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The Problem

• Observe s Bernoulli sequences of length n

• Interested in testing null hypothesis that sequences are i.i.d.

• Interpretation pivotal in development of behavioral economics
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Context

• Tversky and Kahneman (1971, Psychological Bulletin)

– Belief in the Law of Small Numbers

– Small samples overly “representative” of “essential characteristics”

• Example: Choice of experimental sample size

• Impact: Influential in Behavioral Economics and Finance

– Barberis and Thaler (2003, Handbook of the Economics of Finance)

– Barberis (2018, Handbook of Behavioral Economics)
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Context

• Hot Hand Fallacy: Behavioral bias attributable to belief in the law
of small numbers

– Tendency to perceive streaks of consecutive successes as overly
representative of positive dependence

• Gilovich, Vallone, and Tversky (1985, Cognitive Psychology)
– Document widespread belief in “the hot hand”
– Controlled basketball shooting experiment
– Fail to reject i.i.d. shooting

• Impact: Academic consensus for following three decades
– Kahneman (2011, Thinking Fast and Slow)
– Thaler and Sunstein (2009, Nudge)
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Context

Miller and Sanjurjo (2018, Econometrica) challenge the GVT results

• Identify a subtle, significant, second-order bias

• Revisit the GVT shooting data

• Argue that the GVT results are reversed
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Context

“Uncovered critical flaws ... sufficient to not only invalidate the most
compelling evidence against the hot hand, but even to vindicate the
belief in streakiness.” - Miller and Sanjurjo (2018, Scientific American)

“These new analyses re-opens–but does not answer–the key question of
whether there is a hot hand bias, i.e., a belief in a stronger hot hand than
there really is.” - Benjamin (2018, Handbook of Behavioral Economics)
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Objective

Objective: Clarify and quantify uncertainty in the evidence that
basketball shooting experiments have contributed to our understanding of
the hot hand fallacy

• Develop formal statistical framework for testing the randomness of
a set of Bernoulli sequences

• Emphasize distinction between individual, joint, and multiple testing
• Measure finite-sample power with a local asymptotic approximation
• Provide comprehensive re-analysis of evidence from controlled
basketball shooting experiments

• This Talk: Interweave problem formalization, theoretical
development, and empirics
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Controlled Basketball Shooting Experiments

• Basketball players are observed taking a sequence of incentivized
shots under identical conditions

• We focus on the GVT shooting experiment

– Data are publicly available

– Results from GVT and MS based on these data are starkly different

– Drives former consensus and current uncertainty

• Shooting sequences of 100 shots for 26 members of Cornell’s men
and women’s varsity and junior varsity basketball teams

• Miller and Sanjurjo analyze three additional experiments
– We discuss the design and results of these experiments
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Data

Observe s shooters; each shoots n consecutive shots:

• Xi =
{

Xi j
}n

j=1:= Vector of outcomes for shooter i

• X = {Xi}s
i=1 := Matrix of outcomes for all shooters
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Null Hypotheses

Three Testing Problems:

• Joint null hypothesis:

H0 : Xi is i.i.d. for each i in 1, . . . ,s

• Individual hypotheses:
H i

0 : Xi is i.i.d.

• Multiple hypothesis problem: Testing H i
0 simultaneously
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Streaky Alternatives

Stationarity: Assume shot outcomes follow stationary Bernoulli (pi)
processes Pi, independent across shooters, with P= {Pi}s

i=1

Streakiness: We consider alternatives in which

θ̄
k
P (P) =

1
s

s

∑
i=1

θ
k
P (Pi) and θ̄

k
D (P) =

1
s

s

∑
i=1

θ
k
D (Pi) ,

where

θ
k
P (Pi) = Pi

{
Xi, j+k = 1|

k−1

∏
l=0

Xi, j+l = 1

}
−Pi

{
Xi j = 1

}
θ

k
D (Pi) = Pi

{
Xi, j+k = 1|

k−1

∏
l=0

Xi, j+l = 1

}
−Pi

{
Xi, j+k = 1|

k−1

∏
l=0

(
1−Xi, j+l

)
= 1

}
,

are greater than zero for some integer k
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Test Statistics

Test Statistics:

p̂n,i := 1
n ∑

n
j=1 Xi j

P̂n,k(Xi) := Vik
Vi(k−1)

, with Vik = ∑
n−k
j=1 Yi jk and Yi jk = ∏

j+k
l= j Xil ,

i.e., proportion of makes after k consecutive makes

D̂n,k (Xi) := Vik
Vi(k−1)

− Wik
Wi(k−1)

with Wik = ∑
n−k
j=1 Zi jk and Zi jk = ∏

j+k
l= j (1−Xil),

i.e., proportion of makes after k consecutive makes minus
proportion of makes after k consecutive misses

Averages Over Shooters:

P̄k (X) =
1
s

s

∑
i=1

P̂n,k (Xi)− p̂n,i and D̄k (X) =
1
s

s

∑
i=1

D̂n,k (Xi)
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Multiplicity

• Suppose that we would like to identify which shooters deviate from
randomness

• The probability of a false rejection of at least one H i
0 increases

rapidly with s

• Example: If s is equal to 10, all H i
0 true and testing at level

α = 0.05, then probability of at least one false rejection ≈ 0.4.

• Goal: Control the familywise error rate (FWER), i.e., the probability
of at least one false rejection

• Solution: Simultaneous Inference / Multiple Testing
– Stepdown procedure with Šidák critical values
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Asymptotic Behavior of the Test Statistics

Theorem (Asymptotics Under Null Hypothesis)
Under H i

0,

√
n
(
P̂n,k (Xi)− p̂n,i

) d→ N
(
0,σ2

P (pi,k)
)

and
√

nD̂n,k (Xi)
d→ N

(
0,σ2

D (pi,k)
)
,

as n→ ∞, where

σ
2
P (pi,k) = p1−k

i (1− pi)
(

1− pk
i

)
and σ

2
D (pi,k) = (pi (1− pi))

1−k
(
(1− pi)

k + pk
i

)
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Miller and Sanjurjo (2018): Finite-Sample Bias

Table: Finite-Sample Behavior of Plug-in Statistics

P̂n,k(Xi)− p̂n,i D̂n,k(Xi)

k Expectation Type 1 Error Rate Expectation Type 1 Error Rate

(1) (2) (3) (4)

1 -0.005 0.044 -0.010 0.039

2 -0.016 0.032 -0.032 0.029

3 -0.041 0.023 -0.080 0.020

4 -0.090 0.013 -0.177 0.010

Note: We take 100,000 draws of Bernoulli(1/2) random variables of length 100.
Type 1 error rate refers to the proportion of realizations of P̂n,k(Xi)− p̂n,i and
D̂n,k(Xi) that exceed the 0.95 quantile of their asymptotic distributions.
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Permutation Tests

• Permutation tests automatically account for finite-sample biases

• Permutation distribution for
√

nTn (Xi), any real-valued test statistic,
is given by

R̂T
n (t) =

1
n! ∑

π∈Π(n)
I
{√

nTn (Xi,π)≤ t
}

where Π(n) is the set of permutations of {1, . . . ,n}.

• Reject at level α if
√

nTn (Xi) is > the 1−α quantile of R̂T
n

• Control the type 1 error rate exactly under H i
0

– In fact, only tests that control type 1 error rate exactly

• Similar procedure holds for joint statistics P̄k (X) and D̄k (X),
permuting each sequence separately
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Bias-Corrected Estimation

• Consider the mean of the permutation distribution of the statistic
Tn (Xi)

η̂ (Xi,Tn) =
1
n! ∑

π∈Π(n)
Tn
(
Xi,π

)

• Under H i
0, the expectation of η̂ (Xi,Tn) is exactly equal to the

expectation of Tn (Xi)

• Suggests the bias-corrected estimators

P̃n,k(Xi) = P̂n,k(Xi)− p̂n,i− η̂
(
Xi, P̂k− p̂i

)
D̃n,k(Xi) = D̂n,k(Xi)− η̂

(
Xi, D̂n,k

)
and their averages

¯̃Pk (X) =
1
s

s

∑
i=1

P̃n,k(Xi) and ¯̃Dk (X) =
1
s

s

∑
i=1

D̃n,k (Xi)
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Implementation on GVT Data

Stratified Test of H0 p-Value Simultaneous Rejections of H i
0

k P̄k (X) D̄k (X) P̂n,k(Xi)− p̂n,i D̂n,k(Xi)

(1) (2) (3) (4)

1 0.155 0.146 1 1

2 0.032 0.040 1 2

3 0.042 0.004 1 1

4 0.303 0.072 0 0

Table: Results of Simultaneous and Joint Hypothesis Tests for the GVT
Experiment

Implementation 23



Shooter 109: Shooting Sequence and Permutation
Distribution
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Stratified Permutation Tests

P-Value:

0.155

0.032

0.042

0.303

Estimate:

0.011

0.037

0.058

0.024

P-Value:
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0.004
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0.011
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Stratified Permutation Tests

P-Value:

0.146

0.040

0.004

0.072

Estimate:

0.021

0.053

0.125

0.103

P-Value:
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Estimate:
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Taking Stock

A Tempting Conclusion:
• Streakiness is confined to a small number of players

• Small number of shooters with very hot hands

We Argue:
1. Deviation from randomness by Shooter 109 is unlikely to be

indicative of what could realistically be expected from even a small
proportion of basketball players

Implementation 27



Bias-Corrected Estimates for Shooter 109

k P̃n,k(Xi) D̃n,k(Xi)

1 0.182 0.379

2 0.263 0.487

3 0.324 0.561

4 0.330 0.593

Table: Bias-Corrected Estimates of θ k
P (Pi) and θ k

D (Pi) for Shooter 109
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Comparison to NBA Shooting
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Taking Stock

A Tempting Conclusion:
• Streakiness is confined to a small number of players

• Small number of shooters with very hot hands

We Argue:
1. Deviation from randomness by Shooter 109 is unlikely to be

indicative of what could realistically be expected from even a small
proportion of basketball players

2. Existing controlled shooting experiments do not have sufficient
power to detect what would be realistic alternatives
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Permutation Asymptotics under the Null Hypothesis

Goal: Approximate power of the permutation tests that we apply

Approach: Characterize the asymptotic behavior of the permutation
distributions

Theorem (Asymptotics under the Null Hypothesis)
Under H i

0, we have that

sup
t
|R̂T

n (t)−Φ(t/σT (pi,k)) |
P→ 0

as n→ ∞, where T is equal to D or P if Tn = D̂n,k (Xi1, . . . ,Xin) or
Tn = P̂n,k (Xi1, . . . ,Xin)− p̂n,i , respectively
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Proof Outline

• To Show: Hoeffding’s condition, i.e.,
√

nTn (Xi) and
√

nTn (Xi,Π) are
asymptotically independent, with Π a random permutation

• Idea: Condition on Π

– Apply a central limit theorem of Stein (1986) for dependent random
variables

• Hoeffding’s condition will not hold for every permutation π

– e.g., the identity permutation

• We show that it holds with probability → 1 as n→ ∞
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Permutation Asymptotics under Alternatives

• Consider D̂n,1 (Xi) for simplicity

• Let ân denote the number of ones in the first n elements of Xi

Theorem (Permutation Asymptotics under Alternatives)
If n−1/2 (ân−npi) converges in distribution to some limiting distribution
as n→ ∞, then

sup
t
|R̂T

n (t)−Φ(t) | P→ 0

with Tn = D̂n,1 (Xi1, . . . ,Xin), as n→ ∞, where Φ(·) denotes the standard
normal cumulative distribution function
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Proof Outline

• Idea: Consider fixed (nonrandom) sequences
– Let Ln (h) be the permutation distribution based on an ones with

h = n−1/2 (an−np)

– We show that if hn→ h, i.e., n−1/2 (an−np)→ h, then

Ln (hn)
d→ N (0,1)

• Complete argument with appeal to almost sure representation
theorem
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A Class of Markov Chain Streaky Alternatives

Goal: Measure the power against streaky alternatives
• There are s individuals; each associated with a Bernoulli sequence

Xi =
{

Xi j
}n

j=1 of length n

• Two types:
– Random: Xi is i.i.d. Bernoulli(pi)

– Streaky: Probability of a one increases after streak of m ones by ε;
probability of a one decreases after streak of m zeros by ε

• Each individual is Streaky with probability ζ , i.e., number of streaky
individuals is Binomial(s,ζ )

• Specialize to the case pi = 0.5

Power Approximation 37



Analytic Power Approximation

Theorem
Power of permutation test of H i

0 against the alternative that individual i
is streaky with ε = h/

√
n converges to

1−Φ(z1−α −φT (k,m,h))

for T equal to P or D when Tn is equal to P̂n,k (Xi)− p̂n,i or D̂n,k (Xi),
respectively

Corollary
Power of stratified permutation test of H0 against the alternative that
each individual is streaky with probability ζ and ε = h/

√
ns converges to

1−Φ(z1−α −φT (k,m,h)ζ )

for T equal to P or D
Power Approximation 38



Analytic Power Approximation

Example: If we use D̄1 then set

ns =
(

z1−α − z1−β

2ζ ε

)2

for power β

m

k 1 2 3 4

1 2h h h
2

h
4

2
√

2h
√

2h h√
2

h
2
√

2

3 h h h h
2

4 h√
2

h√
2

h√
2

h√
2

Table: Value of φD (k,m,h) For Small Values of k and m
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Simulation Analysis

Figure: Power Curve for Permutation Test Rejecting for Large D̂n,k (Xi)
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Simulation Analysis

Figure: Power Contours for Permutation Test Rejecting for Large D̄1 (X)
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Returning to the Hot Hand

• A Reasonable Alternative:
– The marginal shooting percentage for all shooters is 50%

– For half of shooters, shooting percentage increases and decreases by
half of interquartile range of distribution of field goal percentages of
NBA players after making their previous m shots or missing their
previous m shots

– Other half is always i.i.d.

• This is equivalent to ε = 0.038 and ζ = 0.5 in our model

• We argue this is a conservative upper bound and consider relaxations

• For GVT and MS, m = 3 is of particular interest
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Returning to the Hot Hand
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Taking Stock Redux

• Existing randomized shooting experiments are insufficiently powered
to detect deviations from randomness consistent with realistic
parameterizations of positive dependence in basketball shooting

• Unable to provide an informative estimate of the mean or dispersion
of the serial dependence in basketball shooting

• Could be challenged by a strong and robust rejection of H0

– At least in the case of the GVT experiment, rejection of H0 is
sensitive to inclusion of an outlier.

• This result cuts both ways
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Do People Overestimate Positive Serial Dependence?

• Testing the Hot Hand Fallacy:
– Compare θ̄ k

P (P) and θ̄ k
D (P) with audience’s expectations of θ̄ k

P (P)
and θ̄ k

D (P)

• Available Evidence on Beliefs:
– Prohibitive methodological flaws (e.g., the GVT survey)

– Not directly comparable to estimates of θ̄ k
P (P) and θ̄ k

D (P) (e.g., the
MS survey)

• Alternative Design: Eliciting probabilistic expectations
– Observer of a shooter asked to record expectation of probability

shooter makes their next shot

– If shot made, rewarded for submitting large probabilities, etc.,

Beliefs 47
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Conclusion

• Objective: Clarify and quantify the uncertainty in the empirical
support for the tendency to perceive streaks as overly representative
of positive dependence – the hot hand fallacy

• Substantially larger data sets are required for informative estimates
of the streakiness in basketball shooting

• We reject i.i.d. shooting consistently for only one participant in the
GVT shooting experiment

– Strong evidence that basketball shooting is not perfectly random

– Evidence against randomness limited to that player

• Future research should directly test the accuracy predictions of
streakiness in stochastic processes
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Thank You!
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