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In 1952, Harry Markowitz framed investment as a tradeoff be-
tween expected return and variance
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Portfolio optimization in practice
A Markowitz portfolio is a solution to a quadratic optimization
with linear constraints. More generally, consider a p × k matrix of
constraint gradients C and k-vector of constraint targets a:

min
w∈Rp

w⊤Σw

w⊤C = a

Typical Markowitz
portfolio:

C =


1 µ1

1 µ2
...

...
1 µp

 a =
(

1
µ

)
The problem: Σ is
unknown so we use an
estimate, yielding an
optimized portfolio that is
not optimal.
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Estimating Σ when returns follow
one-factor model



Structure reduces the dimension of the estimation problem

Suppose returns to p securities follow a one-factor model:

r = βf + ϵ

Then:

Σ = σ2ββ⊤ + δ2I = η2bb⊤ + δ2I

We need to estimate two positive scalars, η2 and δ2, and a unit
p-vector b.

Only r is observed. r ∈ Rp, f ∈ R and ϵ ∈ Rp are random (but not necessarily Gaussian) and β ∈ Rp is an
unknown parameter. σ2 = var(f), δ2 = var(ϵ), η2 = σ2|β|2 and corr(f, ϵ) = 0.
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One-factor estimates of Σ



A sample covariance matrix synthesizes information from data
but cannot be used in high-dimensional optimization

S = ( σij )

σij = σiσjρij

Volatility

Correlation
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Spectral decomposition, or principal component analysis
(PCA), of the sample covariance matrix provides spare parts
for constructing estimates of Σ

S = ( σij )

σij

=

σiσjρij=

λ2 hh⊤ +
Leading eigenvalue
 Leading 


 eigenvector


…

Volatility

Correlation
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The leading sample eigenvector and the difference between the
leading sample eigenvalue and the average of its lesser, nonzero
counterparts play crucial roles

S = ( σij )

σij

=

σiσjρij=

λ2 hh⊤ +
Leading eigenvalue
 Leading 


 eigenvector


…

Volatility

Correlation


ℓ2 = Tr(S) − λ2

n − 1
Average non-zero

lesser eigenvalue
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A family of one-factor estimates of Σ

For a unit p vector , set:

Σv = (λ2 − ℓ2)vv⊤ + n

p
ℓ2I,

The estimate Σv varies with the unit vector v.

Since limp→∞(λ2 − ℓ2)/p = limp→∞ η2/p is finite and limp→∞ nℓ2/p = δ2, we keep the estimates of
η2 and δ2 fixed. For any v, Trace(Σv) = Trace(S) is an unbiased estimate of Trace(Σ).
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PCA and JSE estimates of Σ



PCA estimate of Σ

Setting v to the leading sample eigenvector h = hPCA yields

ΣPCA = (λ2 − ℓ2)hPCAhPCA⊤ + n

p
ℓ2I

This is the S-POET estimate of Weichen Wang and Jianqing Fan.

Knowing they were poor, researchers and analysts used PCA
estimates of eigenvectors in high dimensions because they didn’t
have a better idea.

The fact that we keep the sample eigenvectors does not
mean that we assume they are close to the population
eigenvectors. It only means that we do not know how to
improve upon them.

–Olivier Ledoit and Michael Wolf 8



James Stein shrinkage transforms hPCA to hJSE, a better esti-
mate of b

hC = proj
C

(h), c
JSE =

ℓ2/λ2

1 − |hC |2
, h

JSE ∝ (1 − c
JSE)h + c

JSE
hC

C = k − dimensional subpace ofR
p

, ∠(b, C) < π/2

source: Goldberg & Kercheval (2023), drawing by Alex Shkolnik
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JSE estimate of Σ

Setting v to the leading sample eigenvector hJSE yields

ΣJSE = (λ2 − ℓ2)hJSEhJSE⊤ + n

p
ℓ2I

As we discuss next, JSE shrinkage leads to two types of stochastic
dominance.
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Asymptotic stochastic dominance of
hJSE over hPCA



The magic formula

Assume, as p → ∞, |βi| is bounded, |β|2/p has a positive limit,
and ∠(β, C) has a positive limit Θ < π/2. Then,

lim
p→∞

|hJSE − b| < lim
p→∞

|hPCA − b| almost surely

Asymptotically, the improvement of JSE over PCA is:

cos2(∠(hJSE, b)) − cos2(∠(hPCA, b)) = 1
1 + ϕ2

∞

(
cos2 Θ

ϕ2
∞ sin2 Θ + 1

)
> 0.

ϕ2
∞ is a relative eigengap equal to limp→∞

λ2−ℓ2

ℓ2 .
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How well does the magic formula work for finite p?
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Box plots are generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000
securities. See Appendix for calibration details. Note the difference in scale for small, medium and large angles.
Graphics by Stephanie Ribet. 12



Asymptotic stochastic dominance of
wJSE over wPCA



Construct estimates wPCA and wJSE of Markowitz portfolios by
solving a quadratic program

min
w∈Rp

w⊤Σw

w⊤C = a

with Σ = ΣPCA and
Σ = ΣJSE

C =


1 µ1

1 µ2
...

...
1 µp

 a =
(

1
µ

)
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For large p, the true variance of a portfolio optimized with Σv

is approximately equal to the optimization bias

For a unit p-vector v the optimization bias Ep(v, C, a) determines
the variance V(wv) of a portfolio optimized with Σv almost surely.

V(wv) = KE2
p (v, C, a) + O(1/p)

Set v = hPCA and v = hJSE for applications.

Ep(v, C, a) =
⟨b, wv

C ⟩(1 − ||vC ||2) − ⟨b, v − vC ⟩⟨v, wv
C ⟩

||wv
C

||(1 − ||vC ||2)
, V(w

v) = η
2||(C

†)⊤
a||2E2

p(v, C, a)+O(1/p)

C† is the Penrose inverse of C.
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Variances of optimized and optimal portfolios

Box plots are generated from 10000 simulations of n = 24 monthly observations of returns to p = 3000
securities. See Appendix for calibration details. Graphics by Rahul Vinoth.
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For any angle Θ, wJSE stochastically dominates wPCA

Almost surely,

lim
p→∞

V(wJSE)
V(wPCA) = 0

The result requires that limp→∞ ∠
(

a, C†b
)

exists and is non-zero.
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Appendix: calibration for the numerical experiment

• factor and specific volatilities are 16% and 60%
• β is deterministic in our model, but it is generated with a

normal, mean 1 distribution, The variance is set so that β has
a prescribed angle with the unique, positive dispersionless
vector on the sphere. We normalize so that |β|2/3000 = 1

• µ is deterministic in our model, but is generated by adding
noise from a normal distribution with mean 0.5 and variance 2
to β

• C is the span of the unique, positive dispersionless vector and
µ

• for small, medium and large angles, cos Θ = 0.99, 0.75, 0.49.
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