Optimizing the Ledoit-Wolf Estimator through High-Dimensional Regularization

Youhong Lee (joint with Alex Shkolnik)

Department of Statistics and Applied Probability, UC Santa Barbara

August 2, 2023

1/26

Outline

A High-Dimensional Approach to Optimizing the Ledoit-Wolf Estimator

Section 1

The Ledoit-Wolf (LW) Estimator for Covariance Estimation

The Sample Covariance Matrix

The Sample Covariance Matrix

For a $p \times n$ data matrix Y, let the sample covariance matrix be

$$S = \frac{1}{n}YY^{\top}$$

where p is the feature dimension and n is the sample size.

- For our calculation purposes, we make the assumption that the population mean equals zero.
- The sample covariance matrix characterizes the linear relationships among the variables in terms of their variances and covariances.
- The sample covariance matrix is recognized as a consistent estimator for the population covariance matrix, denoted by Σ.

Properties of ${\rm S}$ in High Dimensions

The Sample Covariance Matrix

For a $p \times n$ data matrix Y, let the sample covariance matrix be

$$S = \frac{1}{n}YY^{\top}$$

where p is the feature dimension and n is the sample size.

- However, in high-dimensional settings where *p* greatly exceeds *n*, S displays certain unfavorable characteristics.
- As suggested by Ledoit & Wolf (2004), S lacks invertibility when p > n (this can be a critical issue as the inverse of S may be required for computing the minimum variance portfolio).
- The Marchenko–Pastur law indicates that the spectrum of S deviates considerably from its population counterpart.

5 / 26

The Ledoit-Wolf (LW) Estimator

Ledoit & Wolf (2004)

The Ledoit-Wolf (LW) Estimator is given by

$$\hat{\Sigma} = \alpha S + (1 - \alpha)F$$

where S denotes the sample covariance matrix, F stands for a shrinkage target, and $\alpha \in [0, 1]$ represents a shrinkage constant.

- Ledoit & Wolf (2004) proposes a James-Stein type shrinkage estimator for the covariance matrix.
- This estimator is constructed as a linear combination of the sample covariance matrix and a predetermined shrinkage target.
- This approach leads us to two important questions:
 - What would be the most appropriate shrinkage target?
 - What degree of shrinkage is optimal?

The Ledoit-Wolf (LW) Estimator Ledoit & Wolf (2004)

The Ledoit-Wolf (LW) Estimator is given by

$$\hat{\Sigma} = \alpha S + (1 - \alpha) F$$

where S denotes the sample covariance matrix, F stands for a shrinkage target, and $\alpha \in [0,1]$ represents a shrinkage constant.

• A simply structured deterministic matrix can be used as a shrinkage target.

F = identity, a factor model, constant correlation, etc.

• The optimal shrinkage constant is selected to minimize an error rate.

$$\alpha^* \in \arg\min_{\alpha \in [0,1]} \operatorname{Risk}(\alpha)$$

A Choice of the Optimal Shrinkage Constant

Ledoit & Wolf (2004)

The Ledoit-Wolf (LW) Estimator is given by

$$\hat{\Sigma} = \alpha S + (1 - \alpha)F$$

where S denotes the sample covariance matrix, F stands for a shrinkage target, and $\alpha \in [0, 1]$ represents a shrinkage constant.

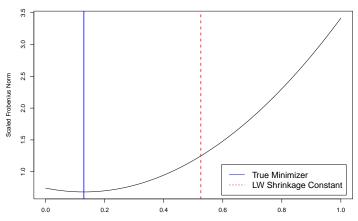
 More specifically, the optimal shrinkage constant is selected to asymptotically minimize the risk function of the Frobenius norm as loss.

$$\lim_{n \to \infty} \hat{\alpha}^* \in \arg\min_{\alpha \in [0,1]} \lim_{n \to \infty} \mathbb{E} \left[\| \hat{\Sigma} - \Sigma \|^2 \right]$$

• In other words, $\hat{\alpha}^*$ is a consistent estimator for the minimizer of the risk function.

A Choice of the Optimal Shrinkage Constant

• However, empirical studies indicate that the optimal shrinkage constant may be overestimated in situations where the ratio n/p is relatively small.



Loss vs. Shrinkage Constant, n/p = 0.01

Shrinkage Constant

Youhong Lee (UCSB)

Refining the Optimal Shrinkage Constant Selection

- We introduce a new analysis within the high-dimension, low-sample size (HL) regime.
- Our approach involves selecting an optimal shrinkage constant that minimizes its *p*-asymptotic loss as *p* → ∞.

$$\lim_{p \to \infty} \alpha^* \in \arg \min_{\alpha \in [0,1]} \lim_{p \to \infty} \operatorname{Error}(\alpha)$$

Section 2

A High-Dimensional Approach to Optimizing the Ledoit-Wolf Estimator

A Loss Function with the Frobenius Norm

Definition 1

Our loss function is defined as the squared Frobenius norm between the true and estimated covariance matrices divided by p,

$$L(\alpha) = \frac{1}{\rho} \|\Delta(\alpha)\|^2 = \frac{1}{\rho} \operatorname{tr} \left(\Delta^2(\alpha)\right)$$

where $\Delta = \Sigma - \hat{\Sigma}$ denotes the difference between the true and estimated covariance matrices with $\hat{\Sigma} = \alpha S + (1 - \alpha)F$.

A Minimizer of the Loss Function

Lemma 1

A minimizer of the the loss function is given by

$$\alpha^* = \frac{\operatorname{tr}\left((\mathrm{F} - \mathrm{S})(\Sigma - \mathrm{S})\right)}{\operatorname{tr}\left((\mathrm{F} - \mathrm{S})^2\right)}$$

- The minimizer is unique almost surely.
- For a convex combination, the minimizer may be truncated to ensure $\alpha \in [0, 1]$.
- Note that the numerator can be expressed as

$$\mathrm{tr}\left((\mathrm{F}-\mathrm{S})(\Sigma-\mathrm{S})\right)=\mathrm{tr}(\mathrm{F}\Sigma)-\mathrm{tr}(\mathrm{S}\Sigma)-\mathrm{tr}\left(\mathrm{S}(\mathrm{F}-\mathrm{S})\right)$$

so we have two unobservable terms, ${\rm tr}({\rm F}\Sigma)$ and ${\rm tr}({\rm S}\Sigma).$

The Market Model

• We adopt the assumption that that the population covariance matrix follows the market model

$$\boldsymbol{\Sigma} = \boldsymbol{p}\sigma^2\boldsymbol{u}\boldsymbol{u}^\top + \delta^2\mathbf{I}$$

where *u* is the leading eigenvector with its corresponding eigenvalue $p\sigma^2 + \delta^2$ for some $\sigma^2 > 0$ and $\delta^2 > 0$ and I is the identity matrix.

• Correspondingly, we employ the single factor shrinkage target, represented as

$$\mathbf{F} = \boldsymbol{p}\boldsymbol{\sigma}_{\boldsymbol{F}}^2 \boldsymbol{q} \boldsymbol{q}^\top + \boldsymbol{\delta}_{\boldsymbol{F}}^2 \mathbf{I}$$

where q is an educated guess about the leading eigenvector and $\sigma_F^2 > 0$ and $\delta_F^2 > 0$ are constants.

Lemmas for Unknown Quantities

• We derive random variables that are asymptotically equivalent to the two unknown quantities, $tr(F\Sigma)$ and $tr(S\Sigma)$.

Lemma 2

For two sequences of random variables, a_p and b_p , denote $a_p \sim b_p$ if $\lim_{p\to\infty} \frac{a_p}{b_p} = 1$ almos surely. Then, under some assumptions, (a) $\operatorname{tr}(S\Sigma) \sim p\sigma^2 s^2 \langle u, v \rangle^2$

where v is the leading eigenvector of S corresponding to the largest eigenvalue s^2 with $\Sigma = p\sigma^2 uu^{\top} + \delta^2 I$.

(b)

$$\operatorname{tr}(\mathbf{F}\Sigma) \sim \sigma^2 \sigma_F^2 \langle u, q \rangle^2$$

with $\mathbf{F} = p\sigma_F^2 q q^\top + \delta_F^2 \mathbf{I}$.

An Asymptotic Minimizer of the Loss Function

Theorem 1

Let $\alpha' = \frac{p^2 \sigma^2 \sigma_F^2 \langle u, q \rangle^2 - p \sigma^2 s^2 \langle u, v \rangle^2 - tr(S(F-S))}{tr((F-S)^2)}$. Then, under some assumptions, α' asymptotically minimizes the loss function such that

$$\alpha' \sim \alpha^*$$

where α^* is the true minimizer.

- We observe that α' is composed of estimable quantities, specifically σ^2 , $\langle u, q \rangle$, and $\langle u, v \rangle$.
- Our analysis replicates the methods used in related literature, such as Jung et al. (2012), Goldberg et al. (2021), and Shkolnik (2022).

Consistent Estimators for Eigenvalues and Eigenvectors

Lemma 3

Let $\hat{\delta}^2 = \frac{(\operatorname{tr}(S) - s^2)m_p}{n - m_p}$ with $m_p = 1 + n/p$ be an estimator of δ^2 , and let $\hat{\sigma}^2 = s^2/p - \hat{\delta}^2/n$ be an estimator of σ^2 . Then, under some assumptions, $\hat{\sigma}^2 \sim \sigma^2$ and $\hat{\delta}^2 \sim \delta^2$. Moreover, if we define $\psi \ge 0$ by $\psi^2 = \hat{\delta}^2/s^2$, then $\psi \sim \langle u, v \rangle$ and $\langle v, q \rangle/\psi \sim \langle u, q \rangle$.

- Consequently, we derive *p*-consistent estimators for σ^2 , $\langle u, q \rangle$, and $\langle u, v \rangle$.
- These estimators contribute to the construction of a new shrinkage parameter, $\hat{\alpha}'.$

17 / 26

An Asymptotic Minimizer of the Loss Function

Theorem 2

Let $\hat{\alpha}' = \frac{p^2 \hat{\sigma}^2 \sigma_F^2 \langle v, q \rangle^2 / \psi^2 - p \hat{\sigma}^2 s^2 \psi^2 - \operatorname{tr}(S(F-S))}{\operatorname{tr}((F-S)^2)}$ be an estimator of α^* . Then, under some assumptions, $\hat{\alpha}'$ asymptotically minimizes the loss function such that

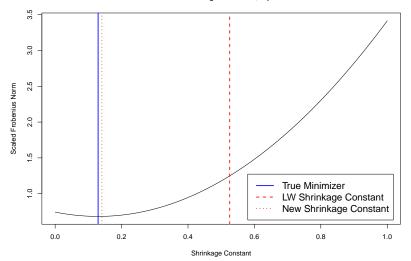
$$\hat{\alpha}' \sim \alpha^*$$

where α^{\ast} is the true minimizer.

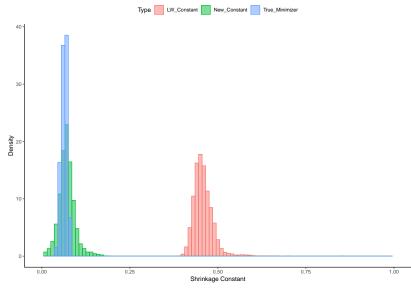
- We note that $\hat{\alpha}'$ consists solely of sample quantities.
- Thus, $\hat{\alpha}'$ offers a practical formula for determining the shrinkage constant, based on a *p*-asymptotic analysis.

A Comparison of the Optimal Shrinkage Constants

Loss vs. Shrinkage Constant, n/p = 0.01

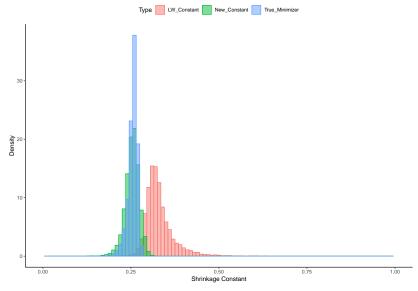


Numerics: Distribution of Shrinkage Constants with n/p = 0.01

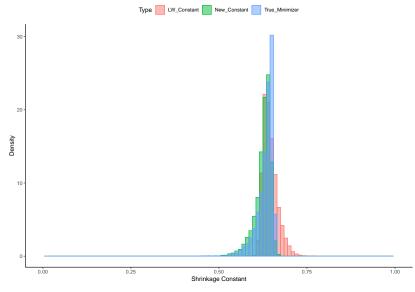


Youhong Lee (UCSB)

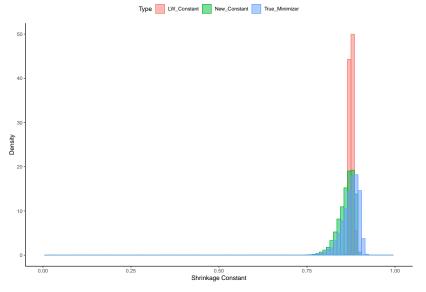
Numerics: Distribution of Shrinkage Constants with n/p = 0.05



Numerics: Distribution of Shrinkage Constants with n/p = 0.25



Numerics: Distribution of Shrinkage Constants with n/p = 1



Youhong Lee (UCSB)

Section 3

Summary

Summary

- The Ledoit-Wolf estimator is a widely adopted method for covariance estimation.
- We present a novel strategy for determining an optimal shrinkage constant using *p*-asymptotic analysis.
- Both theoretical and numerical results demonstrate that our new optimal constant delivers decreased error rates in situations where n/p is small.

Thank You!