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Chapter 1: James-Stein Shrinkage



The James-Stein estimator

source: Efron and Morris, 1977
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Given p players, let µi, i = 1, . . . , p, be the probability that player i
gets a hit when at bat.

Let zi be the batting average over the first 45 games of the season.

Suppose

µ ∼ N (m1, τ2I) and z|µ ∼ N (µ, ν2I). (1)

Bayes Rule calculation:

µBayes ≡ E[µ|z] = (1− c)z + c(m1), (2)

where c = ν2/(τ2 + ν2).
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Observables:

Let z̄ = (1/p)
∑
zi and s2(z) =

∑p
i=1(zi − z̄)2/(p− 3).

Then

E[z̄] = m and Eν
[
ν2

s2(z)

]
= ν2

τ2 + ν2 = c (3)

Define the JS (shrinkage) estimator

µJS = (1− cJS)z + cJS(z̄1) (4)

where
cJS = ν2

s2(z) (5)

– ”Empirical Bayes”
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James-Stein estimator

James and Stein (1961): The sample average z is inadmissible as
an estimator of µ when p > 3.

Eµ,ν
[
|µJS − µ|2

]
< Eµ,ν

[
|z − µ|2

]
. (6)

for all µ ∈ Rp, ν ∈ R.
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Chapter 2: Estimating Covariance in
the HL Regime



In 1952, Harry Markowitz framed investment as a tradeoff be-
tween expected return and variance

Efficient Frontier
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Portfolio optimization in practice

An efficient portfolio is a solution to a quadratic optimization with
k linear constraints.

C: p× k matrix of constraint gradients
a: k-vector of constraint targets

min
w∈Rp

w>Σw

w>C = a

Efficient frontier (k = 2):

C =


1 µ1
...

...
1 µp

 a =
(

1
µ

)
Problem: Σ is unknown so
we use an estimate,
yielding an optimized
portfolio that is not
optimal.
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How to estimate Σ: One-factor model

p = number of securities >> n = number of observations.

Suppose returns r ∈ Rp follow a one-factor model:

r = βf + ε

Only r is observed. f ∈ R and ε ∈ Rp are random, uncorrelated. β ∈ Rp

is an unknown parameter, |β|2/p has a finite limit.

If var(f) = σ2, x = f/σ, var(ε) = δ2I, η2 = σ2|β|2, then

r = ηbx+ ε and Σ = η2bb> + δ2I

To estimate: two scalars, η2 and δ2, and a unit p-vector b.
Note: b is the leading eigenvector of Σ, with eigenvalue η2 + δ2.
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Inputs: Sample covariance matrix

Y = p× n data matrix, columns = n observations of r ∈ Rp

ri = ηbxi + εi, i = 1, 2, . . . , n

Sample covariance matrix S = Y Y >/n.

rank(S) = n < p, singular

Define

λ2 = leading eigenvalue of S
h = hPCA leading unit eigenvector of S
`2 = (Trace(S)− λ2)/(n− 1)
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A family of estimates of Σ

HL = high dimension low sample size regime.

Asymptotic limits:

lim
p→∞

(λ2 − `2)/p =
(
|X|2

n

)
lim
p→∞

η2/p <∞

where X = (x1, . . . , xn).

lim
p→∞

n`2/p = δ2, but lim
p→∞

|h− b| 6= 0

Family of estimators of Σ:

Σv = (λ2 − `2)vv> + (n/p)`2I.

Note: Trace(Σv) = λ2 + (n− 1)`2 = Trace(S) 10



PCA covariance estimator

Set v = h ≡ hPCA

ΣPCA = (λ2 − `2)hPCAhPCA> + n

p
`2I

ΣPCA is an S-POET estimator of W. Wang and J. Fan. 2017

Now set v = hJSE

ΣJSE = (λ2 − `2)hJSEhJSE> + n

p
`2I
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JSE eigenvector estimator hJSE

C = k-dim linear subspace, ∠(β,C) < π/2.

Define hJSE, an eigenvector shrinkage estimator:

hC = proj
C

(h), cJSE = `2/λ2

1− |hC |2

HJSE = (1− cJSE)h+ cJSEhC

and
hJSE = HJSE

|HJSE |
.
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Why do we call it JSE?

Baseline special case: C = span(1)

Then hC = h̄1 and 1− |hC |2 = |h− h̄1|2

cJS = ν2

s2(z) cJSE = `2/λ2

|h− h̄1|2

µJS = (1− cJS)z + cJS(z̄1)
HJSE = (1− cJSE)h+ cJSE(h̄1)

13



HL Regime eigenvector estimation

Theorem (Goldberg, Gurdogan, K. 2023)
Assume, as p→∞, |βi| is bounded, |β|2/p has a positive limit,
and ∠(β,C) has a positive limit Θ < π/2. Then,

lim
p→∞

|hJSE − b| < lim
p→∞

|h− b| a.s.

Asymptotically,

cos2(∠(hJSE, b))− cos2(∠(h, b)) = (1− ψ2
∞)2 cos2 Θ

sin2 Θ + (1− ψ2
∞)

> 0

where ψ2
∞ = limp→∞

λ2−`2
λ2 ∈ (0, 1).
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How well does the improvement formula work for finite p and
different angles Θ?
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Box plots generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000 securities,
k = 2. Note the difference in scale for small, medium and large angles. Graphics by Stephanie Ribet. 15



Idea: Oracle estimator

An oracle estimator:

Let U = span(h,C), ho = bU/|bU |.

Note: ho is the unit vector in span(h,C) closest to b (hence closer
than h).

Lemma (Gurdogan - K, 2022): |ho − hJSE| → 0 as p→∞.
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Back to the Optimization Problem

min
w∈Rp

w>Σw

w>C = a

- Portfolio variance error is mostly due to bias in the leading
sample eigenvector not the leading eigenvalue.

- JSE using the constraint C improves Markowitz portfolio risk
estimates in high dimensions.

- ∠(β,C) < π/2, if one column of C is 1 since empirically
∠(β,1) < π/2.
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Two covariance matrix estimators

ΣPCA = (λ2 − `2)hh> + (n/p)`2I
ΣJSE = (λ2 − `2)hJSE(hJSE)> + (n/p)`2I

Σ = η2bb> + δ2I

wPCA: (w>ΣPCAw)-minimizing portfolio

wJSE: (w>ΣJSEw)-minimizing portfolio

w∗: (w>Σw)-minimizing portfolio

We compare minimized variance of wPCA, wJSE, and w∗

theoretically and in simulation experiments.
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Errors in optimal portfolios

True variance ratio

w∗>Σw∗

w>PCAΣwPCA
or w∗>Σw∗

w>JSEΣwJSE

True variance ratio is less than one, larger is better.

Other measures: tracking error, variance forecast ratio
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Asymptotic Theory

For a unit p-vector v the optimization bias Ep(v, C, a) controls the
variance V(wv) of a portfolio optimized with Σv asymptotically:

V(wv) = KE2
p (v, C, a) +O(1/p)

and

Ep(b, C, a) = 0, lim
p→∞

Ep(hJSE, C, a) = 0, lim
p→∞

E2
p (hPCA, C, a) > 0.

Ep(v, C, a) is given by a formula involving v, C, a, and b.

Ep(v, C, a) =
(b>α)(1− ||vC ||2)− b>(v − vC)(v>α)

(1− ||vC ||2)

α =
(C†)>a

||(C†)>a||
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True Variance Ratios, p = 3000 simulation
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Box plots are generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000
securities. Graphics by Stephanie Ribet.
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The Blessing of Dimensionality
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Dispersion bias geometry; Concentration of measure in high
dimension

source: Goldberg, Papanicalaou & Shkolnik (2022)

Here z = 1/√p. With high probability, ∠(h, z) > ∠(b, z)
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Chapter 3: More simulations!



Tracking error

Squared tracking error of an estimated portfolio w relative to the
true optimal portfolio w∗:

(w − w∗)>Σ(w − w∗).

Variance forecast ratio compares estimated variance over true
variance of w:

w>Σ̂w
w>Σw

Tracking error is the width of the distribution of return differences
between ŵ and w∗.

Ideally, tracking error is 0.
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Simulated tracking error

source: Goldberg & Kercheval (2023)

Based on 100 simulations of a year’s worth of daily returns following a
one-factor model. Ideally, tracking error is 0.

26



Variance forecast ratio

Variance forecast ratio measures error in the risk forecast:

V = ŵ>Σ̂ŵ
ŵ>Σŵ .

This is the ratio of the estimated risk (variance) over the actual
risk of the estimated minimum variance portfolio.

Ideally, the variance forecast ratio is 1. Likely, it is less than 1.
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Simulated variance forecast ratio

source: Goldberg & Kercheval (2023)

Based on 100 simulations of a year’s worth of daily returns following a
one-factor model. Ideally, the variance forecast ratio is 1.
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