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Charles Stein, 1920–2016
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http://www.a3mreunion.org/remembrance/stein-c.html


The James-Stein estimator

source: Efron and Morris, 1977
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Given p players, let µi, i = 1, . . . , p, be the probability that player i
gets a hit when at bat.

Let zi be the batting average over the first 45 games of the season.

Suppose

µ ∼ N (m1, τ2I) and z|µ ∼ N (µ, ν2I). (1)

Bayes Rule:

µBayes = E[µ|z] = m1 + c(z −m1), (2)

where

c = 1− ν2

τ2 + ν2 . (3)
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E[m(z)] = m (4)

and, with some analysis, conditional on ν2,

E

[
ν2

s2(z)

]
= ν2

τ2 + ν2 . (5)

where
s2(z) =

p∑
i=1

(zi −m(z))2/(p− 3). (6)

Define the JS (shrinkage) estimator

µ̂JS = m(z)1 + cJS(z −m(z)1), (7)

cJS = 1− ν2

s2(z) . (8) 5



James-Stein estimator

James and Stein (1961): The sample average z is inadmissible as
an estimator of µ when p > 3.

Eµ,ν
[
|µ̂JS − µ|2

]
< Eµ,ν

[
|z − µ|2

]
. (9)

for all µ ∈ Rp, ν ∈ R.
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Portfolio selection in theory

Since Markowitz 1952, quantitative investors have constructed
portfolios with mean-variance (MV) optimization.

A simple quadratic program expressed in terms of a covariance
matrix Σ.
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Portfolio selection in practice

The minimum variance portfolio w∗ is the solution to:

min
w∈Rp

w>Σw

w>1p = 1

We don’t know Σ. Instead we estimate Σ̂ and get ŵ.
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Theory versus practice

How do w∗ and ŵ differ?
MV optimizers are “estimation error maximizers”.

A variance minimizing optimizer will overweight securities for
which variances or correlations are underforecast, hence
under-forecast portfolio variance.

Statistician: errors arise from additive noise in covariance matrix

Math Finance: errors arise from prices used to form the sample
covariance matrix
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Agenda: Mitigate the effect of sampling error on optimization

Determine the mechanism by which sampling error enters an
estimated covariance matrix and distorts optimized portfolios.
Mitigate distortion, to the extent possible.
Improve the accuracy of optimized portfolios.
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How to estimate Σ: One-factor model

Suppose returns to p securities follow a one-factor model:

r = βx+ ε

where r, β, ε ∈ Rp and x ∈ R. Assume m(β) > 0.

With common assumptions,

Σ = σ2ββ> + δ2I

with σ2 = var(x) and δ2 = var(εi).

OR:
Σ = η2bb> + δ2I

where η2 = σ2|β|2.
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A principal component analysis (PCA) estimate of Σ

An estimate of Σ amounts to estimates of η2, b and δ2 :

Σ̂ = η̂2b̂b̂> + δ̂2I.

Consider a time series of n << p observations of r, with sample
covariance matrix S.

In a PCA model, we take b̂ to be the leading sample eigenvector of
S. Eigenvalues of S can be used to determine η̂2 and δ̂2.
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Findings

Variance error in the optimized portfolio stems mostly from
bias in the leading eigenvector of the sample covariance
matrix.
Errors in the leading eigenvalue have no impact asymptotically
in p.
The data-driven JSE (James-Stein for eigenvectors) estimator
improves eigenvector estimation bias, leading to improvement
in the optimized portfolio.
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James Stein Estimators

S = sample covariance matrix, h = leading eigenvector, Sh = λ2h.

µJS = m(z)1 + cJS(z −m(z)1), cJS = 1− ν2

s2(z)

s2(z) = 1
p− 3

p∑
i=1

(zi −m(z))2

hJSE = m(h)1 + cJSE(h−m(h)1), cJSE = 1− ν2

s2(h)

s2(h) = 1
p

p∑
i=1

(λhi − λm(h))2

ν2 = tr(S)− λ2

p · (n− 1) → δ2/n
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Errors in portfolio weights

(Squared) tracking error of an optimized portfolio ŵ measures its
distance from the optimal portfolio w∗:

T E2 = (ŵ − w∗)>Σ(ŵ − w∗).

Tracking error is the width of the distribution of return differences
between ŵ and w∗.

Ideally, tracking error is 0.
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Errors in variance forecasts

Variance forecast ratio measures the error in the risk forecast as:

V = ŵ>Σ̂ŵ
ŵ>Σŵ .

This is a ratio of the estimated portfolio risk over the actual risk of
the estimated minimum variance portfolio.

Ideally, the variance forecast ratio is 1. Likely, it is less than 1.
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Asymptotic Results

Recall λ2 is the leading eigenvalue of S, pν2 → δ2/n = average of
remaining non-zero eigenvalues of S. Define:

Σraw = (λ2 − n− 1
p− 1 pν

2)hh> + n− 1
p− 1 pν

2I

ΣPCA = (λ2 − pν2)hh> + nν2I

ΣJSE = (λ2 − pν2)h̄JSE(h̄JSE)> + nν2I.

Let wraw, wPCA, wJSE be the estimated minimum variance
portfolios, resp.
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Asymptotic Results

Theorem
Assume 0 < limp→∞m(β) <∞.

Asymptotically as p→∞ with n fixed, almost surely,

1. ∣∣∣h̄JSE − b
∣∣∣2 < |h− b|2

2. V(wPCA)→ 0 but V(wJSE) > 0
3. T E2(wPCA) > T E2(wJSE)

Simluations show the asymptotic regime is reached for fairly small
p like 500.
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Dispersion bias in the HL regime

source: Goldberg, Papanicalaou & Shkolnik (2022)

Here z = 1/√p. With high probability, 〈z, b〉 > 〈z, h〉, meaning
that the entries of h are more dispersed than the entries of b.
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More general version

Let τ be any fixed unit p-vector (e.g. τ = z). Define the
generalized variance

v2
τ (y) = 1

p
|y − 〈y, τ〉τ |2, (10)

the generalized shrinkage constant

cJSE
τ = 1− ν2

λ2v2
τ (h) , (11)

and the generalized JSE estimator as

hJSE
τ = 〈h, τ〉τ + cJSE

τ (h− 〈h, τ〉τ). (12)
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More general version

Theorem (Goldberg and K. 2022)
Asymptotically as p→∞ with n fixed, almost surely,

∠(hJSE
τ , b) ≤ ∠(h, b) (13)

and the inequality is strict if lim inf〈b, τ〉 > 0.
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Three regimes

Classical⇒" theory
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Simulated tracking error

source: Goldberg & Kercheval (2022)

Based on 100 simulations of a year’s worth of daily returns following a
one-factor model. Ideally, tracking error is 0.
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Simulated variance forecast ratio

source: Goldberg & Kercheval (2022)

Based on 100 simulations of a year’s worth of daily returns following a
one-factor model. Ideally, the variance forecast ratio is 1.
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Simulated tracking error, p = 500
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Simulated variance forecast ratio, p = 500
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Results and problems

· MAPS generalization: arbitrary shrinkage targets; consistency
· In progress: multifactor models, multiple constraints
· In progress: Empirical validation.
· In progress: Admissibility: a finite p version of GPS that, like

JS, holds in expectation.
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Thank you

Lisa Goldberg, Hubeyb Gurdogan, Alex Shkolnik
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