Portfolio optimization via strategy-specific eigenvector shrinkage

Alec Kercheval (akercheval@fsu.edu)

October 18, 2023
UC Berkeley CDAR
Department of Mathematics
Florida State University

Collaborators

Lisa Goldberg, UC Berkeley CDAR, and Aperio by Blackrock
Hubeyb Gurdogan, UCLA Math
Alex Shkolnik, UCSB

Chapter 1: James-Stein Shrinkage

The James-Stein estimator

source: Efron and Morris, 1977

Given p players, let $\mu_{i}, i=1, \ldots, p$, be the probability that player i gets a hit when at bat.

Let z_{i} be the batting average over the first 45 games of the season.
Suppose

$$
\begin{equation*}
\mu \sim \mathcal{N}\left(m \mathbf{1}, \tau^{2} I\right) \quad \text { and } \quad z \mid \mu \sim \mathcal{N}\left(\mu, \nu^{2} I\right) \tag{1}
\end{equation*}
$$

Bayes Rule calculation:

$$
\begin{equation*}
\mu^{\text {Bayes }} \equiv E[\mu \mid z]=(1-c) z+c(m \mathbf{1}) \tag{2}
\end{equation*}
$$

where $c=\nu^{2} /\left(\tau^{2}+\nu^{2}\right)$.

Observables:
Let $\bar{z}=(1 / p) \sum z_{i}$ and $s^{2}(z)=\sum_{i=1}^{p}\left(z_{i}-\bar{z}\right)^{2} /(p-3)$.
Then

$$
\begin{equation*}
E[\bar{z}]=m \text { and } E_{\nu}\left[\frac{\nu^{2}}{s^{2}(z)}\right]=\frac{\nu^{2}}{\tau^{2}+\nu^{2}}=c \tag{3}
\end{equation*}
$$

Define the JS (shrinkage) estimator

$$
\begin{equation*}
\mu^{J S}=\left(1-c^{J S}\right) z+c^{J S}(\bar{z} \mathbf{1}) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
c^{J S}=\frac{\nu^{2}}{s^{2}(z)} \tag{5}
\end{equation*}
$$

- "Empirical Bayes"

James-Stein estimator

James and Stein (1961): The sample average z is inadmissible as an estimator of μ when $p>3$.

$$
\begin{equation*}
E_{\mu, \nu}\left[\left|\mu^{J S}-\mu\right|^{2}\right]<E_{\mu, \nu}\left[|z-\mu|^{2}\right] . \tag{6}
\end{equation*}
$$

for all $\mu \in R^{p}, \nu \in R$.

Chapter 2: Estimating Covariance in the HL Regime

In 1952, Harry Markowitz framed investment as a tradeoff between expected return and variance

Efficient Frontier

Portfolio optimization in practice

An efficient portfolio is a solution to a quadratic optimization with k linear constraints.
$C: p \times k$ matrix of constraint gradients
a : k-vector of constraint targets

$$
\begin{gathered}
\min _{w \in \mathbb{R}^{p}} w^{\top} \Sigma w \\
w^{\top} C=a
\end{gathered}
$$

Efficient frontier $(k=2)$:

$$
C=\left(\begin{array}{cc}
1 & \mu_{1} \\
\vdots & \vdots \\
1 & \mu_{p}
\end{array}\right)
$$

$$
a=\binom{1}{\mu}
$$

Problem: Σ is unknown so
we use an estimate, yielding an optimized portfolio that is not optimal.

How to estimate $\Sigma:$ One-factor model

$p=$ number of securities $\gg n=$ number of observations.
Suppose returns $r \in \mathbb{R}^{p}$ follow a one-factor model:

$$
r=\beta f+\epsilon
$$

Only r is observed. $f \in \mathbb{R}$ and $\epsilon \in \mathbb{R}^{p}$ are random, uncorrelated. $\beta \in \mathbb{R}^{p}$ is an unknown parameter, $|\beta|^{2} / p$ has a finite limit.
If $\operatorname{var}(f)=\sigma^{2}, x=f / \sigma, \operatorname{var}(\epsilon)=\delta^{2} I, \eta^{2}=\sigma^{2}|\beta|^{2}$, then

$$
r=\eta b x+\epsilon \text { and } \Sigma=\eta^{2} b b^{\top}+\delta^{2} I
$$

To estimate: two scalars, η^{2} and δ^{2}, and a unit p-vector b. Note: b is the leading eigenvector of Σ, with eigenvalue $\eta^{2}+\delta^{2}$.

Inputs: Sample covariance matrix

$Y=p \times n$ data matrix, columns $=n$ observations of $r \in \mathbb{R}^{p}$
$r^{i}=\eta b x^{i}+\epsilon^{i}, i=1,2, \ldots, n$
Sample covariance matrix $S=Y Y^{\top} / n$.
$\operatorname{rank}(S)=n<p$, singular
Define

$$
\begin{aligned}
& \lambda^{2}=\text { leading eigenvalue of } S \\
& h=h^{\text {PCA }} \text { leading unit eigenvector of } S \\
& \ell^{2}=\left(\operatorname{Trace}(S)-\lambda^{2}\right) /(n-1)
\end{aligned}
$$

A family of estimates of Σ

$\mathrm{HL}=$ high dimension low sample size regime.
Asymptotic limits:

$$
\lim _{p \rightarrow \infty}\left(\lambda^{2}-\ell^{2}\right) / p=\left(\frac{|X|^{2}}{n}\right) \lim _{p \rightarrow \infty} \eta^{2} / p<\infty
$$

where $X=\left(x^{1}, \ldots, x^{n}\right)$.

$$
\lim _{p \rightarrow \infty} n \ell^{2} / p=\delta^{2}, \text { but } \lim _{p \rightarrow \infty}|h-b| \neq 0
$$

Family of estimators of Σ :

$$
\Sigma^{v}=\left(\lambda^{2}-\ell^{2}\right) v v^{\top}+(n / p) \ell^{2} I
$$

Note: $\operatorname{Trace}\left(\Sigma^{v}\right)=\lambda^{2}+(n-1) \ell^{2}=\operatorname{Trace}(S)$

PCA covariance estimator

Set $v=h \equiv h^{\mathrm{PCA}}$

$$
\Sigma_{\mathrm{PCA}}=\left(\lambda^{2}-\ell^{2}\right) h^{\mathrm{PCA}} h^{\mathrm{PCA} \top}+\frac{n}{p} \ell^{2} I
$$

Σ_{PCA} is an S-POET estimator of W. Wang and J. Fan. 2017
Now set $v=h^{\mathrm{JSE}}$

$$
\Sigma_{\mathrm{JSE}}=\left(\lambda^{2}-\ell^{2}\right) h^{\mathrm{JSE}} h^{\mathrm{JSET}}+\frac{n}{p} \ell^{2} I
$$

JSE eigenvector estimator h^{JSE}

$C=k$-dim linear subspace, $\angle(\beta, C)<\pi / 2$.
Define h^{JSE}, an eigenvector shrinkage estimator:

$$
\begin{aligned}
& h_{C}=\operatorname{proj}_{C}(h), \quad c^{J S E}=\frac{\ell^{2} / \lambda^{2}}{1-\left|h_{C}\right|^{2}} \\
& H^{J S E}=\left(1-c^{J S E}\right) h+c^{J S E} h_{C}
\end{aligned}
$$

and

$$
h^{\mathrm{JSE}}=\frac{H^{J S E}}{\left|H^{J S E}\right|}
$$

Why do we call it JSE?

Baseline special case: $C=\operatorname{span}(\mathbf{1})$
Then $h_{C}=\bar{h} \mathbf{1}$ and $1-\left|h_{C}\right|^{2}=|h-\bar{h} \mathbf{1}|^{2}$

$$
\begin{aligned}
c^{J S}= & \frac{\nu^{2}}{s^{2}(z)} \quad c^{J S E}=\frac{\ell^{2} / \lambda^{2}}{|h-\bar{h} \mathbf{1}|^{2}} \\
\mu^{J S} & =\left(1-c^{J S}\right) z+c^{J S}(\bar{z} \mathbf{1}) \\
H^{J S E} & =\left(1-c^{J S E}\right) h+c^{J S E}(\bar{h} \mathbf{1})
\end{aligned}
$$

HL Regime eigenvector estimation

Theorem (Goldberg, Gurdogan, K. 2023)

Assume, as $p \rightarrow \infty,\left|\beta_{i}\right|$ is bounded, $|\beta|^{2} / p$ has a positive limit, and $\angle(\beta, C)$ has a positive limit $\Theta<\pi / 2$. Then,

$$
\lim _{p \rightarrow \infty}\left|h^{\mathrm{JSE}}-b\right|<\lim _{p \rightarrow \infty}|h-b| \quad \text { a.s. }
$$

Asymptotically,

$$
\cos ^{2}\left(\angle\left(h^{\mathrm{JSE}}, b\right)\right)-\cos ^{2}(\angle(h, b))=\frac{\left(1-\psi_{\infty}^{2}\right)^{2} \cos ^{2} \Theta}{\sin ^{2} \Theta+\left(1-\psi_{\infty}^{2}\right)}>0
$$

where $\psi_{\infty}^{2}=\lim _{p \rightarrow \infty} \frac{\lambda^{2}-\ell^{2}}{\lambda^{2}} \in(0,1)$.

How well does the improvement formula work for finite p and different angles Θ ?

Box plots generated from 10000 simulations of $n=24$ monthly observations of returns to $p=3000$ securities, $k=2$. Note the difference in scale for small, medium and large angles. Graphics by Stephanie Ribet.

Idea: Oracle estimator

An oracle estimator:
Let $U=\operatorname{span}(h, C), h^{o}=b_{U} /\left|b_{U}\right|$.
Note: h^{o} is the unit vector in $\operatorname{span}(h, C)$ closest to b (hence closer than h).

Lemma (Gurdogan - K, 2022): $\left|h^{o}-h^{\mathrm{JSE}}\right| \rightarrow 0$ as $p \rightarrow \infty$.

Back to the Optimization Problem

$$
\begin{gathered}
\min _{w \in \mathbb{R}^{p}} w^{\top} \Sigma w \\
w^{\top} C=a
\end{gathered}
$$

- Portfolio variance error is mostly due to bias in the leading sample eigenvector not the leading eigenvalue.
- JSE using the constraint C improves Markowitz portfolio risk estimates in high dimensions.
- $\angle(\beta, C)<\pi / 2$, if one column of C is 1 since empirically $\angle(\beta, \mathbf{1})<\pi / 2$.

Two covariance matrix estimators

$$
\begin{aligned}
\Sigma_{\mathrm{PCA}} & =\left(\lambda^{2}-\ell^{2}\right) h h^{\top}+(n / p) \ell^{2} I \\
\Sigma_{\mathrm{JSE}} & =\left(\lambda^{2}-\ell^{2}\right) h^{\mathrm{JSE}}\left(h^{\mathrm{JSE}}\right)^{\top}+(n / p) \ell^{2} I \\
\Sigma & =\eta^{2} b b^{\top}+\delta^{2} I
\end{aligned}
$$

$w_{\mathrm{PCA}}:\left(w^{\top} \Sigma_{\mathrm{PCA}} w\right)$-minimizing portfolio $w_{\mathrm{JSE}}:\left(w^{\top} \Sigma_{\mathrm{JSE}} w\right)$-minimizing portfolio $w^{*}:\left(w^{\top} \Sigma w\right)$-minimizing portfolio

We compare minimized variance of $w_{\mathrm{PCA}}, w_{\mathrm{JSE}}$, and w^{*} theoretically and in simulation experiments.

Errors in optimal portfolios

True variance ratio

$$
\frac{w^{* \top} \Sigma w^{*}}{w_{\mathrm{PCA}}^{\top} \Sigma w_{\mathrm{PCA}}} \text { or } \frac{w^{* \top} \Sigma w^{*}}{w_{\mathrm{JSE}}^{\top} \Sigma w_{\mathrm{JSE}}}
$$

True variance ratio is less than one, larger is better.
Other measures: tracking error, variance forecast ratio

Asymptotic Theory

For a unit p-vector v the optimization bias $\mathcal{E}_{p}(v, C, a)$ controls the variance $\mathcal{V}\left(w^{v}\right)$ of a portfolio optimized with Σ^{v} asymptotically:

$$
\mathcal{V}\left(w^{v}\right)=K \mathcal{E}_{p}^{2}(v, C, a)+O(1 / p)
$$

and
$\mathcal{E}_{p}(b, C, a)=0, \lim _{p \rightarrow \infty} \mathcal{E}_{p}\left(h^{\mathrm{JSE}}, C, a\right)=0, \lim _{p \rightarrow \infty} \mathcal{E}_{p}^{2}\left(h^{\mathrm{PCA}}, C, a\right)>0$.
$\mathcal{E}_{p}(v, C, a)$ is given by a formula involving v, C, a, and b.

$$
\begin{aligned}
\mathcal{E}_{p}(v, C, a) & =\frac{\left(b^{\top} \alpha\right)\left(1-\left\|v_{C}\right\|^{2}\right)-b^{\top}\left(v-v_{C}\right)\left(v^{\top} \alpha\right)}{\left(1-\left\|v_{C}\right\|^{2}\right)} \\
\alpha & =\frac{\left(C^{\dagger}\right)^{\top} a}{\left\|\left(C^{\dagger}\right)^{\top} a\right\|}
\end{aligned}
$$

True Variance Ratios, $p=3000$ simulation

Box plots are generated from 10000 simulations of $n=24$ monthly observations of returns to $p=3000$ securities. Graphics by Stephanie Ribet.

The Blessing of Dimensionality

LH: $p \ll n$

Dispersion bias geometry; Concentration of measure in high dimension

source: Goldberg, Papanicalaou \& Shkolnik (2022)
Here $z=\mathbf{1} / \sqrt{p}$. With high probability, $\angle(h, z)>\angle(b, z)$

References

Goldberg, L. R., Gurdogan, H. \& Kercheval, A. (2023), 'Portfolio optimization via stategy-specific eigenvector shrinkage', in submission .
Goldberg, L. R. \& Kercheval, A. (2023), 'James Stein for the leading eigenvector', Proc. National Academy of Sciences 120(2), 1-9.
Goldberg, L. R., Papanicalaou, A. \& Shkolnik, A. (2022), 'The dispersion bias', SIAM Journal on Financial Mathematics 13(2), 521-550.
Goldberg, L. R., Papanicolaou, A., Shkolnik, A. \& Ulucam, S. (2020), 'Better betas', The Journal of Portfolio Management 47(1), 119-136.
Gurdogan, H. \& Kercheval, A. (2022), 'Multi anchor point shrinkage for the sample covariance matrix', SIAM Journal on Financial Mathematics 13(3), 1112-1143.
Shkolnik, A. (2022), 'James-Stein estimation of the first principal component', Stat 11(1).

Chapter 3: More simulations!

Tracking error

Squared tracking error of an estimated portfolio w relative to the true optimal portfolio w^{*} :

$$
\left(w-w^{*}\right)^{\top} \Sigma\left(w-w^{*}\right)
$$

Variance forecast ratio compares estimated variance over true variance of w :

$$
\frac{w^{\top} \widehat{\Sigma} w}{w^{\top} \Sigma w}
$$

Tracking error is the width of the distribution of return differences between \widehat{w} and w^{*}.

Ideally, tracking error is 0 .

Simulated tracking error

source: Goldberg \& Kercheval (2023)

Based on 100 simulations of a year's worth of daily returns following a one-factor model. Ideally, tracking error is 0 .

Variance forecast ratio

Variance forecast ratio measures error in the risk forecast:

$$
\mathcal{V}=\frac{\widehat{w}^{\top} \widehat{\Sigma} \widehat{w}}{\widehat{w}^{\top} \Sigma \widehat{w}}
$$

This is the ratio of the estimated risk (variance) over the actual risk of the estimated minimum variance portfolio.

Ideally, the variance forecast ratio is 1 . Likely, it is less than 1.

Simulated variance forecast ratio

source: Goldberg \& Kercheval (2023)

Based on 100 simulations of a year's worth of daily returns following a one-factor model. Ideally, the variance forecast ratio is 1.

