)2σ2m2vww(w,m) + κ(eH , σ),

(8.8a)

G(σ;w,m)
∣∣
GM (w,m)

= ϕσ

(
σ

σL
− 1

)
vw(w,m)− 1

2

vwm(w,m)2

vww(w,m)
m2 + κ(eH , σ), (8.8b)

G(σ;w,m)
∣∣
GH(w,m)

= ϕσ

(
σ

σL
− 1

)
vw(w,m) +Kσm2vwm(w,m)

+
1

2
K2σ2m2vww(w,m) + κ(eH , σ).

(8.8c)
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From the forms in (8.8), we see that in general there are no closed form and simple analytic

expressions of the optimal choice of volatility σ∗(w,m). Moreover, one needs to compute the (set

of) optimizers σ∗
j (w,m) for each case j = H,M,L, substitute the optimizer back into the objective

function G(σ∗
j (w,m);w,m)|Gj(w,m)

, and once that is complete, the optimal volatility choice is the

set,

σ∗(w,m) ∈ argmax
j∈{L,M,H}

G(σ∗
j (w,m);w,m)

∣∣
Gj(w,m)

. (8.9)

Remark 8.2. As a general remark, it should not be surprising that the optimal volatility choice in

the form (8.9) is rather this complicated. Indeed, if one observes the drift-only control model of

Zhu (2013), which is based off of the model of DeMarzo and Sannikov (2006), in which the agent

has a binary choice of effort, it is readily seen that it is not trivial and indeed rather challenging to

characterize the optimal effort choice. Here, we have already simplified matters substantially by con-

centrating on implementing the always high effort case, but nonetheless, even allowing for volatility

to be optimally implemented, the resulting optimal volatility recommendation is nonetheless rather

complicated to observe.

Remark 8.3 (Difficulty of direct application of verification theorem). As we conclude the discussion

of the optimal choice of sensitivity in Section 8.1 and optimal choice in this Section 8.2, we can now

remark the tremendous difficulty in applying the traditional “verification theorem” to conjecture the

existence of a smooth solution of the HJB (7.3) that actually coincides with the value function in

(P). A classical method is the verification theorem argument, or the “guess and verify” argument,

where one conjectures that a PDE that solves HJB equation subject to some well thought out and

economically motivated boundary conditions, and from the HJB, one takes the first order conditions

to obtain the optimal controls, and substitute these controls back into the original HJB equation.

There, one then proceeds to directly solve the PDE by constructing an explicit solution and thereby

directly proving existence and also smoothness. Then essentially by Ito’s lemma argument, one can

then verify that the HJB is a supersolution of the value function, and hence under the optimal

controls, the HJB is the solution to the value function. This type of argument is fairly prevalent in

the finance literature, especially in asset pricing theory, and also in continuous-time principal agent

problems where there is a single state variable, so the problem is an ODE rather than a PDE.

However, we see here once we substitute the optimal sensitivity β∗(σ;w,m) in (8.3) and optimal

volatility σ∗(w,m) in (8.9) back into the HJB equation (7.3), the resulting HJB is sufficiently complex

that it is difficult to see how we can indeed obtain the existence of a smooth solution that satisfies the

necessary boundary conditions. And this is especially why in the technical proofs, we have to proceed

through a more roundabout way via viscosity solutions to show existence, and then “upgrade” our

smoothness results.
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9 Delegated portfolio management

9.1 Motivation

We are now ready to consider the concrete application of the model in the context of delegated

portfolio management. Suppose we regard the principal as outside investors of a managed portfolio,

and regard the agent as the portfolio manager. In this context, we will explicitly assume that the

portfolio manager has skill and can exert costly effort to search and achieve higher cash flow payoffs

in the managed portfolio. That is, the portfolio manager can directly control the drift of the cash

flows. Furthermore, we assume the portfolio manager has available assorted tools and financial

instruments to engage into hedging and speculating behavior that can change the overall volatility

of the cash flows. The portfolio itself is also subject systematically subject to an exogenous market

wide or industry wide factor that the portfolio manager cannot control. Hence, portfolio volatility

is comprised of a manager specific choice in volatility, reflecting risk management practices, and

an exogenous market or industry factor. A delegated portfolio management problem framed in

a principal-agent setting has also been considered by Ou-Yang (2003); other recent models that

consider delegated portfolio management problems include van Binsbergen et al. (2008), Dybvig

et al. (2009) and Cvitanić et al. (2014). In this section, we will relabel and call the agent as the

manager, and the principal as investor.

The main idea here is to have the portfolio manager to have sufficient “skin in the game” through

his own investments. Specifically, consider an investment firm whereby the investment manager

operates two different investment funds: an external fund fund that is available to outside investors

and an internal fund that is only available to management. Suppose we regard the continuation

value Wt as the value of an internal fund that is only available to the portfolio manager but not to

the outside investor. This form of internal fund that is only available to insiders of the firm, and not

outside investors, is also an observed market practice. For instance, numerous banks (at least prior

to the Volcker Rule) also run proprietary trading desks, which are effectively internal hedge funds.

Several hedge funds also engage into this practice. For example, the hedge fund firm Renaissance

Technologies runs three funds that are open to outside investors, but also run a separate fund, the

Medallion Fund, that is only open to its employees (see Zuckerman (2013)). Darolles and Gourieroux

(2014a) and Darolles and Gourieroux (2014b) also discuss at length the practice of this internal fund

in the hedge fund industry. The external fund has value v(Wt,Mt). In particular, this specifically

implies that the value of the external fund is explicitly dependent on the value of the internal fund

Wt and also the exogenous factor level Mt.

Remark 9.1. Asserting that the portfolio volatility overall is directly influenced by the portfolio

manager’s risk management practices and market volatility should be reasonable. However, asserting

that the portfolio manager has skill, and moreover that such skill surely translates to higher cash

flow payoffs is a strong assumption. Indeed, the question of whether persistent manager skill exists

or not is still heavily debated in empirical research. 24 As well, what we refer to as skill here

differs from the usual interpretation of skill in the empirical research of fund performance. In the

24The literature on this question is too vast to survey here with any justice, but some recent papers here include:
Fama and French (2010) and Barras et al. (2010).

35



empirical literature, skill usually refers to whether the portfolio manager can deliver positive alpha,

adjusting for the systematic risk factors the portfolio takes on. In contrast, here we refer to skill as

the manager’s direct ability to influence the drift of the cash flows (not returns). Thus, recognizing

fully that this is a debatable aspect, we will nonetheless make such a strong assumption in this

section.

9.2 Interpreting the continuation value

For given sensitivity β = {βt} and volatility σ = {σt}, the continuation value dynamics dWt in (S)

in the no payment region so dXt ≡ 0, we can rewrite the expression as,

dWt =

[
r0Wt − ϕσ

(
σt
σL

− 1

)]
dt+ βtσtdMt

=

[
r0Wt − ϕσ

(
σt
σL

− 1

)]
dt+ βt(dYt − κ(eH , σt)dt)

= βtdYt + r0Wtdt−
[
ϕσ

(
σt
σL

− 1

)
+ βtκ(eH , σt)

]
dt. (9.1)

With the context of delegated portfolio management, we will interpret the continuation value dy-

namics dWt via the expression form of (9.1).

Since W is the value of the internal fund, the expression (9.1) suggests that the value of the

internal fund is driven by the amount of ownership βtdYt the agent has of the underlying invest-

ment technology, and plus an investment r0Wtdt into a riskfree asset that pays off at a rate r0.

Note here that in this context, we can interpret βt as the dynamic incentive fees of ownership the

manager owns of the investment opportunity dYt, so βtdYt is the total dollar exposure the manager

has to the managed cash flows. The latter two terms of (9.1) represent the cost of implementing

an investment strategy σt. The term ϕσ

(
σt

σL
− 1

)
dt can be thought of as the direct cost of im-

plementing the investment strategy σt; for instance, this could represent the direct trading costs

or managerial monitoring costs. The term βtκ(eH , σt)dt represents the proportional expected re-

turn of implementing the strategy σt. So the manager’s internal fund value only gets a positive

bump if βt(dYt − κ(eH , σt)dt) > 0, and since the ownership amount βt > 0, then we have that

βt(dYt−κ(eH , σt)dt) > 0 if and only if dYt−κ(eH , σt) > 0. That is to say, the manager captures the

positive excess returns over the expected return of the investment strategy, only if the investment

strategy performs extraordinarily well.

Since we focus on implementing an always high effort action et ≡ eH , other than the dollar

incentives βt, the remaining control policy here is the volatility σt. Again, we interpret βt as

the dollar incentives of ownership, or dynamic incentive fees, the manager owns of the managed

investment opportunity dYt, so βtdYt is the total dollar exposure the manager has to the managed

cash flows. In addition, here we may broadly interpret σt as investment strategies. To be more

specific, once in equilibrium we implement an always high effort et ≡ eH action, then it effectively

implies that the manager is already exerting costly skill to find the set investment opportunities

with good returns. However, even after exerting skill to find this investment opportunity set, the

manager still needs to choose the specific investments from the set, and it is here we interpret σt
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as the opportunities available to the manager. Specifically, we will let σt be effectively a parameter

captures both the set of investment opportunities and hedging strategies.

Now using the results in Section 8, under the optimally chosen sensitivity β∗(σ;w,m) in (8.3)

and optimally chosen volatility σ∗(w,m) in (8.9), and the set forms Gj(w,m) in (8.2), we can thus

write (9.1) as,

dWt =
∑

j∈{L,M,H}

{
β∗(σ∗(Wt,Mt);Wt,Mt)dYt + r0Wtdt−

[
ϕσ

(
σ∗(Wt,Mt)

σL
− 1

)
+ β∗(σ∗(Wt,Mt);Wt,Mt)κ(eH , σ

∗(Wt,Mt))
]
dt
}
1{σ∗(Wt,Mt)∈Gj(Wt,Mt)}.

(9.2)

Economically, the form of (9.2) implies the following contractual implementation. The outside

investors offer the manager an initial start up fund value of W0 at t = 0 and in return, the manager

commits to the following dynamic incentive fee compensation scheme as represented via the optimal

dollar incentives β∗(σ∗(w,m);w,m), viewed as a map from (w,m). That is to say dependent on

the value of the internal fund Wt = w and also the exogenous factor level Mt = m, the manager

will choose a different investment strategy σ∗(w,m). And dependent on this strategy, the internal

fund will only get different dollar exposures of the managed cash flows dYt. For instance, for

those investment strategies such that σ∗(w,m) ∈ GL(w,m), the manager gets a low dollar incentive

β∗(σ∗(w,m);w,m) = β; for those investment strategies σ∗(w,m) ∈ GM (w,m), the manager gets a

medium dollar incentive β∗(σ∗(w,m);w,m) = − vwm(w,m)
σ∗(w,m)vww(w,m) ; and finally, for those investment

strategies σ∗(w,m) ∈ GH(w,m), the manager gets a high dollar incentive β∗(σ∗(w,m);w,m) = K.

The critical real-world implication of the above is as follows — investors should contract on the

value of the internal fund and the exogenous factor level. Again, take hedge funds as a prototypical

example. Hedge fund investment strategies are essentially completely black box, and effectively that

means even investors into the fund most often have no idea what types of investment strategies

the manager is employing. Hence, that makes directly contracting on investment strategies to be

highly unrealistic and impossible. In our framework however, the investor only needs to contract on

two things: the value of the internal fund Wt = w and the stochastic factor level Mt = m. That

is, the investor writes a contract not on the investment strategy that maps to the dollar incentives

σ 7→ β∗(σ;w,m), but rather directly from the value of the internal fund and the stochastic factor

level (w,m) 7→ β∗(σ∗(w,m);w,m), and we emphasize that β∗(σ∗(w,m);w,m) only depends on

(w,m), and indeed only has three relatively “small” sets of values, as given by (8.3).

However, while the investors can certainly contract on the value of the internal fund Wt = w,

it is unclear how the investors can contract on the factor level Mt = m. In particular, recall that

off equilibrium, the investors cannot observe the exogenous factor level. Thus, to complete the

optimal contract implementation, we further require the manager to directly and truthfully report

the exogenous factor level to the investors. In practice, that translates to the manager reporting

periodically some factor benchmark index to the investors.

Thus, with the internal fund value Wt = w and the exogenous factor level Mt = m known to

the investors, the investors can just adjust the level of the dynamic incentive fee β∗(σ∗(w,m);w,m)

accordingly, without knowledge of the actual employed investment strategy σ∗(w,m). The advantage
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of this implementation is that the manager does not need to report to the investors their actual

employed investment strategy, which is usually what is observed in practice in the case of hedge

funds. Moreover, if the internal fund does well, so when Wt = w hits the payment boundary

W̄ (Mt) = W̄ (m), the external investors will directly compensate manager 25

As a result of the above discussion, the value of the external fund to the investors is v(w,m),

when the value of the internal fund is Wt = w and the level of the exogenous factor is Mt = m. But

economically and conceptually, what does it mean by the value of the external fund is a function of the

value of the internal fund and the level of the exogenous factor? Borrowing the language of financial

derivatives, we effectively can view the external fund as a derivative, where the underlying asset here

is written on the value of the internal fund and level of the exogenous factor, with two associated

barriers. The lower barrier is the first time (Wt,Mt) = (w,m) hits the level (w,m) = (R,m) or

(w,m) = (w,m); that is, either when the value of the internal fund goes bust (i.e. Wt = R), or when

the exogenous factor level is sufficiently low (i.e. Mt = m) that the manager effectively walks away

from the firm. The upper barrier is the moving barrier (W̄ (Mt),Mt) that determines the optimal

capital injection or compensation scheme. However, despite this discussion, a direct implication here

is that the investment strategy of the manager still remains a black-box to the investor. Another

direct implication here is that the investment strategy of the external fund will closely track that of

the internal fund’s investment strategy.

Finally, we should observe what is not optimal or feasible in this context. Most notably, the

perhaps “easier” contractual setup would be that there is a single investment fund, managed by the

manager, for which mangers and investors commonly invest to. In this context, this is not possible.

As a thought experiment, suppose this were true, meaning the internal fund and the external fund are

exactly identical. But because the manager can privately select effort and volatility (again, broadly

interpreted as investment opportunity), and by limited liability, the manager would effectively have

incentives to gamble (i.e. choose the highest volatility) and exert the lowest effort. Focusing on the

volatility choice, although by the form of the reward function κ(e, σ) it may appear that it too is

desirable for the investor to choose the highest volatility, the discussion in Section 8.2 argued that

this is not the case. As well, and this is perhaps a more cynical view of managers, suppose there does

exist only a single common fund, and recalling the black box nature of the investment strategy, how

can investors ensure that the managers will not privately squirrel away the best available investment

opportunities and leave the subpar investment opportunities to the common fund? However, the

establishment of an internal only fund for the manager with an external fund that closely tracks

the investment strategy of the internal fund does mitigate this concerns. That is, although in

equilibrium, the manager will collect some “information rent”, namely in the form of keeping the

best investment strategies still for the internal fund, but if the investment strategy of the external

fund commits to following that of the internal fund, the external fund still benefits from the exposure

of those good investment strategies.

In all, as a concrete and simple investment policy recommendation, this model highly suggests

that outside investors should actively seek funds with the following characteristics: (i) the fund has an

25In this setup, injecting more capital dXt into the internal fund is equivalent to compensating the manger, as we
assume the manager derives all utility from maximizing the value of the internal fund.
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internal fund available only to management, and an external fund only available to external investors;

(ii) the fund investment strategies of the internal fund and external fund are closely correlated to

each other; and (iii) the investment firm has dynamic incentive fee compensation schemes.

10 Conclusion

We studied continuous-time principal-agent problem where the agent can continuously choose the

drift and volatility parameters, while the principal continuously observes and receives the resulting

controlled cash flows. The key ingredient yielding a meaningful private volatility control by the

agent, in that the agent’s deviation cannot be easily detected by the principal’s computation of the

quadratic variation of the cash flows, is via the introduction of an exogenous factor level. Hence

effectively, even though the principal can infer the overall instantaneous diffusions of the cash flows,

the principal cannot disentangle the component that is due to the agent’s endogenous volatility

control and the exogenous factor level. As a result, beyond merely hidden drift or effort control,

the principal must provide incentives now for both inducing the desired effort and volatility. Most

importantly, as a concrete application, our current model provides a first step to considering the

dynamic contracting environment in the context of delegated portfolio management.

By introducing this meaningful sense of volatility control, we now open a new economic channel

for researchers to study continuous-time principal-agent problems. In particular, there are further

questions one can consider between the interplay of effort and volatility. In particular, there are

several questions that this framework researchers could consider:

• The current model assumes the principal is risk neutral. However, once we give the agent

the meaningful ability to privately select volatility, an immediate and relevant extension is to

consider a case when the principal is risk averse.

• In the context of delegated portfolio management, since prices of risky assets jump (i.e. “dis-

aster” states), it will be interesting to pair, say, our current model to that of DeMarzo et al.

(2013), where the agent can also influence the likelihood of a disaster state occurring.

In all, we feel that this model is an important step to the growing literature of continuous-time

dynamic contracting, and also to our better understanding of delegated portfolio management con-

tracting practices.
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Appendices

A The “quadratic variation test”

Given the continuous-time and Brownian noise driven setup, the computation of the quadratic variation turns out to

be of utmost importance, especially in the case when we have volatility control. Technical details revolving around

the quadratic variation can be found in standard references like Karatzas and Shreve (1991), Protter (2005) and

Ø ksendal (2010), among many others.

In what follows, we will first specialize the discussion to when the agent controls the volatility σt so that it is

continuous in time t. In the latter section, we will consider the case when the agent does not necessarily need to make

the volatility control to be continuous in time.

A.1 Models in the existing literature

In continuous-time principal agent models like Holmström and Milgrom (1987) and the more recent papers by DeMarzo

and Sannikov (2006), Biais et al. (2007), Sannikov (2008), He (2009) and others, all consider the case of constant

volatility. For instance, taking the model of DeMarzo and Sannikov (2006) and Sannikov (2008), cash flows are of

the form (D.2). Thus, the agency conflict only arises due to the principal’s unobservability of the agent’s choice of

the drift, which is broadly interpreted as hidden effort. However, in those model, it is without loss of generality to

consider constant volatility. For instance, even if volatility σt (non constant) is a choice variable for the agent in this

setting, and since the principal can continuously observe the cash flow process Y , then at any time t, the principal

can infer the agent’s choice of volatility with arbitrary precision. To see this, suppose the principal has observed the

cash flow process {Ys}0≤s≤t according to (D.2) up to time t (replacing σ by σt). Then by computing the quadratic

variation 26 , and using the fact that noise here is driven by a standard Brownian motion B, and that σt is continuous

in time,

[Y ]t =

∫ t

0
σ2
sds.

The right-hand side is a standard Riemann integral, of which the principal can apply the fundamental theorem of

calculus and compute that,

[Y ]′t = σ2
t , for all t > 0, a.s.,

and since the left-hand side of the above is observable to the principal, and thus so is the volatility choice σt at each

point in time 27 . Thus, it follows that even if the agent can choose the volatility, given that the principal can perfectly

observe such a choice, the principal can thus directly dictate his desired level of volatility and immediately detect

deviations. Thus, it is for this reason, choosing volatility σt = σ as a known constant to both the principal and the

agent in these types of models is without loss of generality. Indeed, Schaettler and Sung (1993) and Sung (2004) use

the same type of dynamics (i.e. noise driven by Brownian motion) in which the agent can control both the drift and

volatility; they show that the volatility is naturally optimally chosen to be a constant. Thus indeed, in these types of

models, the only variable that could have moral hazard type conflicts is in the choice of the drift.

A.2 Current model

Here, the dynamics are fundamentally different. If we use the same “quadratic variation test”, we immediately see

that even if the principal observes the cash flow {Ys}0≤s≤t up to time t of (4.1), and since both σt and mt are

continuous in time t, we have that,

[Y ]t =

∫ t

0
σ2
sm

2
sds.

26Throughout this paper, we will denote the quadratic variation ofX as [X]t, and likewise, the quadratic covariation
between X and Y as [X,Y ]t.

27Since we assume that the volatility term is always strictly positive, that means that even if the square σ2
t is

observed, by taking the square root, we know for sure the value of σt.
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Again, applying the fundamental theorem of calculus, we see that,

[Y ]′t = σ2
tm

2
t , for all t > 0, a.s.

Thus, even if the principal can observe the left-hand side [Y ]′t above, he can at best observe the product σ2
tm

2
t but

not the two components separately, since the process m is not observed by the principal independently. Thus, under

the specification of (4.1) and (4.2), the agent can choose volatility without being directly detected by the principal

and hence, this is a meaningful moral hazard term.

A.3 Detecting deviations in the current model?

As argued in section A.1, for the models in the existing literature, there is no loss of generality in assuming that the

volatility is not under control; whether we allow the non-controlled exogenous volatility to be constant or stochastic

then is just a matter of taste. But continuing on with the discussion in section A.2, we now have a legitimate concern

of whether the principal can detect deviations from his recommended actions without the need to provide incentives.

A.3.1 An incorrect computation (i)

We will first discuss a type of computation that is seemingly correct and seemingly suggest that even in this current

more complex model volatility control is mute, but is indeed faulty. Suppose the principal offers a contract (A,X, τ)

with action process A = {(µt, σt)}t≥0. Of course, we will just consider the case when the contract is not incentive

compatible for the agent, else if the contract was to be incentive compatible, the agent will not deviate from the

recommendation. Suppose the agent ignores the principal’s recommended actionA and deviates toA† = {(µ†t , σ
†
t )}t≥0.

Under the deviant action A†, the cash flows will now evolve according to,

dYt = µ†tdt+ σ†
tmtdBt, Y0 = 0

dmt = mtdBt, m0 = 1.

Repeating the same quadratic variation test, and for emphasis here, we insert the notation ω to denote this is a sample

space path-by-path computation, the principal would compute at time t,

[Y ]t(ω) =

∫ t

0
(σ†2

s m2
s)(ω)ds. (A.1)

One might strongly suggest the following. Since the principal knows his own recommended action A, and if the agent

complied and followed the principal’s recommended action, the principal would correctly deduce that the cash flows

might be evolving according to dynamics, and we denote Y conj to mean “conjecture”,

dY conj
t = µtdt+ σtmtdBt, Y0 = 0

dmt = mtdBt, m0 = 1.

And if the principal were to do the exact same quadratic variation computation, the principal would deduce that,

[Y conj]t(ω
′) =

∫ t

0
(σ2

sm
2
s)(ω

′)ds, (A.2)

and note in particular that we do not necessarily have ω = ω′.

It is tempting, thus, for us to conclude that in order to detect deviations, all the principal needs to do is to

observe [Y ]t in (A.1) and consider his conjecture [Y conj]t in (A.2) at each point in time t, and take the difference

[Y ]t − [Y conj]t. If this difference is zero, then the agent must have followed the recommendation and if it is not zero,

then the agent must have deviated and the principal can then appropriately punish the agent. Thus, this seems like

we are back to the case of section A.1 where volatility control is mute.

However, this thinking is incorrect. Recall again the crucial assumption that the principal only observes the cash

flows Y but not the exogenous volatility m. In particular, this means that generically, we cannot even compare [Y ]t

and [Y conj]t on the same trajectory realization ω! To make this point, let’s apply the fundamental theorem of calculus

in (A.1) and (A.2). While in (A.1), the principal, say, observes 10 = [Y ]t(ω) = (σ2
tm

2
t )(ω). It remains true that the
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principal cannot disentangle (σ2
tm

2
t )(ω) separately; more forcibly, that is to say the principal cannot tell whether the

observed value 10 is factored as 10 = 2× 5 or is it 10 = 5× 2, or infinitely many other factor combinations. Thus, the

principal at most can see the product (σ2
tm

2
t )(ω) but not σ2

t (ω) and m2
t (ω) separately. More succinctly, this means

the product σ2
tm

2
t is FY

t -measurable, but the individual components σ2
t and m2

t are not, and recall the information

set of the principal is {FY
t }.

Continuing onto the conjectured cash flow Y conj, this means even if the principal can compute [Y ]conjt (ω′) =

σ2
t (ω

′)m2
t (ω

′), for each ω′, and of course the principal knows his recommendation σt evaluated at any ω′ and in

particular when ω′ = ω, the principal does not know what realization m2
t (ω) should be plugged in (again, since mt is

not FY
t -measurable). Thus, the wishful computation of evaluating at ω′ = ω to have [Y ]conjt (ω) = σ2

t (ω)m
2
t (ω), is not

even possible, again since m2
t (ω) is not known to the principal. Thus, the wishful deviation test of simply observing

and checking whether the difference [Y ]t − [Y conj]t is zero or not is invalid.

A.3.2 An incorrect computation (ii)

The discussion in section A.3.1 above may lead to wonder what the principal can detect deviations with more time

points. Could the principal make a further level of inference to detect deviation not based on the quadratic variation

but directly via the cash flows?

Suppose the principal makes the same computations as described in section A.3.2 for each point in time t. This

implies that if the principal were to use the conjectured cash flows Y conj that follows his recommended action, the

principal could indeed compute 28 m2
t = mconj,2

t = [Y conj]t/σ2
t , ω

′-by-ω′. And since the principal can do this for

each ω′ and for each t, and since mconj
t > 0 by nature of the geometric Brownian motion, the principal has thus

constructed a process {mconj
t }t≥0. Thus, that implies at any time t, the principal could construct another cash flow

process Y conj+ (i.e. denoting “conjecture plus”),

Y conj+
t =

∫ t

0
µtdt+

∫ t

0
σtm

conj
t dBt.

Comparing it against the true cash flow Y , it is tempting to conclude that the principal simply needs to take the

difference Y conj+
t −Yt at each point in time and see if it equals zero at each point in time, as if this difference is zero,

it would indicate the agent is compliant and if this difference is nonzero, it would indicate the agent had deviated.

Again, however, this thinking is incorrect. Taking the difference between Y conj+
t and Yt, one finds,

Y conj+
t − Yt =

∫ t

0
(µs − µ†s)ds+

∫ t

0
(σsm

conj
s − σ†

sms)dBs.

We note that even if the agent were to be completely compliant in the drift recommendation so that µs = µ†s for all

s, and so the first integral on the right-hand side above vanishes, we see that generically mconj
s ̸= ms for all s. Hence

— however tempting — the conclusion to say that mconj
s = ms holds with equality so that in the integrand of the

second integral we can factor as ms(σs − σ†
s) and need to simply observe whether this is zero or not — is faulty.

Remark A.1. There is a very important case by which mconj ≡ m. This is precisely the case when the principal offers

a contract (A,X, τ) that is incentive compatible for the agent. Specifically, since the agent is recommended an action

for which it is incentive compatible, the agent will not deviate from the principal’s recommended action. We will use

this critical observation in a key lemma in the later development.

A.4 The case of volatility controls not continuous in the time path

The discussion of section A.2 and A.3 assumed that the agent must make time-continuous volatility controls; that

is, we had restricted the discussion to σt to be continuous in time t. The consideration of jumps in the controls of

the cash flow process is important, even in the drift-only control models of DeMarzo and Sannikov (2006), say when

the cash flow had the form dYt = µtdt + σdBt, where the drift controls are binary in state values, µt ∈ {0, A}. In

the drift-only control case, the distinction of whether allowing for the state values to be binary (i.e. µt ∈ {0, A}; see
DeMarzo and Sannikov (2006) amongst others) or to be in a compact set (i.e. µt ∈ [0, A]; see Sannikov (2008)), up to

possibly difficult technical details, is not that important economically.

28This type of computation is used again later in the discussion.

42



So now, suppose that the volatility control σt need not be continuous in time, and so we in particular allow it

to have jumps 29 , so ∆σt = σt − σt− ̸= 0. But nonetheless, by standard stochastic integration theory, even if the

integrand (i.e. in this case σtmt) is cadlag, as long as the integrator is continuous (i.e. in this case dBt), then there

exists a version of the stochastic integral
∫ t
0 σsmsdBs that is continuous in the time path t. Hence working with this

version, the principal will still conclude that, by calculating the quadratic variation,

[Y ]t =

∫ t

0
σ2
sm

2
sds.

Note however now, the integrand in the Riemann integral σ2
tm

2
t is not continuous in the time path t since σt is

cadlag, not continuous. But if we define g(s, ω) := σ2
s(ω)m

2
s(ω)1[0,t](s), then it is immediate that for each ω, g(·, ω) is

absolutely integrable on R. That means for each ω, we can apply the Lebesgue differentiation theorem 30 to conclude

that,

[Y ]′t(ω) = (σ2
tm

2
t )(ω), λ-a.e.,

where λ is the Lebesgue measure on R. Up to this null set difference in the time t ∈ R++ coordinate, we can apply

the same arguments as in sections A.3.1 and A.3.2 to illustrate that it is still not possible for the principal to detect

deviations from the agent.

A.5 Economic intuition and summary of the “quadratic variation” test

As noted in section A.1, existing models in the literature does not have room for meaningful volatility control,

precisely because they cannot “pass” the quadratic variation test. We assert that our model (4.1) does pass the

quadratic variation test. Furthermore, we argue that for any meaningful agency problems associated with volatility

control, the first pass must be to pass the quadratic variation test. Although we have not tried this approach yet

but if we were to switch out the Brownian noise dBt attached to the instantaneous controlled volatility σtmt with

some more general stochastic process, it may also pass this quadratic variation test. It is also possible to compute

even higher nth-order variation (i.e. cubic, quartic, etc.) but it is unclear how this will be useful for the principal in

detecting deviations.

Economically, what exactly is this “quadratic variation” test trying to tell us and why does it matter so much for

stochastic volatility control? Stepping away from the current setup (4.1), let’s consider a standard asset pricing type

model. Suppose we have a stock with price S and has dynamics,

dSt = µ(t, St)dt+ σ(t, St)dBt,

where B is again a standard Brownian motion 31 . Computing the quadratic variation of S and have,

[S]t =

∫ t

0
σ(u, Su)

2du,

which roughly is precisely the integrated instantaneous variance of the process S. Effectively, the quadratic variation

gives us the “sum (over time)” of the variances of the stock price S. And if variance is related to some measure of

“risk” 32 , this quadratic variation object, in some loose sense, is a time-tracker of “sum of risks”.

A.5.1 Brief comment to the link with financial econometrics

It should be noted that the econometric estimation of quadratic variation is an active topic of study in the field of

financial econometrics theory. For instance, a recent survey of the developments in this field can be found in Aı̈t-

Sahalia and Jacod (2012) and a textbook reference like Kessler, Lindner, and Sorensen (2012) deals with statistical

methodologies of SDE’s. The key point is that it is not too “far-fetched” to think of an individual (in this context,

29In particular, we still restrict the trajectories to be cadlag and the process to be adapted.
30See, say, Folland (1999, Chapter 3, Section 3.4).
31We omit spelling out the restrictions on µ and σ here to ensure that a solution to this SDE exists. Details can be

found in Protter (2005).
32This claim of “risk” is made precise when we consider individuals with mean-variance preferences or risk averse

preferences.
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the principal) to in reality employ a battery of statistical tests of this sort to estimate and make inference of the

instantaneous volatility via the quadratic variation. Indeed, there is a well developed literature using the so called

“realized variance” to estimate the quadratic variation using real (discrete) data; see for instance, among many others,

Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and Shephard (2002b), Barndorff-Nielsen and Shephard

(2004), Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2003).

B Assorted Remarks

B.1 Notations

Throughout this article, we will use enforce the following notations. We will use e to denote the effort parameter

/ process, and use e to denote the exponential function. If {St}t≥0 is a stochastic process, we will either use S to

denote the process or also {St}. We will also define and denote the indicator function as 1A(x), which equals 1 if

x ∈ A and 0 if x ̸∈ A. If E is a set, we will denote Ec as its complement. Given an action process A = {et, σt}, we
will interchange the notation µt and κ(et, σt) to denote the drift part of the cash flow process. Hence, we will also

with some abuse of notation, also call and denote A = {(µt, σt)}t≥0 as the action process, with the understanding

that µt ≡ κ(et, σt).

B.2 Induced probability measure

Fix an action process A = {(µt, σt)}t≥0 and recall that the action process A is {Ft}-adapted. Consider the stochastic

process Y A =: Y = {Yt}t≥0 with dynamics as given in (4.1) and (4.2), which clearly and explicitly depend on the

action process A. Define PA to be the law of the stochastic process Y = Y A, and likewise, EA the expectation under

PA. Observe that the definition (and indeed existence) of this law PA is possible through the deep and highly technical

Kolmogorov Extension Theorem (see Durrett (2010, Theorem A.3.1) or Revuz and Yor (2005, Chapter 1, §3) for more

details). Note here that we write P to be the probability measure on (Ω,F) and likewise, E as the expectation under

P .

While the law of a stochastic process is deep measure theoretic concept, but the intuition can more or less be

grasped when we have a single random variable (i.e. the trivial stochastic process with a singleton time index). Let

(Ω,F ,P) be a complete probability space and let X : Ω → R be a real-valued random variable. We often call Ω

the sample space and R here as the state space of the random variable X. And suppose X is integrable so that the

expectation is well defined,

EP[X] :=

∫
Ω
X(ω)dP(ω).

Note in particular that we are integrating over the sample space Ω. However, in a lot of probability applications, it is

far easier and more intuitive to work with the state space of the random variable (of which we may know something

about its distribution function) than the sample space. By effectively a change of variables, we can integrate over the

state space R of the random variable. That is, we may define the law (or more commonly, the distribution) PX of the

random variable X as,

PX(B) := P(X−1(B)), B ∈ B(R),

where B(R) is the Borel set of R. Then under this definition, we see that,

EP[X] =

∫
Ω
X(ω)dP(ω) =

∫
R
xdPX(x) = EPX [X].

The idea of the law under stochastic process is essentially the above consideration, except that we have to work

through with finite dimensional joint distributions and cylinder sets to make the definition of the law of a stochastic

process rigorous and precise.

B.3 Single Brownian motion

In (4.1) and (4.2), we use a single Brownian motion B, rather than say two different Brownian motions. In particular,

this might be surprising coming from an asset pricing perspective; in asset pricing applications, say like the classical
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Heston (1993) model, if S is the price of an asset, then it has say the dynamics,

dSt = µS(t, St)dt+ σS(t, σt, νt)dB1t

dνt = µν(t, νt)dt+ σν(t, νt)dB2t,

where B1 and B2 are correlated Brownian motions (with possibly zero correlation). In this type of specification,

we see that the stochastic volatility dynamics of price S are also further driven by the process ν. In contrast, the

specification of (4.1) and (4.2) uses the same Brownian motion. Indeed, in our specification, if we were to use two

different Brownian motions, then economically, then there is little hope for an equilibrium. Economically, recall here

the principal can only observe a single source of information (i.e. the cash flow Yt over time), but if there are two

sources of risk (i.e. two Brownian motions), then the agent has far too much room to deviate from the principal’s

recommended actions. Indeed, we will see the importance of using a single Brownian motion in Lemma 7.3.

B.4 Stochastic Time Change

We can actually view (4.1) and (4.2) as a time-changed process. We will not use this fact elsewhere in the paper.

Since we can write (4.1) and (4.2) as dYt = κ(et, σt)dt+ σtdmt, but since m is a geometric Brownian motion, by the

Dambis-Dubins-Schwartz theorem 33 and by expanding the filtration and changing the probability space if needed,

there exists a stochastic time change {T (t)}t≥0 given by T (t) := inf
{
u :
∫ u
0 exp{−v + 2Bv}dv > t

}
, and another

Brownian motion Z, such that mt = ZT (t). Hence, we can rewrite the cash flows as,

dYt = κ(et, σt)dt+ σtdZT (t).

Indeed, more is true. Since m is a geometric Brownian motion, by Lamperti’s relation 34 , we can further write m as

a time-changed squared Bessel process

C Proofs of Section 4

Proof of Example 4.1. Let’s quickly verify that the conditions in Definition 4.1 are satisfied.

(a) κ(eH , σ) = α1eα0(eH−eL) log σ > α1eα0(eL−eL) log σ = α1 log σ, which holds since clearly α0(eH − eL) > 0,

which implies eα0(eH−eL) > 1.

(b) κσ(e, σ) = α1eα0(e−eL) 1
σ
> 0, and κσσ(e, σ) = −α1eα0(e−eL) 1

σ2 < 0.

(c) (i) If σ = σ′, then we return back to case (a);

(ii) If σ > σ′, then κ(eH , σ) = α1eα0(eH−eL) log σ > α1 log σ′ = κ(eL, σ
′) clearly holds since eα0(eH−eL) > 1;

(iii) If σ < σ′, then κ(eH , σ) = α1eα0(eH−eL) log σ > α1 log σ′ = κ(eL, σ
′) will hold if and only if eα0(eH−eL) >

log σ
log σ′ holds. And since σ < σ′, clearly 1 > log σ

log σ′ . But since eα0(eH−eL) > 1, then we are done.

(d) Observe that,

κ(eH , σ)− κ(eL, σH) < σκσ(eH , σ)

⇐⇒ α1e
α0(eH−eL) log σ − α1 log σH < α1e

α0(eH−eL) 1

σ

⇐⇒ log σ − e−α0(eH−eL) log σH <
1

σ
.

But we note that if for all σ ∈ [σL, σH ] are such that 1/σ ≥ log σ, then clearly,

1/σ ≥ log σ > log σ − e−α0(eH−eL) log(σH +K),

holds. Note that 1/σ > log σ is clearly equivalent to 1/σ − log σ > 0, and when we view the left-hand side of

the equality as a map on R+, f(y) := 1/y − log y, f is strictly decreasing, continuous, limy→0+ f(y) = +∞, and

33See Revuz and Yor (2005, Chapter V, §1, Theorem 1.6) for the precise statement.
34See Revuz and Yor (2005, Chapter XI, §1, Exercise 1.28).
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limy→+∞ f(y) = 0. Thus by the intermediate value theorem, there exists some ȳ ∈ (0,∞) such that f(ȳ) = 0.

Note also, we can view 1/σ > log σ equivalently as 1 > (log σ)elog σ .

Now, we must investigate the equation z = W (z)eW (z), where W is the complexed valued Lambert W function
35 , and z is also complex (note, even though the Lambert W function is a map from the complex numbers to

the complex numbers, for this example, we just need the real parts). Our case of interest is when z = 1 and σ

solves log σ =W (1), or that σ = eW (1). That is, we need to find the positive real number W (1) = x (it is indeed

unique) such that 1 = xex and numerically, we have that x =W (1) ≈ 0.5671, which implies ex = eW (1) ≈ 1.763.

Hence, if we consider the set of volatility controls as the interval [σL, σH ] = [c, eW (1)] ≈ [c, 1.763], where σH >

c > 1, then the condition 1/σ − log σ > 0 will hold for any σ ∈ [σL, σH ].

(e) Condition (d) of Definition 4.1 holds immediately by hypothesis.

Remark C.1. One would also wonder why the range σH − σL of the volatility control set [σL, σH ] in Example 4.1 to

be relatively numerically “small”. However, this is just due to the choice of the log function in defining κ(e, σ) for this

example. Essentially, the log function grows too slowly in σ, even though it retains all of the required properties in

Definition 4.1. If we were to choose another function that satisfies the properties of Definition 4.1 but one that grows

much quicker in σ, we will widen the numerical range of the volatility control set [σL, σH ]. As well, we might be

concerned with how small numerically the maximum σH controlled volatility value can take on. This is especially in

contrast to the overall instantaneous diffusion term σtmt of dYt, where mt could be relatively large. This might beg

the question how “meaningful” is volatility control in light of an exogenous volatility term mt that could “swamp”

the endogenous volatility control of the agent. However, by inspection of the reward function form in Example 4.1,

we see that we can translate the values of volatility control set [σL, σH ] as it is written to a form [σL +K,σH +K],

where K > 0 is some deterministic constant, and thereby enlarging the absolute values of the volatility controls.

D Proofs of Section 6

First let’s define,

Vt(A) := EA

[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)]
ds

)
+ e−r0(τ−t)R

∣∣∣ FY
t

]
(D.1)

It is important to note that both (6.1) and (D.1), which represents the continuation value of the agent at time t if

the action process A is being taken, are conditioned on the filtration {FY
t }. That is, the information observable to

the principal. In particular, the filtration that is being conditioned on is not a Brownian one. This is a key and

important departure from the usual papers in continuous-time principal agent problems. In providing incentives to

the agent, since the principal can only observe the cash flows Y , this implies the continuation value of the agent, from

the perspective of the principal, can only condition on the information {FY
t } generated by the cash flows Y , and

hence (6.1) and (D.1) have the correct conditioning.

Remark D.1. Consider the typical setup of DeMarzo and Sannikov (2006) in the form (D.2),

dYt = µtdt+ σdBt. (D.2)

For a fixed recommended action {µt}t≥0, and since the principal observes the cash flows {Yt}t≥0, by simply rearranging

terms, we see that,
dYt − µtdt

σ
= dBt.

Indeed, this is the key step to the analysis of both DeMarzo and Sannikov (2006) and Sannikov (2008). And so, in this

case, once the action process {µt}t≥0 is fixed 36 , then the left-hand side is completely observable by the principal.

And thus, in these types of setup, the information set available to the principal {FY
t }t≥0 is exactly identical to the

35For details, see Wright (1959). This W notation is not to be confused with our subsequent treatment of the
agent’s continuation value process. We retain the notation W for the Lambert W function out of convention.

36More precisely, this means we work under the induced probability measure PA, where A = {µt}t≥0.
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Brownian information set {Ft}t≥0, and so we do achieve EA[ · |FY
t ] = E[ · |Ft]. That is, in words, if the principal

knows the action process and can observe the cash flows, that means he must also know the Brownian motion noise.

However, in this current setup of (4.1) and (4.2), this is clearly not the case. In particular, even if the agent

knows the action process and the cash flows, he does not know the Brownian motion noise, and so we have a clear

inequality, EA[ · |FY
t ] ̸= EA[ · |Ft]. To see this, observe that even if we repeat the above rearranging computation,

dYt − µtdt = σtMtdBt,

where specifically, we cannot “divide” over the generically not constant over time volatility choice σt (i.e. simply write

out the above SDE in it’s integrated form). Recall also that m is not observable to the principal. And from this

expression, we see that even if an action process A = {(µt, σt)}t≥0 is known to the principal, his information set FY
t

cannot equal to the information set generated by Brownian motion Ft.

D.1 A trivial rewriting

In light of Remark D.1, it motivates for the following rewriting. The idea is to not think of noise driven by Brownian

motion but rather driven by a more general continuous martingale process. In particular, observe, trivially, from (4.1)

and (4.2), we can write,

dYt = µtdt+ σtdMt. (D.3)

In particular, note that from (4.2), it is a geometric Brownian motion with zero drift and unit volatility. Thus, we

have an explicit solution,

Mt =M0exp

{
−
1

2
t+Bt

}
, t ≥ 0. (D.4)

For all the proofs that follow, we take, without loss of generality that M0 ≡ 1; the proof goes through with a generic

M0 = m0 but we just have to carry more algebra.

Proposition D.2. For a fixed contract (A,X, τ), the stochastic process t 7→
∫ t
0 σsdms is an (PA, {FY

t })-martingale.

Proof. First, from (D.3) and again since the action process A is held fixed, we write,

Yt − µtdt = σtdMt. (D.5)

From (D.4), we see immediately that M is a true (P, {Ft})-martingale (i.e. the Dolean exponential with respect to

Brownian motion). Since σt is {Ft}-adapted and since m is a P -square integrable continuous martingale, then this

implies that t 7→
∫ t
0 σsdMs is also a (P, {Ft})-martingale.

Now, let’s show that t 7→
∫ t
0 σsdMs is also a (P, {FY

t })-martingale. Observe that t 7→
∫ t
0 σsdMs is FY

t -adapted.

But this is immediate by viewing the left-hand side of (D.5) and recalling footnote 18. It remains to verify the

martingale property. Pick any time t1 ≥ t0. Since t 7→
∫ t
0 σsdMs is a martingale, then we immediately have that,

E

[∫ t1

t0

σsdMs

∣∣∣ Ft

]
= 0.

But by applying the Law of Iterated Expectations,

E

[∫ t1

t0

σsdMs

∣∣∣ FY
t

]
= E

[
E

[∫ t1

t0

σsdMs

∣∣∣ Ft

] ∣∣∣ FY
t

]
= 0,

so the martingale property holds for {FY
t }. Finally, the fact that t 7→

∫ t
0 σsdMs is a (PA, {FY

t })-martingale follows

from the discussion in footnote 15.

This trivial rewriting of (D.3) and observation of Proposition D.2 that σtdMt is an (PA,
{
FY

t

}
)-martingale are

the key steps to the beginning of our analysis. Indeed, to emphasize the importance of the observation in Proposition

D.2, we will in the subsequent few sections, denote explicitly the (PA, {FY
t })-martingale as,

σtdM
A
t = Yt − µtdt. (D.6)
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D.2 Martingale Representation Theorem

With Proposition D.2 in mind and also the cash flow process in the form (D.3), we can now state the following key

proposition.

Proposition D.3. Fix a contract (A,X, τ). Then there exist processes {βt}t≥0 and {V ⊥,A
t }t≥0 such that the

dynamics of Vt(A) in (D.1) can be written as,

dVt(A) = e−r0tβtσtdM
A
t + dV ⊥,A

t , (D.7)

where βt is some predictable process such that
∫ t
0 (e

−r0sβs)2d[
∫ ·
0 σudM

A
u ]s < ∞, PA-a.s., and V ⊥,A

t is continuous

and orthogonal to t 7→
∫ t
0 σsdM

A
s (i.e. meaning, [V ⊥,A,

∫ ·
0 σsdM

A
s ]t = 0, PA-a.s.), and V ⊥,A

0 = 0.

Proof. It is easy to verify that (D.1) is a (PA, {FY
t })-martingale (i.e. Doob’s martingale). Then the result is an

immediate consequence of Proposition D.2 and the (general) martingale representation theorem. For the precise

statement for this general martingale representation theorem result, please see Hunt and Kennedy (2004, Chapter 5,

Theorem 5.37), Protter (2005, Chapter IV, Section 3, Corollary 1) and Revuz and Yor (2005, Chapter V, Section 4,

Lemma 4.2).

Remark D.4. In the term e−r0tβtσtdMA
t , the time discount factor term e−r0t is merely a convenient normalization;

this is also done in Sannikov (2008). Also, strictly speaking, β is clearly dependent on the choice of the action process

A but will suppress it for notational convenience when the context is clear. We keep the notation A on the orthogonal

process V ⊥,A
t as the choice of A will make a meaningful difference in the subsequent discussions.

Compared to the papers like Holmström and Milgrom (1987), DeMarzo and Sannikov (2006), Sannikov (2008),

and others, they all invoke a martingale representation theorem for the case when the filtration is generated by

Brownian motion (i.e. see Karatzas and Shreve (1991, Chapter 3, Theorem 4.2), among others); recall again the

discussion in Remark D.1 on why a Brownian filtration setup here is inappropriate. Specifically in the Brownian case,

the orthogonal term, denoted above as V ⊥,A
t , would be identically zero. It is also worth noting that in this line of

continuous-time principal-agent literature, there have been some notable cases where the filtration is not Brownian.

For instance, in Sannikov (2007, Proposition 1), the “extra” orthogonal term is interpreted as a public randomization

device.

D.3 Dynamics of the agent’s continuation value

With Proposition D.3 in mind, the following is an easy application of Ito’s lemma.

Proof of Theorem 6.3. From (D.1), we can write,

Vt(A) =

∫ t

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)])
ds+ e−r0tWt(A). (D.8)

Applying Ito’s lemma, we obtain,

dVt(A) = e−r0t

(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
+ d(e−r0tWt(A))︸ ︷︷ ︸

−r0e
−r0tWtdt+e−r0tdWt

. (D.9)

Equating (D.7) with (D.9), we obtain,

e−r0tβtσtdm
A
t + dV ⊥,A

t

= e−r0t

(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
− r0e

−r0tWt(A)dt+ e−r0tdWt(A)
(D.10)

Defining ϵ⊥,A
t :=

∫ t
0 er0sdV ⊥,A

s , rearranging, and recalling that σtdMt = Yt − µtdt, we obtain,

dWt(A) = r0Wt(A)dt−
(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
+ βt (dYt − µtdt) + dϵ⊥,A

t , (D.11)

and we are done.
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D.3.1 Checking for Deviations

With Theorem 6.3 on hand, we are now ready to give a simple condition (hopefully that is both sufficient and necessary)

to pin down the incentive compatibility constraints of the agent. Fix two action processes 37 A = {(µt, σt)}t≥0 and

A† = {(µ†t , σ
†
t )}t≥0.

If the agent plays A, then the agent’s time zero continuation value is W0(A) as in (6.1). But suppose the agent

deviates to A†. Specifically, the cash flow processes under the two different action processes evolve as 38 ,

Under PA: dYt = µtdt+ σtdM
A
t . (D.12)

Under PA†
: dYt = µ†tdt+ σ†

t dM
A†
t . (D.13)

Phrased in this light, this strongly calls for a change-of-measure type analysis. To do so, we need to invoke a

stronger version of Girsanov’s theorem, which is usually applied in a Brownian setting. Here, we will use the slightly

more general Girsanov-Meyer theorem. We will reiterate it here for reference:

Girsanov-Meyer Theorem. Let P and Q be equivalent measures. Let X be a continuous (classical) semimartingale

under P with decomposition X =M +A. Then X is also a continuous (classical) semimartingale under Q and has

decomposition X = L+ C, where

Lt =Mt −
∫ t

0

1

Zs
d[Z,M ]s (D.14)

is a Q local martingale, and C = X − L is a Q finite variation process.

Proof. For details of the theorem and its proof, please see Protter (2005, Chapter III, Section 8, Theorem 39).

Using the Girsanov-Meyer theorem as a guide, and we can set P = PA and Q = PA†
, then it is natural to set,

At =

∫ t

0
µsds, Ms =

∫ t

0
σsdM

A
s , (D.15)

and,

Ct =

∫ t

0
µ†sds, Ls =

∫ t

0
σ†
sdM

A†
s . (D.16)

Then, to ensure that the correct change of measure is possible, it remains to identify the process Z.

In particular, we define the Radon-Nikodym derivative as,

Zt = EA

[
dPA†

dPA

∣∣∣ FY
t

]
. (D.17)

To continue the discussion, we will need the following mild technical assumption that we have an appropriate kernel.

Assumption D.5. Suppose associated with the Radon-Nikdoym derivative in (D.17), there exists a square integrable

process {φt}t≥0 such that,

dZt = φtZtσtdM
A
t . (D.18)

With Assumption D.5 on hand, and letting Nt := φtσtdMA
t , we see that,

Zt = E(N)t, (D.19)

the Dolean’s exponential 39 for the process N . For now, let’s suppose that Z is a true {FY
t }-martingale but we will

37Again, recalling the notation convention in footnote 12, what we mean here is to fix two action processes A =

{(et, σt)}t≥0 and A† = {(e†t , σ
†
t )}t≥0, then define µt ≡ κ(et, σt) and µ†t ≡ κ(e†t , σ

†
t ).

38To be precise, we mean the following and please see Proposition D.2 again. Under PA, we have the (PA, {FY
t })-

martingale σtdMA
t = dYt − µtdt; and under PA†

, we have the (PA†
, {FY

t })-martingale σ†
t dM

A†
t = dYt − µ†tdt.

Rearrange to obtain the two displayed equations.
39The Dolean’s exponential E(N)t for a continuous local martingale S is given by,

E(S)t := exp

{
St − S0 −

1

2
[S]t

}
.
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verify this in the subsequent discussion 40 . Thus, it remains to find φt. Note in the above, we have two expressions

for L, (D.14) as given in the Girsanov-Meyer theorem statement, and also in (D.16). Equating these two expressions

for L, we find,

Lt =

∫ t

0
σsdM

A
s −

∫ t

0
φsd

[∫ ·

0
σudM

A
u

]
s

=

∫ t

0
σ†
sdM

A†
s , (D.20)

and since dMA
t =MA

t dB
A
t then we immediately have by the quadratic variation of Brownian motion,

d

[∫ ·

0
σudM

A
u

]
t

= σ2
t (M

A
t )2dt.

Rewriting everything in differential form and substituting, we thus have that,

σtdM
A
t − φtσ

2
t (M

A
t )2dt = σ†

t dM
A†
t .

But recall again that σtdMA
t = dYt − µtdt and σ

†
t dM

A†
t = dYt − µ†tdt, so we substitute,

dYt − µtdt− φtσ
2
t (M

A
t )2dt = dYt − µ†tdt.

Canceling terms and equating, we have thus,∫ t

0
φsσ

2
sM

2
s ds =

∫ t

0
(µ†s − µs)ds.

But since the integrands on the left-hand side and the right-hand side are well bounded, this immediately implies the

integrands must equal. And thus, we have that the Girsanov kernel is,

φt =
µ†t − µt

σ2
t (M

A
t )2

. (D.21)

Now in particular, we have the following important relationship.

Lemma D.6. Fix a contract (A,X, τ). Suppose the agent considers the recommended action process A and fixes

another action process A†. The agent considers a deviation from A to A†. Then the noise terms are related in the

following manner:

σtdM
A
t = (µ†t − µt)dt+ σ†

t dM
A†
t . (D.22)

Proof. Using the Girsanov kernel in (D.21), simply substitute,

σtdM
A
t − φtσ

2
t (M

A
t )2dt = σtM

A
t −

(µ†t − µt)

σ2
t (M

A
t )2

σ2
t (M

A
t )2dt

= σ†
t dM

A†
t .

Rearrange, and we get (D.22).

D.3.2 Change of Measure and Novikov’s Criterion

However, an important task remains — we need to verify that the Dolean’s exponential E(N) for N is a true martingale

to allow for a valid change of measure. With the Girsanov kernel given in (D.21), and recalling again that dMA
t =

MA
t dB

A
t , we substitute back to see that,

dNt =
µ†t − µt

σt(MA
t )2

MA
t dB

A
t =

µ†t − µt

σtMA
t

dBA
t

But this implies N has quadratic variation,

[N ]t =

∫ t

0

(µ†s − µs)2

σ2
s(M

A
s )2

ds.

40Of course, with the equivalence of PA and PA†
, there is no need to specify for which probability measure is Z a

martingale.
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In all, that means to ensure that E(N) is a true martingale, a sufficient condition is to ensure that the Novikov’s

criterion 41 holds. For what follows, consider a fixed deterministic time horizon T < ∞. The Novikov’s criterion

requires,

EA

[
exp

{
1

2

∫ T

0

(µ†t − µt)2

σ2
t (M

A
t )2

dt

}]
<∞. (D.23)

Lemma D.7. The Novikov criterion (D.23) holds for finite time horizon T <∞ and infinite time horizon T = ∞.

And thus, E(N)t is a true martingale for all t ∈ [0,∞].

Proof. Recall again that MA itself is a geometric Brownian motion with zero drift and unit volatility. Thus, we can

immediately write MA
t = exp

{
− 1

2
t+BA

t

}
; we have taken, without loss of generality M0 = 1. Furthermore, since we

know that µt, µ
†
t ∈ [µL, µH ] and likewise σt, σ

†
t ∈ [σL, σH ], then we clearly have,∣∣µ2t − µ2t

∣∣ ≤ 2µ2H ,
1

σ2
L

≥
1

σ2
t

,
1

σ2
L

≥
1

(σ†
t )

2
.

Substituting,

EA

[
exp

{
1

2

∫ T

0

(µ†t − µt)2

σ2
t (M

A
t )2

dt

}]
≤ EA

[
exp

{
1

2

2µ2H
σ2
L

∫ T

0

1

(MA
t )2

dt

}]

= eµ
2
H/σ2

LEA

[
exp

{∫ T

0

1

(MA
t )2

dt

}]
= eµ

2
H/σ2

LEA

[
exp

{∫ T

0
et−2BA

t dt

}]
Thus, the problem reduces now to proving that, EA

[
exp

{∫ T
0 et−2BA

t dt
}]

< ∞. It should be noted that this

is a non-trivial problem since we essentially have to show that the expectation of the exponential of an integrated

geometric Brownian motion is finite. As noted from Yor (1992), the aforementioned problem is essentially the same

as investigating the properties of, ∫ t

0
eaBs+bsds, a, b ∈ R.

But by scaling properties of Brownian motion 42 B, it suffices to consider the process,

A
(ν)
t :=

∫ t

0
e2(Bs+νs)ds, ν ∈ R. (D.24)

Hence, to solve our problem of showing (D.23), it is equivalent to showing that,

E
[
exp

{
A

(ν)
t

}]
<∞. (D.25)

But to show that (D.25) is finite is equivalent to showing that the Laplace transform (moment generating function) of

A
(ν)
t is well defined and finite. But using Yor (1992, Equation (7.e)) as pointed out by Kim (2004) (see also Albanese

and Lawi (2005)), we are ensured that the aforementioned Laplace transform is well defined and finite.

Thus, this implies that (D.23) does indeed hold for each finite T <∞. However, given in this model, we allow for

a termination time τ that could be finite (i.e. terminating the agent at some time) or infinite (i.e. never terminating

the agent), considering the deterministic finite time case is insufficient. But invoking Revuz and Yor (2005, Chapter

VIII, §1, Corollary 1.16), we can extend the discussion from finite time interval [0, T ] for T <∞ to [0,∞]. Thus, this

shows that E(N)t is a martingale for all times t ∈ [0,∞].

The following lemma will be useful when we further characterize the effects of deviation in the subsequent dis-

cussion.

Lemma D.8. Fix a contract (A,X, τ). Consider the setup and the process ϵ⊥,A as defined in Theorem 6.3. Fix

another action process A†. The stochastic process ϵ⊥,A is a {FY
t }-martingale under both probability measures PA

and PA†
.

41See Protter (2005, Chapter III, Section 8, Theorem 45), Revuz and Yor (2005, Proposition 1.15, Corollary 1.16)
and also Duffie (2001, Appendix D)

42For this discussion, it suffices to suppress the dependence on action process A.
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Proof. The fact that ϵ⊥,A is a (PA,FY
t )-martingale is immediate from the fact that by Proposition D.3, V ⊥,A is a

(PA,FY
t ) martingale.

Thus, it remains to prove that ϵ⊥,A
t is a (PA†

,FY
t )-martingale. Clearly, this is equivalent to showing that V ⊥,A

t

is an (PA†
)-martingale. But thanks to Lemma D.7, this is equivalent to showing that for any s ≥ t, we have,

V ⊥,A
t = EA† [

V ⊥,A
s |FY

t

]
= EA

[
V ⊥,A
s

dPA†

dPA

∣∣∣
FY

s

∣∣∣ FY
t

]

Hence, we see that it suffices to prove that the stochastic process as a product, t 7→ V ⊥,A
t

dPA
†

dPA

∣∣∣
FY

t

is an FY
t -

martingale 43 But we observe that V ⊥,A
t is a square-integrable martingale and likewise for dPA†

/dPA|FY
t

= E(N)t.

Then using the notion of strongly orthogonal martingales in, say, Protter (2005, Chapter IV, §3), to show that the

product V ⊥,A
t E(N))t is a martingale, it is equivalent to showing,

[V ⊥,A, E(N)]t is a uniformly integrable martingale.

But observe that since dV ⊥,A
t and σtdMA

t are orthogonal (i.e. recall Proposition D.3), then computing the quadratic

covariation (here, for convenience, we use the differential notation),

dV ⊥,A
t dE(N))t = dV ⊥,A

t E(N)tφtσtdM
A
t

= E(N)tφt (dV
⊥,A
t )(σtdM

A
t )︸ ︷︷ ︸

=0

= 0.

Hence, we have that [V ⊥,A, E(N)]t = 0 (i.e. a constant stochastic process, which is a trivial martingale). Thus, we

have that V ⊥,A is also a martingale under PA†
, in addition to being a martingale under PA.

D.3.3 Characterizing Deviations

Proof of Lemma 6.4. As before, fix a contract (A,X, τ). And fix another action process A†. Consider a deviation

from A to A†. Let’s do some preliminary computations before showing the equivalence of (i) and (ii). Define,

V̂t :=

∫ t

0
e−r0t

(
dXt +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

σL
− 1

)]
ds

)
+ e−r0tWt(A), (D.26)

which is the time t expectation of the agent’s total payoff if he experienced the cost of effort from the action process

A† before time t, and plans to follow the recommended action process A after time t. Let’s write the dynamics of V̂t

under the measure PA†
. Observe that in differential form, and noting the expression in (D.10), and equating,

dV̂t = e−r0t

(
dXt +

[
ϕe

(
1−

e†t
eH

)
+ ϕσ

(
σ†
t

σL
− 1

)]
dt

)
+ d(e−r0tWt(A))

= e−r0t

(
dXt +

[
ϕe

(
1−

e†t
eH

)
+ ϕσ

(
σ†
t

σL
− 1

)]
dt

)

+ e−r0tβA
t σtdm

A
t + dV ⊥,A

t − e−r0t

(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
.

(D.27)

43Note by the equivalence in measures, we no longer need to be explicit about the probability measure for which
this is a martingale.

52



But using (D.22) of Lemma (D.6), and collecting terms, we can further rewrite (D.27) as,

dV̂t = e−r0t

(
dXt +

[
ϕe

(
1−

e†t
eH

)
+ ϕσ

(
σ†
t

σL
− 1

)]
dt

)
+ e−r0tβt

{
[κ(e†t , σ

†
t )− κ(et, σt)]dt+ σ†

t dm
A†
t

}
+ dV ⊥,A

t

− e−r0t

(
dXt +

[
ϕe

(
1−

et

eH

)
+ ϕσ

(
σt

σL
− 1

)]
dt

)
= e−r0t

[
−ϕe

e†t − et

eH
+ ϕσ

σ†
t − σt

σL
+ βt[κ(e

†
t , σ

†
t )− κ(et, σt)]

]
dt

+ dV ⊥,A
t + e−r0tβtσ

†
t dM

A†
t

(D.28)

Thus, writing in integrated form for both (D.26) and (D.28), and equating,

V̂t = V̂0 +

∫ t

0
e−r0s

[
−ϕe

e†t − et

eH
+ ϕσ

σ†
t − σt

σL
+ βt[κ(e

†
t , σ

†
t )− κ(et, σt)]

]
ds

+ V ⊥,A
t +

∫ t

0
e−r0sβsσ

†
sdM

A†
s (D.29)

= V̂0 +

∫ t

0
e−r0s

(
dXs +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

σL
− 1

)]
ds

)
+ e−r0tWt(A). (D.30)

Let’s consider taking the time 0 expectation of V̂t in (D.29) above under PA†
. From Lemma D.8, we have that

EA†
[V ⊥,A

t ] = 0. Furthermore, note that the stochastic process t 7→ e−r0tβtσ
†
t is an FY

t square integrable martingale,

since the integrator mA†
t is a square integrable martingale and the terms in the integrand are well bounded; see

Protter (2005, Chapter IV, §2, Theorem 11). Thus, in expectation, the last two terms in the sum of (D.29) vanish.

Thus, picking any two times t ≥ t0 ≥ 0 in mind, observe that, under condition (i),

EA† [
V̂t − V̂t0 | FY

t0

]
= EA†

[∫ t

t0

e−r0s

[
−ϕe

e†t − et

eH
+ ϕσ

σ†
t − σt

σL
+ βt[κ(e

†
t , σ

†
t )− κ(et, σt)]

]
ds
∣∣∣ FY

t0

]
≤ 0.

Specifically, this implies that V̂t is an FY
t -supermartingale (under both probability measures PA and PA†

, by Lemma

D.7).

Now, let’s show that (i) =⇒ (ii). The above supermartingale property implies, EεA†
[V̂t] ≤ V̂0 =W0(A). Rewriting

the left-hand side of the this inequality, and using (D.30), we have that,

EA†
[∫ t

0
e−r0s

(
dXs +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

µL
− 1

)]
ds

)]
+ EA†

[e−r0tWt(A)]

≤ V̂0

=W0(A)

= EA

[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)])
ds+ e−r0τR

]
.

Since t ≥ 0 was arbitrary, set it to t = τ and note that Wτ (A) = R a.s. (both in PA and in PA†
), then we have that,

EA†
[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

e†s

eH

)
+ ϕσ

(
σ†
s

σL
− 1

)]
ds

)
+ e−r0τR

]

≤ EA

[∫ τ

0
e−r0s

(
dXs +

[
ϕe

(
1−

es

eH

)
+ ϕσ

(
σs

σL
− 1

)])
ds+ e−r0τR

]
Thus, if the recommended action process is A, then it is not optimal for the agent to deviate to A†. Thus, (i) =⇒ (ii)

holds.
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Let’s show that (ii) =⇒ (i) holds. We will prove by contrapositive. Suppose that (i) does not hold on a set

of non-zero measure (again, both under PA or PA†
). Let’s show that deviating away from A is optimal (i.e. A is

suboptimal). On the set of times with non-zero measure such that (6.6) does not hold for some time s and some

(e, σ) ∈ {eL, eH}× [σL, σH ]. But this implies we can construct an action process Ã such that there would exist some

time t′ such that,

EÃ[V̂t′ ] > V̂0 =W0(A).

But since the agent gets utility EÃ[V̂t′ ] if he follows Ã until time t′ and switches to A, the action process A is

suboptimal. This shows that (ii) =⇒ (i).

Proof of Corollary 6.5. Consider (6.7). To consider a deviation from the recommended action (et, σt) to the deviated

action (e′, σ′), that is (et, σt) ̸= (e′, σ′), we have three cases to consider:

(i) et ̸= e′, σt ̸= σ′;

(ii) et = e′, σt ̸= σ′; and

(iii) et ̸= e′, σt = σ′.

Case (i): Suppose et ̸= e′ and σt ̸= σ′. Let’s prove the case when et = eH . Then we must have that e′ = eL. So,

we have,

0 ≥ −
ϕe

eH
(eL − eH) +

ϕσ

σL
(σ′ − σt) + βt

[
κ(eL, σ

′)− κ(eH , σt)
]
.

But from Definition 4.1(c), we have κ(eL, σ
′)− κ(eH , σt) < 0. Rearranging the above, we have that,

βt ≥
1

κ(eL, σ′)− κ(eH , σt)

[
ϕe

eH
(eL − eH)−

ϕσ

σL
(σ′ − σt)

]
=

1

κ(eH , σt)− κ(eL, σ′)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σ′ − σt)

]
, (D.31)

for all σ′ ∈ [σL, σH ]. But we observe immediately that the inequality (D.31) holds if and only if (6.7) holds. This

shows the equivalence of (6.7) with (6.6) when et = eH . The case of when et = eL is proved similarly.

Case (ii): Suppose that et = e′ = e and σt ̸= σ′. Suppose first if σ′ > σt, which implies κ(e, σ′) − κ(e, σt) > 0.

Then we have,
ϕσ

σL
(σt − σ′) ≥ βt

(
κ(e, σ′)− κ(e, σt)

)
,

which implies that 0 > βt — contradiction. That is to say, if the principal’s recommended volatility is σt, the agent

will not deviate to a higher volatility σ′ > σt. Next, if σ′ < σt, so κ(e, σ′)− κ(e, σt) < 0, then we have,

ϕσ

σL
(σt − σ′) ≥ βt

(
κ(e, σ′)− κ(e, σt)

)
,

which implies βt is greater than or equal to some strictly negative term. But nonnegativity of βt, this imposes no

restriction on βt.

Case (iii): Suppose et ̸= e′, and σt = σ′ = σ. Consider first the case when et = eH , so e′ = eL, which implies

κ(eL, σ)− κ(eH , σ) < 0. Then we have,

0 ≥ −
ϕe

eH
(eL − eH) + βt (κ(eL, σ)− κ(eH , σ)) ,

implying,

βt ≥
1

κ(eH , σ)− κ(eL, σ)

ϕe

eH
(eH − eL). (D.32)

But we also have that κ(eH , σ)− κ(eL, σ) ≥ κ(eH , σ)− κ(eL, σH), which then is equivalent to the following chain of

inequalities,

1

κ(eH , σ)− κ(eL, σ)

ϕe

eH
(eH − eL) ≤

1

κ(eH , σ)− κ(eL, σ)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σh − σ)

]
≤

1

κ(eH , σ)− κ(eL, σH)

[
ϕe

eH
(eH − eL) +

ϕσ

σL
(σH − σ)

]
,

and hence the condition (6.7) covers Case (iii) when et = eH . The case of when et = eL is similar.
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E Principal’s value function

E.1 Properties of the value function

First we obtain some basic properties of the value function ṽ.

Proposition E.1. The value function ṽ is concave in w. That is, for all m > m, and w1, w2 > R and λ ∈ [0, 1],

λṽ(w1,m) + (1− λ)ṽ(w2,m) ≤ ṽ(λw1 + (1− λ)w2,m).

Proof of Proposition E.1. Pick any W j ≥ R = 0 and controls σj , Xj , βj , τ j , for j = 1, 2, and in particular pick

τ1 = τ2 ≡ τ0, from the admissible control set. Then from (S), we have the dynamics,

dW j
t =

[
r0W

j
t − ϕσ

(
σj
t

σL
− 1

)]
dt− dXj

t + βj
t σ

j
t dMt,

for any j = 1, 2. Fix any λ ∈ [0, 1]. Multiplying and summing, we obtain,

d(λW 1
t + (1− λ)W 2

t ) =

[
r0(λW

1
t + (1− λ)W 2

t )− ϕσ

(
λσ1

t + (1− λ)σ2
t

σL
− 1

)]
dt

− d(λX1
t + (1− λ)X2

t ) +
(
λβ1

t σ
1
t + (1− λ)β2

t σ
2
t

)
dMt.

Now, let us define,

βt :=
λβ1

t σ
1
t + (1− λ)β2

t σ
2
t

λσ1
t + (1− λ)σ2

t

. (E.1)

Let’s show that βt ∈ B, as given in (7.1). That is, let’s show that,

K ≥ βt ≥ β. (E.2)

The upper bound is clear since β1
t , β

2
t ≤ K. But the lower bound is also clear since β1

t , β
2
t ≥ β. Thus, βt ∈ B.

Hence, we have that if (σj , Xj , βj , τ j) ∈ Awj ,m, j = 1, 2, then (λσ1 + (1 − λ)σ2, λX1 + (1 − λ)X2, β, τ) ∈
Aλ(w1,m)+(1−λ)(w2,m), where β is as constructed in (E.1).

Thus, this implies by optimality, and concavity of κ(eH , σ) in σ,

λE

[∫ τ0

0
e−r1tκ(eH , σ

1
t )dt−

∫ τ0

0
e−r1tdX1

t + e−r1τ
0
L

]

+ (1− λ)E

[∫ τ0

0
e−r1tκ(eH , σ

2
t )dt−

∫ τ0

0
e−r1tdX2

t + e−r1τ
0
L

]

≤ E

[∫ τ0

0
e−r1tκ(eH , λσ

1
t + (1− λ)σ2

t )dt−
∫ τ0

0
e−r1td(λX1

t + (1− λ)X2
t ) + e−r1τ

0
L

]
≤ ṽ(λw1 + (1− λ)w2,m).

Take the supremum to the above over the admissible set of controls, and we obtain, λṽ(w1,m) + (1− λ)ṽ(w2,m) ≤
ṽ(λw1 + (1− λ)w2,m), as desired.

Proposition E.1 is not only mathematically important, but also economically critical. In the model of DeMarzo and

Sannikov (2006), it was explicitly shown that the principal’s value function as a function of the agent’s continuation

value is concave, and thus, public randomization does not improve the payoff for the principal. Note that public

randomization is effectively concavification of the principal’s value function. However, in DeMarzo, Livdan, and

Tchistyi (2013), the authors show that in the case the agent manages a cash flows with a jump component (interpreted

as “disasters”), then public randomization does indeed improve the value for the principal. Economically, public
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randomization implies the following. 44 To induce the current agent to work, the manager could effectively flip a coin

every morning, and if the coin lands in heads, the manager keeps the current agent employed, but if the coin lands in

tails, the manager fires the current agent and finds an identical agent in the labor market to replacement the outgoing

agent. This coin flipping act implies that the principal is indifferent to the identity of the agent, as long as there does

exist a competitive labor market of identical agents, and the principal can frictionlessly hire and fire agents from this

labor market pool. Also equally important, the production technology of the firm is completely independent of the

identity of the agent. Effectively, that means the firm is effectively a factory with a fixed production technology, and

the agent is simply hired to spend effort (or not) to press a button in the factory; it does not matter who presses that

button.

However, in the context of delegated portfolio management, this public randomization argument does not hold.

In particular, for investment firms, the technology is the agent. Effectively, investment firms, and hedge funds in

particular, live and die by the investment manager. Threatening the investment manager via the aforementioned

coin flipping exercise is not credible, as the manager knows if he is fired, the firm also collapses with him. Thus,

the importance of Proposition E.1 is that the principal does not need to resort to a public randomization device to

achieve a better outcome, as if otherwise, this public randomization device is not even feasible.

E.2 Further properties of the value function

Lemma E.2. For any (wi,mi) ∈ Γ, i = 1, 2,, and λ ∈ [0, 1], if (σi, βi, Xi) ∈ Awi,mi , then there does not exist some

β such that (λσ1 + (1− λ)σ2, β, λX1 + (1− λ)X2) ∈ Aλ(w1,m1)+(1−λ)(w2,m2).

Proof of Lemma E.2. We proceed by contradiction. Fix any (wi,mi), i = 1, 2 and λ ∈ [0, 1]. Without loss of

generality, let us pick m2 > m1. Then there exists some admissible controls (σi, βi, Xi) such that,

dW i
t =

(
r0W

i
t − ϕσ

(
σi
t

σL
− 1

))
dt− dXi

t + βi
tσ

i
tdM

i
t .

In particular, we must have that there exist some point (w,m) such that λ(w1,m1) + (1− λ)(w2,m2) = (w,m) and

some admissible controls (σ, β,X) associated with the point (w,m). In particular, multiplying by λ and summing, we

must have that,

d(λW 1
t + (1− λ)W 2

t ) =

(
r0(λW

1
t + (1− λ)W 2

t )− ϕσ

(
λσ1

t + (1− λ)σ2
t

σL
− 1

))
dt

− d(λX1
t + (1− λ)X2

t ) + λβ1
t σ

1
t dM

1
t + (1− λ)β2

t σ
2
t dM

2
t .

(E.3)

But since M1,M2 are both geometric Brownian motions on the same underlying Brownian motion term except for

different initial conditions, so M i
t = mie−1/2t+Bt , the diffusion term above in (E.3) can be rewritten as,

λβ1
t σ

1
t dM

1
t + (1− λ)β2

t σ
2
t dM

2
t = λβ1

t σ
1
tm

1e−1/2t+BtdBt + (1− λ)β2
t σ

2
tm

2e−1/2t+BtdBt

=
(
λβ1

t σ
1
tm

1 + (1− λ)β2
t σ

2
tm

2
)
e−1/2t+BtdBt.

But if there exist some admissible control σ associated with (w,m), then from the ϕσ

(
λσ1

t+(1−λ)σ2
t

σL
− 1

)
dt term, it

means this admissible volatility control σ must be σt = λσ1
t + (1− λ)σ2

t . As well, the admissible compensation must

be X = λX1 + (1 − λ)X2. Then from this form, it implies the admissible sensitivity β must thus be the form, for

m = λm1 + (1− λ)m2,

βt[λσ
1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2] = λβ1

t σ
1
tm

1 + (1− λ)β2
t σ

2
tm

2,

or that,

βt =
λβ1

t σ
1
tm

1 + (1− λ)β2
t σ

2
tm

2

[λσ1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2]

. (E.4)

If this βt is admissible, it must thus be in B. But the lower bound in B cannot hold for βt of (E.4). To see this,

44I thank Dmitry Livdan for pointing this out.
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since βi
t ∈ B, i = 1, 2, we have that,

βt ≥ β
λσ1

tm
1 + (1− λ)σ2

tm
2

[λσ1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2]

.

Thus, in order for βt to be admissible, we must thus have that,

λσ1
tm

1 + (1− λ)σ2
tm

2

[λσ1
t + (1− λ)σ2

t ][λm
1 + (1− λ)m2]

≥ 1. (E.5)

Rearranging and after some algebra, (E.5) implies,

m2(σ2
t − σ1

t ) ≥ m1(σ2
t − σ1

t ). (E.6)

Recall we had assumed, without loss of generality, m2 > m1 — contradiction, this is impossible to hold for all choices

of σ1
t , σ

2
t ∈ [σL, σH ] for all times t. In particular, it suffices to pick those times t and controls such that σ2

t < σ1
t and

the above inequality will imply m2 ≤ m1. Thus, there does not exist an admissible control β associated with the

point (w,m) = λ(w1,m1) + (1− λ)(w2,m2).

Remark E.3. The significance of Lemma E.2 is that it is not possible that the value function is concave in the

coordinate pair of (w,m). Since Γ is clearly a convex set, that means it must be that for any (wi,mi) ∈ Γ, i = 1, 2

and λ ∈ [0, 1] we can for sure find a point (w,m) such that (w,m) = λ(w1,m1) + (1 − λ)(w2,m2). The difficult in

making the concavity argument of the value function is that from those controls (σi, βi, Xi) associated with point

(wi,mi), can we find or construct a control (σ, β,X) associated with the point (w,m), which again is a convex

combination of (wi,mi). Lemma E.2 shows that we cannot. However, to be clear, that is not to say there does not

exist an admissible associated with the point (w,m). Lemma E.2 merely states that if (w,m) is a convex combination

of (wi,mi), i = 1, 2, that admissible control associated with the point (w,m) cannot be constructed out of the controls

associated with (σi, βi, Xi).

Finally, we note that Lemma E.2 is not contradicting Proposition E.1. In particular, Proposition E.1 is not

claiming concavity in the coordinate pair (w,m), but rather it is claiming that if we hold the exogenous factor level

m fixed and look at the w-slice of the state space, then the value function is concave in the w-direction, with respect

to the agent’s continuation value. We summarize and formalize this below in Corollary E.4.

Corollary E.4. The value function v is not concave on Γ.

The next result shows that the value function is decreasing in the exogenous factor level.

Proposition E.5. The value function is decreasing in the exogenous factor level. That is, for any w ∈ ΓW ,

m1,m2 ∈ ΓM with m2 ≥ m1, we have,

v(w,m1) ≥ v(w,m2). (E.7)

Proof of Proposition E.5. Fix any w ∈ ΓW and fix anym1,m2 ∈ ΓM and let’s supposem2 ≥ m1. Pick the admissible

control as follows. Pick an arbitrary volatility choice σ = {σt} and let σ1 = σ2 = σ and also pick an arbitrary

sensitivity choice β = {βt} and let β1 = β2 = β. For the compensation process, pick an arbitrary compensation

process X = {Xt}, and set X1, X2 such that,

X1
t = Xt,

X2
t = Xt1{t∈(0,τ1)}.

Then we have the associated state variable dynamics associated with those controls as,

dW i
t =

[
r0W

i
t − ϕσ

(
σt

σL
− 1

)]
dt− dXi

t + βtσtdM
i
t

dM i
t =M i

tdBt,

where (W i
0,M

i
0) = (w,mi), i = 1, 2. Let τ i be the associated hitting time of the form,

τ i := inf
{
t ≥ 0 :W i

t ≤ R orM i
t ≤ m

}
, (E.8)
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corresponding to the stopping time form in (P).

But recalling thatM i is a geometric Brownian motion, that implies the diffusion terms of dW i
t is simply βtσtdM i

t =

βtσtM i
tdBt = βtσtmie

−1/2t+BtdBt = βtσtmidMt, where M is a geometric Brownian motion on B with zero drift

and unit variance and with initial value M0 = 1. But given that m2 ≥ m1, it implies that the diffusion term of

dW 2
t is weakly greater than that of dW 1

t . But recalling (E.8), and since W 1
0 = W 2

0 = w, it implies that we we have

τ1 ≥ τ2; that is, with a higher diffusion (from dW 2
t ), and on the same Brownian path Bt, it is likely the first time to

get bumped out of the region in (E.8) comes before that of one with a lower diffusion (from dW 1
t ).

Then consider that,

E

[∫ τ1

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX1

t + e−r1τ
1
L

]
− E

[∫ τ2

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX2

t + e−r1τ
2
L

]

= E

[∫ τ1

τ2
κ(eH , σt)dt+ (e−r1τ

1
− e−r1τ

2
)L

]
≥ 0.

But rearranging the above, and recalling the chosen admissible controls were arbitrary, and by optimality, we have

that,

v(w,m1) ≥ E

[∫ τ1

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX1

t + e−r1τ
1
L

]
≥ E

[∫ τ2

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX2

t + e−r1τ
2
L

]
.

And again by arbitrariness of the admissible controls and optimality, we have that,

v(w,m1) ≥ v(w,m2) ≥ E

[∫ τ2

0
e−r1tκ(eH , σt)dt−

∫ τ1

0
e−r1tdX2

t + e−r1τ
2
L

]
.

This concludes the proof.

The next result provides a lower bound on the value function v and directly shows that the value function is

positive.

Proposition E.6. For any (w,m) ∈ Γ, define the processes W̃ , M̃ , given by

dW̃t = r0W̃tdt+ βσLdM̃t, W̃0 = w

dM̃t = M̃tdBt, M̃0 = m,

Define the hitting time θ as,

θ := inf
{
t ≥ 0 : (W̃t, M̃t) ̸∈ Γ̄

}
.

Then,
κ(eH , σL)

r1
− E[e−r1θ]

(
κ(eH , σL)

r1
− L

)
≤ v(w,m), (E.9)

where κ(eH , σL)/r1−L > 0, and holds with equality if and only if (w,m) ∈ ∂Γ, in which case θ = 0, and v(w,m) = L.

Thus, the value function is bounded below by a finite, positive constant.

Proof of Proposition E.6. Fix any (w,m) ∈ Γ. Pick the controls (σ,X, β) as σt ≡ σL, X ≡ 0 and βt ≡ β for all times

t. Then the state variables thus becomes,

dW̃t = r0W̃tdt+ βσLdM̃t, W̃0 = w

dM̃t = M̃tdBt, M̃0 = m.

With these choices of controls, the principal’s payoff is thus,

E
[∫ τ

0
e−r1tκ(eH , σL)dt+ e−r1τL

]
= κ(eH , σL)E

[
1− e−r1τ

r

]
+ LE[e−r1τ ]

=
κ(eH , σL)

r1
− E[e−r1τ ]

(
κ(eH , σL)

r1
− L

)
,
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where note that κ(eH , σL)/r1 −L > 0 by Assumption 5.1 that κ(eL, σL)/r1 > L and we have κ(eH , σL) > κ(eL, σL)

by Definition 4.1. Now, since the stopping time τ =: θ is now viewed as,

θ := inf {t ≥ 0 :Wt ≤ 0 orMt ≤ 0} = inf
{
t ≥ 0 : (Wt,Mt) ̸∈ Γ̄

}
.

Since (w,m) ∈ Γ was arbitrary, then we clearly have (E.9) as desired.

Remark E.7. Economically, the value on the left hand side of the inequality (E.9) represents the following. The

term κ(eH , σL)/r1 is the “second worst” value of the firm, in which the agent effectively chooses the lowest possible

volatility σt ≡ σL for all times t. We note that it is “second worst” value because the absolute “worst” value of the

firm is κ(eL, σL)/r1, that is when the lowest effort et = eL is exerted at all times, but note in this discussion we are

concentrating on implementing the high effort eH contract. However, the agent is still running the firm and recall

from Assumption 5.1 that terminating the firm remains to be inefficient. Hence, the term κ(eH , σL)/r1−L effectively

represents the premium the principal has to give up to the agent to operate the firm, even at its “second worst” value.

However, to maintain IR constraints of the agent, the principal will only allow the agent to run the firm up until the

stopping time θ.

E.3 Comparison Principle

We first establish a comparison principle for the value function v.

Proposition E.8. Suppose ψ is a smooth solution on Γ that satisfies ψ(0,m) ≥ L for all m > 0, and also satisfies,

max

{
−r1ψ(w,m) + max

σ
sup
β

(LeHψ)(w,m;σ, β) + κ(eH , σ),−ψw(w,m)− 1

}
≤ 0, (E.10)

Then we have that,

ψ ≥ v.

Proof of Proposition E.8. Fix an initial state (w0,m0) ∈ Γ and select an arbitrary admissible control α = (σ, β,X) ∈
Aw0,m0 . Furthermore, for k, n ∈ N, set θk := inf{t ≥ 0 :Wt ≥ k orWt ≤ 1/k}, and ρn := inf{t ≥ 0 :Mt ≥ n orMt ≤
1/n}. Then we have that θk, ρn ↑ ∞ as k, n→ ∞. Now by Ito’s formula, we have that,

e−r1τ∧θk∧ρnψ(Wτ∧θk∧ρn ,mτ∧θk∧ρn )

= ψ(w0,m0) +

∫ τ∧θk∧ρn

0
e−r1s [−r1ψ(Ws−,Ms) + (LeHψ)(Ws−,Ms;σs, βs) + κ(eH , σs)] ds

−
∫ τ∧θk∧ρn

0
e−r1sκ(eH , σs)ds+

∫ τ∧θk∧ρn

0
e−r1sψw(Ws−,Ms)βsσsdMs +

∫ τ∧θk∧ρn

0
e−r1sψm(Ws−,Ms)dMs

+
∑

0≤s≤τ∧θk∧ρn

e−r1s (ψ(Ws,Ms)− ψ(Ws−,Ms))−
∫ τ∧θk∧ρn

0
e−r1sψw(Ws−,Ms)dX

c
s ,

where Xc is the continuous part of X. Using the mean value theorem and since ψ satisfies the variational inequality

(E.10), we have that ψw ≥ −1, and moreover since for times s ∈ [0, τ∧θk∧ρn], all the integrands in the diffusion terms

are bounded, and noting also that the controls are also in a compact set, and so taking expectations and rearrange,

we obtain,

ψ(w0,m0) ≥ Ee−r1τ∧θk∧ρnψ(Wτ∧θk∧ρn ,mτ∧ρk∧ρn ) + E
[∫ τ∧θk∧ρn

0
e−r1sκ(eH , σs)ds−

∫ τ∧θk∧ρk

0
e−r1sdXs

]
.

Now, take k, n→ ∞ and applying Fatou’s lemma, we obtain, and recalling ψ(Wτ ,mτ ) = ψ(0,mτ ) ≥ L,

ψ(w0,m0) ≥ E
[∫ τ

0
e−r1sκ(eH , σs)ds−

∫ τ

0
e−r1sdXs + e−r1τL

]
.

Since the set of admissible controls Aw0,m0 were arbitrary, taking the supermum on the right hand side of the

inequality above, then we are done.

With Proposition E.8 on hand, we can now derive some easy growth conditions on the value function v.
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Corollary E.9. For all (w,m) ∈ Γ, the value function v satisfies,

v(w,m) ≤ (1 + r0)w +m+
κ(eH , σH)

r1
.

Proof of Corollary E.9. Take ψ(w,m) := (1 + r0w) +m +
κ(eH ,σH)

r1
on Γ and ψ(w,m) = L for w ≤ 0 and m > 0.

Then clearly ψ is smooth on Γ and moreover, ψww = ψwm = ψmm = 0, and ψw = 1+ r0. Observing (E.10), we have

that,

−ψw(w,m)− 1 = −(1 + r0)− 1 < 0,

and

− r1ψ(w,m) + max
σ

sup
β

(AeHψ)(w,m;σ, β) + κ(eH , σH)

≤ −r1
(
(1 + r0)w +m+

κ(eH , σH)

r1

)
+ r0w + κ(eH , σH)

= (r0 − r1(1 + r0))w − r1m

≤ 0,

since we have r0/r1 < 1 + r0. Then this choice of ψ satisfies the hypothesis of Proposition E.8 and we are done.

E.4 Viscosity solution

E.4.1 Overview

Unlike the approach by the existing continuous-time principal-agent problem literature where either the value function

of the principal is only dependent on one single state variable 45 , namely the agent’s continuation value, or there

are multiple state variables but can be shown that the value function can be written in such a way that dynamic

programming only applies to a single state variable 46 . In particular, because there is only one relevant state variable

in considering dynamic programming, the literature can rely on the extensive literature on existence and uniqueness

results of ODE theory, and in some cases even compute explicitly the form of the principal’s value function from the

ODE form.

However in our case, it is not evident or perhaps even possible, to consider a rewriting to reduce the two state

variables of the agent’s continuation value W and the exogenous factor level M to a single state variable case. As a

result the conventional and classical approach of the “verification theorem” does not apply. In particular, it means

unlike the extensive results from ODE theory that can ensure existence and uniqueness of smooth solutions, we cannot

a priori assume that there will exist a smooth solution (namely C2(Γ)) such that we can take the first order conditions

in (7.3), substitute the maximizer back into (7.3) and hope that there will exist a C2 solution that still satisfies the

highly nonlinear HJB PDE (7.3). Without existence of such a C2 solution to the HJB PDE (7.3), a verification

theorem to show that the solution to the HJB PDE (7.3) is indeed the value function (P) may likely fail. Thus, we

must use more general techniques to understand the value function (P) and the HJB PDE (7.3) and hence we will

consider viscosity solution methods.

To this end, we will first define the PDE operator F . Let us define,

F (w,m, u, p,A) := max

{
− r1u+max

σ
sup
β

([
r0w − ϕσ

(
σ

σL
− 1

)]
pw

+
1

2
m2Amm + βσm2Awm +

1

2
β2σ2m2Aww + κ(eH , σ)

)
,

− pw − 1

}
.

(E.11)

45There are many examples here. Most notably, DeMarzo and Sannikov (2006), Sannikov (2008), He (2009), among
many others.

46He, Wei, and Yu (2014) is an interesting recent example.
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Hence, the HJB PDE in (7.3) is the rewriting,

F (w,m, v,Dv,D2v) = 0, (E.12)

where we denote Dv as the gradient vector and D2v as the Hessian matrix of v, respectively. We will now show that

the value function v of (P) can be understood as the viscosity solution to (E.12).

We now give some definitions.

Definition E.1. We say that u is a viscosity supersolution of (E.12) in Γ if, for every (w,m) ∈ Γ and φ ∈ C2(Γ̄)

such that (w,m) is a local minimum of u− φ in Γ̄, then

F (w,m, u,Dφ,D2φ) ≥ 0. (E.13)

We say that u is a viscosity subsolution of (E.12) in Γ if, for every (w,m) ∈ Γ and φ ∈ C2(Γ̄) such that (w,m) is

a local maximum of u− φ in Γ̄, then

F (w,m, u,Dφ,D2φ) ≤ 0. (E.14)

We say that u is a viscosity solution of (E.12) in Γ if it is both a viscosity supersolution and viscosity subsolution.

It is widely known that it is without loss of generality at the point (w,m) in the definition above to take v(w,m) =

φ(w,m) and also to replace local optimality with global optimality in the above.

E.4.2 Dynamic Programming Principle (DPP)

We will also assume and state without proof the Dynamic Programming Principle (DPP).

Theorem E.10 (Dynamic Programming Principle). For every initial state (w,m) ∈ Γ and every stopping time θ,

v(w,m) = sup
α∈Aw,m

E0

[∫ τ∧θ

0
e−r1sκ(eH , σs)ds−

∫ τ∧θ

0
e−r1sdXs + e−r1τ∧θv(Wτ∧θ,Mτ∧θ)

]
.

E.4.3 Value function as a viscosity solution

Proposition E.11. The value function v of (P) is the unique viscosity solution of (E.12) in Γ.

Remark E.12. In the proof of Proposition E.11, we directly show that v is both a viscosity subsolution and a viscosity

super solution of (E.12), and thus by definition, v is a viscosity solution of (E.12). 47 The proof for uniqueness is

lengthy and technical. Hence, on a first pass, we will omit the proof for uniqueness.

Proof to Proposition E.11, Viscosity Subsolution. Fix any (w,m) ∈ Γ and let φ ∈ C2(Γ̄) with v−φ is a local max in

Γ̄ and v(w,m) = φ(w,m). By Theorem E.10, if we pick any x ∈ (0, w] with X ≡ x, then we have that,

φ(w,m) = v(w,m) ≥ v(w − x,m)− x ≥ φ(w − x,m)− x.

Rearrange and take x ↓ 0, then we have

φw(w,m) ≥ −1. (E.15)

Next, fix any constant β̄, σ̄ in the control set, and set βt ≡ β̄ and σt ≡ σ̄, and let Xt ≡ 0 for all times t. Let (W,M)

be the state variables with those associated control policies. Fix any h > 0. Define τρ := inf {t ≥ 0 : (Wt,Mt) ̸∈ Bρ(w,m) ∩ Γ},
where for ρ > 0 sufficiently small, Bρ(w,m) is the ball centered at (w,m) with radius ρ. Then from Theorem E.10,

47The proof ideas are largely inspired by and inherited from Yong and Zhou (1999), Fleming and Soner (2006),
Budhiraja and Ross (2008) and Ly Vath, Pham, and Villeneuve (2008).
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and noting that τ ∧ τρ = τρ, and applying Ito’s lemma, we have that,

0 ≥ E
[∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ e−r1τρ∧hv(Wτρ∧h,Mτρ∧h)

]
− v(w,m)

≥ E
[∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ e−r1τρ∧h[v(Wτρ∧h,Mτρ∧h)− φ(Wτρ∧h,Mτρ∧h

) + φ(Wτρ∧h,Mτρ∧h
)]

]
− v(w,m)

≥ E

∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ e−r1τρ∧h[v(w,m)− φ(w,m)︸ ︷︷ ︸

=0

+φ(Wτρ∧h,Mτρ∧h
)]

− v(w,m)︸ ︷︷ ︸
=φ(w,m)

= E

[∫ τρ∧h

0
e−r1sκ(eH , σ̄)ds+ φ(w,m) +

∫ τρ∧h

0
e−r1s[−r1φ(Ws,Ms) + (LeHφ)(Ws,Ms; σ̄, β̄)]ds

+

∫ τρ∧h

0
e−r1sφw(Ws,Ms)β̄σ̄dMs +

∫ τρ∧h

0
e−r1sφm(Ws,Ms)dMs

]
− φ(w,m)

= E
[∫ τρ∧h

0
e−r1s[−r1φ(Ws,Ms) + (LeHφ)(Ws,MS ; σ̄, β̄) + κ(eH , σ̄)]ds

]
≥ E

[∫ τρ∧h

0
e−r1s inf

Bρ(w,m)
[−r1φ(w̃, m̃) + (LeHφ)(w̃, m̃; β̄, β̄) + κ(eH , σ̄)]ds

]

= E
[
1− e−r1τρ∧h

r1

]
inf

Bρ(w,m)
[−r1φ(w̃, m̃) + (LeHφ)(w̃, m̃; β̄, β̄) + κ(eH , σ̄)].

Since with X ≡ 0, then the state variable process (W,M) are continuous and hence τρ > 0. By dominated convergence

theorem, let h ↓ 0 and we have,

E
[
1− e−r1τρ∧h

h

]
→ r1.

As well, dividing the above inequality by h, and letting ρ ↓ 0 so τρ → ∞ and Bρ(w,m) → {(w,m)} and h ↓ 0, and

recall v(w,m) = φ(w,m), we obtain,

0 ≥ −r1v(w,m) + (LeHφ)(w,m; σ̄, β̄) + κ(eH , σ̄).

But since the choice of β̄, σ̄ were arbitrary, the above also implies,

0 ≥ −r1v(w,m) + max
σ

sup
β

(LeHφ)(w,m;σ, β) + κ(eH , σ). (E.16)

Putting (E.16) and (E.15) together and we are done.

Proof to Proposition E.11, Viscosity Supersolution. Let φ ∈ C2(Γ̄) and (ŵ, m̂) be a local minimizer of v − φ on Γ

with v(ŵ, m̂) = φ(ŵ, m̂). We need to show that,

F (ŵ, m̂, φ,Dφ,D2φ) ≥ 0 (E.17)

For contradiction, suppose not. Then the left hand side of (E.17) is strictly negative and by smoothness of φ,

there exists δ, γ > 0 satisfying,

F (w,m,φ,Dφ,D2φ) ≤ −γ, (w,m) ∈ Bδ(ŵ, m̂), (E.18)

where Bδ(ŵ, m̂) :=
{
(w,m) : ||(w,m)− (ŵ, m̂)||2 < δ

}
. Since Γ is an open set, by changing δ, if necessary, we may

assume that Bδ(ŵ, m̂) ⊂ Γ.

Fix an arbitrary control α = (σ,X, β) ∈ Aŵ,m̂, and let θ be the first exist time of (W,M) from Bδ(ŵ, m̂). Since

Bδ(ŵ, m̂) ⊂ Γ, we have that θ < τ .

Let W c, Xc denote the continuous parts of W,X, respectively, and noting that ∆Wt := Wt −Wt− = −∆Xt :=

−(Xt −Xt−). By the continuity of sample paths, Ms =Ms−. Now by Ito’s lemma and taking expectations, we have
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that,

Ee−r1θ
−
φ(Wθ− ,Mθ− )− φ(ŵ, m̂)

= E
∫ θ−

0
e−r1s [−r1φ(Ws,Ms) + (LeHφ)(Ws,Ms;σs, βs) + κ(eH , σs)] ds

− E
∫ θ−

0
e−r1sφw(Ws,Ms)dX

c
s + E

∑
0≤s<θ−

e−r1s [φ(Ws,Ms)− φ(Ws−,Ms)]

(E.19)

But for 0 ≤ s < θ−, (E.18) implies,

−r1φ(Ws,Ms) + (LeHφ)(Ws,Ms;σs, βs) ≤ −γ, (E.20)

−φw(Ws,Ms)− 1 ≤ −γ. (E.21)

And using the mean value theorem and (E.21), we obtain,

φ(Ws,Ms)− φ(Ws−,Ms) ≤ (1− γ)∆Xs. (E.22)

Substituting (E.20), (E.21) and (E.22) and noting that Xt = Xc
t +∆Xt, we obtain,

Ee−r1θ
−
φ(Wθ− ,Mθ)− φ(ŵ, m̂)

≤ −E
∫ θ−

0
e−r1sκ(eH , σs)ds+ E

∫ θ−

0
e−r1s(1− γ)dXs − E

∫ θ−

0
e−r1sγds.

(E.23)

Note that while (Wθ− ,Mθ−) ∈ B̄δ(ŵ, m̂), we have that (Wθ,Mθ) is either on the boundary ∂B̄δ(ŵ, m̂) or out of

B̄δ(m̂, m̂). However, there exists some random variable λ ∈ [0, 1] such that,

(Wλ,Mλ) := (Wθ− + λ∆Wθ,Mθ) = (Wθ− − λ∆Xθ,Mθ) ∈ ∂B̄δ(ŵ, m̂). (E.24)

And again by the mean value theorem and (E.21), we have that,

φ(Wλ,Mλ)− φ(Wθ− ,Mθ− ) ≤ (1− γ)λ∆Xθ. (E.25)

Note also that,

Wλ =Wθ−λ∆Xθ

= (Wθ −∆Wθ)− λ∆Xθ

=Wθ +∆Xθ − λ∆Xθ

=Wθ + (1− λ)∆Xθ. (E.26)

From (E.26) and properties of the value function, we also have that,

v(Wλ,Mλ) ≥ v(Wθ,Mθ)− (1− λ)∆Xθ. (E.27)

And since v − φ is a local min at (ŵ, m̂), with v(ŵ, m̂) = φ(ŵ, m̂), so we have that,

v(Wλ,Mλ) ≤ φ(Wλ,Mλ). (E.28)

So from (E.25), (E.27) and (E.28), we obtain,

φ(Wθ− ,Mθ− ) ≥ φ(Wλ,Mλ)− (1− γ)λ∆Xθ

≥ v(Wλ,Mλ)− (1− γ)λ∆Xθ

≥ v(Wθ,Mθ)− (1− λ)∆Xθ − (1− γ)λ∆Xθ

= v(Wθ,Mθ)− (1− λγ)∆Xθ (E.29)
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Substituting (E.29) into (E.23), and rearranging, we thus have,

φ(ŵ, m̂) ≥ E

[∫ θ−

0
e−r1κ(eH , σs)ds−

∫ θ−

0
e−r1sdXs − e−r1θ

−
∆Xθ + e−r1θ

−
v(Wθ,Mθ)

]

+ E

[∫ θ−

0
e−r1sdXs −

∫ θ−

0
e−r1sds+ e−r1θ

−
λ∆Xθ

]
.

(E.30)

Now suppose we can show that there exists a constant c0 > 0 such that,

E

[∫ θ−

0
e−r1sdXs −

∫ θ−

0
e−r1sds+ e−r1θ

−
λ∆Xθ

]
≥ c0. (E.31)

Suppose for now that (E.31) is true. Then from (E.30), using (E.31), recalling that the chosen controls were arbitrary

so we may take the supremum over all admissible controls, and using Theorem E.10 we have that,

φ(ŵ, m̂) ≥ γc0 + v(ŵ, m̂), (E.32)

implying that φ(ŵ, m̂)− v(ŵ, m̂) ≥ γc0 > 0 — contradiction, since we had assumed that φ(ŵ, m̂) = v(ŵ, m̂).

So, the proof is complete once we can prove the existence of the constant c0 > 0 that satisfies (E.31). To this

end, let us define the C2 function,

ψ(w,m) := c0

(
1−

∣∣∣∣(w,m)− (ŵ, m̂)22
∣∣∣∣

δ2

)
, (E.33)

where,

c0 := C0 ∧ (δ/2), (E.34)

and C0 is given by,

C0 := δ2(κ(eH , σL)− r1)

× inf
σ̃∈[σL,σH ]

inf
(w̃,m̃∈Bδ(ŵ,m̂))

[
2r0w̃(w̃ − ŵ)− 2ϕσ

(
σ̃

σL
− 1

)
(w̃ − ŵ) + m̃2(m̃− m̂) +K2σ2

H

]−1

.
(E.35)

Then a direct (but somewhat messy) computation will show that for any admissible choice (β̄, σ̄), (E.33) satisfies,max
{
1− ψw , ψ − 1 , −[−r1ψ + (LeHψ)(·, ·; σ̄, β̄)]− 1

}
≤ 0, on B̄δ(ŵ, m̂),

ψ = 0, on ∂B̄δ(ŵ, m̂).
(E.36)

By Ito’s lemma applied to e−r1θ
−
ψ(Wθ− ,Mθ− ), taking expectations and rearranging, we will arrive at (E.31).

This completes the proof.

E.4.4 Regularity upgrade

Once we have obtained Proposition E.11 and thus we can understand the value function v as the viscosity solution to

the HJB PDE (7.3), we are now ready to “upgrade” our results. First we give a “partial” C1 result.

Proposition E.13. The value function v is C1 in the w-direction; that is, for each m ∈ ΓM , the partial derivative

vw(w,m) exists for all w ∈ ΓW , and is continuous in w.

Proof of Proposition E.13. Fix any m0 ∈ Γm. Define the limits,

∇+
wv(w,m0) := lim

δ↓0

v(w + δ,m0)− v(w,m0)

δ
, (E.37a)

∇−
wv(w,m0) := lim

δ↓0

v(w,m0)− v(w − δ,m0)

δ
. (E.37b)

By Proposition E.1, the map w 7→ v(w,m0) is concave in the w-direction. Thus from standard results in convex anal-

ysis (see, for instance, Rockafellar (1970)), the limits (E.37) exist. We want to show that ∇+
wv(w,m0) = ∇−

wv(w,m0),

and hence equals vw(w,m0) for w ∈ Γw. We proceed in three steps.
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Step 1. Let’s show that ∇+
w(w,m0) ≥ ∇−

wv(w,m0). For contradiction, suppose there exist some w0 ∈ Γw such

that ∇+
w(w0,m0) < ∇−

wv(w0,m0). Fix any nonzero q ∈ (∇+
wv(w0,m0),∇−

wv(w0,m0)), and any ε > 0. Consider the

function,

φ(w,m) := v(w0,m0) + q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
(w − w0)−

1

2ε
(w − w0)

2 −
1

2ε
(m−m0)

2.

Then φ is quadratic and concave in (w,m), and then clearly (w0,m0) is a local maximum of v−φ, with v(w0,m0) =

φ(w0,m0), φw(w0,m0) = q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm2

0
εqw0

)
, φwm = 0, and φww(w0,m0) = φmm(w0,m0) = − 1

ε
. By the

viscosity subsolution property of v, and suboptimality,

0 ≥ F (w0,m0, φ,Dφ,D
2φ)

= max

{
− r1v(w0,m0) + max

σ
sup
β

{[
r0w0 − ϕσ

(
σ

σL
− 1

)]
· q
(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)

+
1

2
m2

0 ·
(
−
1

ε

)
+ βσm2

0 · 0 +
1

2
β2σ2σ2m2

0 ·
(
−
1

ε

)
+ κ(eH , σ)

}
,

− q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
− 1

}

≥ −r1v(w0,m0) + r0w0q

(
1 +

4m2
0

εqw0
+

4K2σ2
Lm

2
0

εqw0

)
−
m2

0

2ε
−
K2σ2

Lm
2
0

2ε
+ κ(eH , σL).

Rearranging the above, we will have,

0 ≥ −εr1v(w0,m0) + εr0w0q + εκ(eH , σL) +m2
0

(
4r0 −

1

2

)
+K2σ2

Lm
2
0

(
4r0 −

1

2

)
.

Take ε ↓ 0, then the above implies,

0 ≥ m2
0

(
4r0 −

1

2

)
+K2σ2

Lm
2
0

(
4r0 −

1

2

)
,

— contradiction, as we recall r0 ∈ (0, 1). Thus, we have ∇+
wv(w,m0) ≥ ∇−

wv(w,m0) for w ∈ Γw.

Step 2. Now, it remains to show ∇+
wv(w,m0) ≤ ∇−

wv(w,m0). But since for each m0 ∈ Γm, v(w,m0) is concave

in the w-direction, by again standard results from convex analysis (see Rockafellar (1970)), the desired inequality

∇+
wv(w,m0) ≤ ∇−

wv(w,m0) immediately holds.

Step 3. By Step 1 and 2, we have that ∇+
wv(w,m0) = ∇−

wv(w,m0) ≡ vw(w,m0). But furthermore, since we have

concavity in the w-direction and also continuity, this implies vw(w,m0) is also continuous. Thus, we have C1 in the

w-direction.

Now, we give a C2 regularity upgrade.

Proposition E.14. Define the sets,

D := {(w,m) ∈ Γ : vw(w,m) = −1} , (E.38)

C := Γ \ D . (E.39)

Then,

1. v is C2 in the w-direction on C ∪ Do.

2. In the classical C2 solution sense, we have,

− r1v +max
σ

sup
β

[(LeH v)(·, · ; σ, β) + κ(eH , σ)] = 0, on C . (E.40)

Proof of Proposition E.14. Part 1. It is clear that v is C2 in the w-direction on Do. That is, for (w,m) ∈ Do, we

have vw(w,m) = −1. Note that by Proposition E.13, the expression vw(w,m) makes sense. But moreover, since

the right hand side of vw(w,m) = −1 is a constant, which is trivially differentiable in the w-direction, and so it also

implies vw(w,m) is trivially C1, and so v is C2 in the w-direction.
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It remains to prove that v is C2 in the w-direction on C .

Part 2. Let’s first show that v is a viscosity solution to,

− r1v(w,m) + max
σ

sup
β

[(LeH v)(w,m;σ, β) + κ(eH , σ)] = 0, (w,m) ∈ C . (E.41)

Viscosity supersolution. Indeed, let (ŵ, m̂) ∈ C and φ be a C2 function on C such that (ŵ, m̂) is a local minimum

of v − φ with v(ŵ, m̂) = φ(ŵ, m̂). But that means by first order conditions, and again recalling Proposition E.13, it

implies we have 0 = ∂
∂w

(v − φ)(ŵ, m̂); so in particular, we have that for (ŵ, m̂) ∈ C , φw(ŵ, m̂) = vw(ŵ, m̂) < −1.

And thus from the viscosity supersolution property of v from Proposition E.11, we have,

−r1φ(ŵ, m̂) + max
σ

sup
β

[(LeH v)(ŵ, m̂;σ, β) + κ(eH , σ)] ≥ 0.

This shows the desired viscosity supersolution property.

Viscosity subsolution. The subsolution property is immediate by the fact v is (at least) a viscosity subsolution to

(7.3), as given by Proposition E.11. Thus, v is also a viscosity solution to (E.41).

Now, fix any arbitrarily bounded set O ⊂ C . Consider the nonlinear Dirichlet boundary value problem,

−r1ξ +max
σ

sup
β

[(LeH ξ)(·, · ; σ, β) + κ(eH , σ)] = 0, on O, (E.42a)

ξ = v, on ∂O. (E.42b)

In particular, we see that for any a = (a1, a2) ∈ R2, we have that by extracting out the coefficients to the second

order derivative and cross derivative terms of ξ in (E.42), and for any β, σ in the admissible choice set,

β2σ2m2a21 + 2βσm2a1a2 +m2a22 ≥ β2σ2
Lm

2a21 + 2βσLma1a2 +m2a22

≥ C(a21 + 2a1a2 + a22)

= C ||a||2 ,

where the constant C := min{β2σ2
Lm

2 , 2βσLm, m2} > 0 and ||·||2 is the standard R2 Euclidean norm. In particular,

this shows PDE (E.42) is uniformly elliptic (see Remark E.15) with Dirichlet boundary data. Thus, standard classical

existence and uniqueness results are available (see Evans (1983), Fleming and Soner (2006), and Evans (2010)). Hence,

a unique C2 solution ξ on O to (E.42) exists. But from the standard uniqueness results of viscosity solution to (E.42),

this implies we have v = ξ on O. From the arbitrariness of O, this proves that v is C2 smooth on Γ.

Remark E.15. We can now see the significance of the IR constraint in Definition 6.1(1b). If in contrast, we do not

have the requirement that Mt ≥ m, so that the state space in question is (w,m) ∈ (0,∞) × (0,∞) rather than

(0,∞)× (m,∞), then there does not exist a strictly positive constant C for which β1σ2m1a21+2βσm2a1a2+m2a22 ≥
C ||a||2 can hold, in which case the PDE is known as being degenerate. The essential problem is that when m = 0,

the nature of the state variable dynamics significantly changes (i.e. from being fully stochastic to fully deterministic).

See also Figure 3 for an illustration of the state space Γ. And also see Figure 4 for an illustration, for each fixed

m ∈ ΓM , the value function w 7→ v(w,m).

Remark E.16. The set D of (E.38) is the payment condition and C is the continuation region (i.e. no payment

condition).

Remark E.17. Proposition E.14 shows that in the continuation region C , the value function v is C2 smooth in both

(w,m). Together with the concavity of the value function in the w-direction from Proposition E.1, it implies that in

(E.40), when we optimize over the volatility σ choice and the sensitivity β choice, we can use the usual first order

conditions to uniquely characterize them. Thus, Proposition E.1 and Proposition E.14 show that the discussions in

Section 8 are on meaningful grounds.

E.5 Free boundary

We first introduce the free (moving) boundary,

∂∗ :=
{
(W̄ (m),m) : m ∈ ΓM

}
, (E.43)
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where W̄ is the map from ΓM to ΓW , defined by,

W̄ (m) := sup {w ∈ ΓW : vw(w,m) = −1} , m ∈ ΓM . (E.44)

Through a rather technical and elaborate argument similar to Soner and Shreve (1989), one can show that W̄ is finite

and indeed twice continuously differentiable. We omit the proof here, but the argument should follow, in spirit and

actuality, from Soner and Shreve (1989).

Then we can have a further regularity upgrade of our earlier results. Note that for each m ∈ ΓM , we can partition

ΓW = (R,∞) = (R, W̄ (m))∪ [W̄ (m),∞). Moreover, note that the set (R, W̄ (m))×ΓM = C , by construction. Define

the function V on Γ as follows. For each m ∈ ΓM , define,

V (w,m) (E.45)

:=


1
r1

maxσ supβ [(LeH v)(w,m;σ, β) + κ(eH , σ)] , w ∈ (R, W̄ (m)),

W̄ (m)− w + 1
r1

[
−r0W̄ (m) + ϕσ

(
σH
σL

− 1
)
+ 1

2
m2vmm(W̄ (m),m) + κ(eH , σH)

]
, w ∈ [W̄ (m),∞).

(E.46)

In particular, we have simply taken the value function v, and extracted out the dynamics in the continuation region C

as in Proposition E.14(E.40), and then on the payment condition region, linearly extrapolated the value at the slope

−1. By the smoothness of W̄ , we have that V is also a viscosity solution to the HJB PDE (7.3). By uniqueness of

viscosity solutions, this implies that V ≡ v on Γ, but we note that V is C2 in the w-direction on ΓW .

In particular, when we evaluate w = W̄ (m) for any m ∈ ΓM from (E.46), we obtain,

V (W̄ (m),m) =
1

r1

[
−r0W̄ (m) + ϕσ

(
σH

σL
− 1

)
+

1

2
m2vmm(W̄ (m),m) + κ(eH , σH)

]
, m ∈ ΓM . (E.47)

But recalling the terminal condition V = v = L on ∂Γ, and in particular if we take m→ m in (E.47), we have,

L =
1

r1

[
−r0W̄ (m) + ϕσ

(
σH

σL
− 1

)
+

1

2
m2vmm(W̄ (m),m) + κ(eH , σH)

]
. (E.48)

But if we view the (moving) free boundary m 7→ W̄ (m) as the object of interest, then (E.47) identifies the nonlinear

ODE
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