Portfolio optimization via strategy-specific
eigenvector shrinkage

Alec Kercheval (akercheval@fsu.edu)

October 18, 2023
UC Berkeley CDAR

Department of Mathematics
Florida State University


akercheval@fsu.edu

Collaborators

Lisa Goldberg, UC Berkeley CDAR, and Aperio by Blackrock
Hubeyb Gurdogan, UCLA Math
Alex Shkolnik, UCSB



Chapter 1: James-Stein Shrinkage
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Given p players, let u;, i = 1,...,p, be the probability that player ¢
gets a hit when at bat.

Let z; be the batting average over the first 45 games of the season.

Suppose
p~N(ml,m2I) and  z|p ~ N(u,v1). (1)
Bayes Rule calculation:
WP = Blulz] = (1 - )2 + c(ml), (2)

where ¢ = v2/(72 + 1?).



Observables:

Let 2 = (1/p) X2 and s%(2) = Y°F_ (2 — 2)%/(p — 3).

Then

2 2
E[zZ]=m and E, [52(2)] = — @

Define the JS (shrinkage) estimator
uJS _ (1 - C‘]S)Z —|—CJS(21)

where

— "Empirical Bayes”



James-Stein estimator

James and Stein (1961): The sample average z is inadmissible as
an estimator of x when p > 3.

By (11075 = ] < By [z = ] (6)

forall p€ RP, v € R.



Chapter 2: Estimating Covariance in
the HL Regime




In 1952, Harry Markowitz framed investment as a tradeoff be-

tween expected return and variance
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Portfolio optimization in practice

An efficient portfolio is a solution to a quadratic optimization with
k linear constraints.

C": p x k matrix of constraint gradients

a: k-vector of constraint targets

min w ' Sw
weRP
w'C=a
Efficient frontier (k = 2): Problem: ¥ is unknown so

we use an estimate,
1 1 yielding an optimized
S B= < ) portfolio that is not
1 pp optimal.



How to estimate >: One-factor model

p = number of securities >> n = number of observations.

Suppose returns r € RP follow a one-factor model:

r=pf+e

Only r is observed. f € R and ¢ € R? are random, uncorrelated. 5 € R?
is an unknown parameter, |3|?/p has a finite limit.

If var(f) = 02, © = f/o, var(e) = 621, n* = o2|3|?, then
r=nbx +eand ¥ = n?bb' + 6°1

To estimate: two scalars, 7 and 62, and a unit p-vector b.
Note: b is the leading eigenvector of 3, with eigenvalue n? + §2.



Inputs: Sample covariance matrix

Y = p X n data matrix, columns = n observations of r € R?
rt=nbrt +e,i=1,2,...,n
Sample covariance matrix S =YY T /n.
rank(S) = n < p, singular
Define
A2 = leading eigenvalue of S

h = hPCA leading unit eigenvector of S
02 = (Trace(S) — A\?)/(n — 1)



A family of estimates of X

HL = high dimension low sample size regime.

Asymptotic limits:

X|?
tim (22— 2)/p = () 1imm 2
Jim ( )/p <n>pggon/p<oo
. 2/ 2 . B
ph_{rolonf /p = 6°, but plgglo|h bl #0
Family of estimators of X::
>V = (A2 = 2)ouT + (n/p)e2I.

Note: Trace(3?) = A% + (n — 1)¢? = Trace(S) 10



PCA covariance estimator

Set v = h = hFCA

Tpoa = (A2 — £2)RFCARPOAT Pe2r
p

Xpca is an S-POET estimator of W. Wang and J. Fan. 2017

Now set v = hISE

N ep = ()\2 - g2)hJSEhJSET + 252[
p
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JSE

JSE eigenvector estimator h

C = k-dim linear subspace, Z(3,C) < 7/2.
Define h'5F, an eigenvector shrinkage estimator:

gse /N

he = proj(h), — YA

HJSE _ (1 . CJSE)h+CJSEhC

and
HJSE

JSE
h - |HJSE’ )
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Why do we call it JSE?

Baseline special case: C' = span(1)

Then he = hl and 1 — |hg|? = |h — h1?

IS =Y JSE _ e/ f\Q
52(2) |h — h1|?
,LLJS (1 o CJS)Z —I—CJS(Z]_)

HJSE (1 - CJSE)h + CJSE(B]_)
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HL Regime eigenvector estimation

Theorem (Goldberg, Gurdogan K. 2023)
Assume, as p — o0,

and Z(3,C) has a positive limit @ < m/2. Then,

lim |A7SE —b| < lim |h—b] as.
pP—00 p—00

Asymptotically,

(1 —42)%cos? O

sin? © + (1 — ¥2)) >0

COSQ(é(hJSE, b)) — cosQ(Z(h, b)) =

where ¥2, = lim,_, )‘2)\2 € (0,1).
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How well does the improvement formula work for finite p and

different angles O7
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Box plots generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000 securities,
k = 2. Note the difference in scale for small, medium and large angles. Graphics by Stephanie Ribet. 15



Idea: Oracle estimator

An oracle estimator:
Let U = span(h,C), h° = by /|by]|.

Note: h° is the unit vector in span(h,C') closest to b (hence closer
than h).

Lemma (Gurdogan - K, 2022): |h° — h'SF| = 0 as p — oo.
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Back to the Optimization Problem

min w' Xw
weRP
w'C=a

- Portfolio variance error is mostly due to bias in the leading
sample eigenvector not the leading eigenvalue.

- JSE using the constraint C' improves Markowitz portfolio risk
estimates in high dimensions.

- Z(B8,C) < m/2, if one column of C'is 1 since empirically
Z(B,1) < 7/2.
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Two covariance matrix estimators

Spca = (A2 —)hhT + (n/p)I
Sise = (A= ORERPE)T 4 (n/p)I
Y = P 462

wpca: (w' Xpcaw)-minimizing portfolio
wisg: (w' Xjspw)-minimizing portfolio
w*: (w' Xw)-minimizing portfolio

We compare minimized variance of wpca, wysg, and w*
theoretically and in simulation experiments.

18



Errors in optimal portfolios

True variance ratio

w*TEw* w*TEw*
or

T T
WpcoA Ywpca wJSEszSE

True variance ratio is less than one, larger is better.

Other measures: tracking error, variance forecast ratio
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Asymptotic Theory

For a unit p-vector v the optimization bias &,(v, C,a) controls the
variance V(w") of a portfolio optimized with ¥ asymptotically:

V(w') = K& (v,C,a) + O(1/p)

and

&,(b,C,a) =0, Jim Ep(hE,Cra) =0, lim E2(RP°*,C,a) > 0.

p—0o0

Ep(v,C,a) is given by a formula involving v, C, a, and b.

BT —|lvel?) = b (v —ve) (v @)

Ep(v,C,a) 1= lvcll?)

(cHTa
[(CHTall
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True Variance Ratios, p = 3000 simulation
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Box plots are generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000
securities. Graphics by Stephanie Ribet.
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The Blessing of Dimensionality

complexity

A

HH: p~n

HL: p>>n

LH: p<<n
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Dispersion bias geometry; Concentration of measure in high

dimension

source: Goldberg, Papanicalaou & Shkolnik (2022)

Here z = 1/,/p. With high probability, Z(h, z) > Z(b, z)
23
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Chapter 3: More simulations!




Tracking error

Squared tracking error of an estimated portfolio w relative to the
true optimal portfolio w*:

(w —w*) TS (w — w*).

Variance forecast ratio compares estimated variance over true
variance of w: R

w' Sw

w! Zw

Tracking error is the width of the distribution of return differences
between w and w*.

Ideally, tracking error is 0.

25



Simulated tracking error
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Based on 100 simulations of a year’s worth of daily returns following a
one-factor model. Ideally, tracking error is 0.
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Variance forecast ratio

Variance forecast ratio measures error in the risk forecast:

. @ S
S O'E@

This is the ratio of the estimated risk (variance) over the actual

risk of the estimated minimum variance portfolio.

Ideally, the variance forecast ratio is 1. Likely, it is less than 1.
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Simulated variance forecast ratio
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Based on 100 simulations of a year’s worth of daily returns following a
one-factor model. Ideally, the variance forecast ratio is 1.
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