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Section 1

The Ledoit-Wolf (LW) Estimator for Covariance
Estimation
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The Sample Covariance Matrix

The Sample Covariance Matrix
For a p × n data matrix Y, let the sample covariance matrix be

S = 1
nYY⊤

where p is the feature dimension and n is the sample size.

For our calculation purposes, we make the assumption that the
population mean equals zero.

The sample covariance matrix characterizes the linear relationships
among the variables in terms of their variances and covariances.

The sample covariance matrix is recognized as a consistent estimator
for the population covariance matrix, denoted by Σ.
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Properties of S in High Dimensions
The Sample Covariance Matrix
For a p × n data matrix Y , let the sample covariance matrix be

S = 1
nYY⊤

where p is the feature dimension and n is the sample size.

However, in high-dimensional settings where p greatly exceeds n, S
displays certain unfavorable characteristics.

As suggested by Ledoit & Wolf (2004), S lacks invertibility when
p > n (this can be a critical issue as the inverse of S may be required
for computing the minimum variance portfolio).

The Marchenko–Pastur law indicates that the spectrum of S deviates
considerably from its population counterpart.
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The Ledoit-Wolf (LW) Estimator
Ledoit & Wolf (2004)
The Ledoit-Wolf (LW) Estimator is given by

Σ̂ = αS + (1 − α)F

where S denotes the sample covariance matrix, F stands for a shrinkage
target, and α ∈ [0, 1] represents a shrinkage constant.

Ledoit & Wolf (2004) proposes a James-Stein type shrinkage
estimator for the covariance matrix.

This estimator is constructed as a linear combination of the sample
covariance matrix and a predetermined shrinkage target.

This approach leads us to two important questions:
1) What would be the most appropriate shrinkage target?
2) What degree of shrinkage is optimal?
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The Ledoit-Wolf (LW) Estimator
Ledoit & Wolf (2004)
The Ledoit-Wolf (LW) Estimator is given by

Σ̂ = αS + (1 − α)F

where S denotes the sample covariance matrix, F stands for a shrinkage
target, and α ∈ [0, 1] represents a shrinkage constant.

A simply structured deterministic matrix can be used as a shrinkage
target.

F = identity, a factor model, constant correlation, etc.

The optimal shrinkage constant is selected to minimize an error rate.

α∗ ∈ arg min
α∈[0,1]

Risk(α)
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A Choice of the Optimal Shrinkage Constant
Ledoit & Wolf (2004)
The Ledoit-Wolf (LW) Estimator is given by

Σ̂ = αS + (1 − α)F

where S denotes the sample covariance matrix, F stands for a shrinkage
target, and α ∈ [0, 1] represents a shrinkage constant.

More specifically, the optimal shrinkage constant is selected to
asymptotically minimize the risk function of the Frobenius norm as
loss.

lim
n→∞

α̂∗ ∈ arg min
α∈[0,1]

lim
n→∞

E
[
∥Σ̂ − Σ∥2

]
In other words, α̂∗ is a consistent estimator for the minimizer of the
risk function.
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A Choice of the Optimal Shrinkage Constant
However, empirical studies indicate that the optimal shrinkage
constant may be overestimated in situations where the ratio n/p is
relatively small.
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Refining the Optimal Shrinkage Constant Selection

We introduce a new analysis within the high-dimension, low-sample
size (HL) regime.

Our approach involves selecting an optimal shrinkage constant that
minimizes its p-asymptotic loss as p → ∞.

lim
p→∞

α∗ ∈ arg min
α∈[0,1]

lim
p→∞

Error(α)
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Section 2

A High-Dimensional Approach to Optimizing
the Ledoit-Wolf Estimator
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A Loss Function with the Frobenius Norm

Definition 1
Our loss function is defined as the squared Frobenius norm between the
true and estimated covariance matrices divided by p,

L(α) = 1
p ∥∆(α)∥2 = 1

p tr
(
∆2(α)

)
where ∆ = Σ − Σ̂ denotes the difference between the true and estimated
covariance matrices with Σ̂ = αS + (1 − α)F.
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A Minimizer of the Loss Function

Lemma 1
A minimizer of the the loss function is given by

α∗ = tr ((F − S)(Σ − S))
tr ((F − S)2)

The minimizer is unique almost surely.

For a convex combination, the minimizer may be truncated to ensure
α ∈ [0, 1].

Note that the numerator can be expressed as

tr ((F − S)(Σ − S)) = tr(FΣ) − tr(SΣ) − tr (S(F − S))

so we have two unobservable terms, tr(FΣ) and tr(SΣ).
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The Market Model

We adopt the assumption that that the population covariance matrix
follows the market model

Σ = pσ2uu⊤ + δ2I

where u is the leading eigenvector with its corresponding eigenvalue
pσ2 + δ2 for some σ2 > 0 and δ2 > 0 and I is the identity matrix.

Correspondingly, we employ the single factor shrinkage target,
represented as

F = pσ2
F qq⊤ + δ2

F I

where q is an educated guess about the leading eigenvector and
σ2

F > 0 and δ2
F > 0 are constants.
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Lemmas for Unknown Quantities

We derive random variables that are asymptotically equivalent to the
two unknown quantities, tr(FΣ) and tr(SΣ).

Lemma 2
For two sequences of random variables, ap and bp, denote ap ∼ bp if
limp→∞

ap
bp

= 1 almos surely. Then, under some assumptions,

(a)
tr(SΣ) ∼ pσ2s2⟨u, v⟩2

where v is the leading eigenvector of S corresponding to the largest
eigenvalue s2 with Σ = pσ2uu⊤ + δ2I.

(b)
tr(FΣ) ∼ σ2σ2

F ⟨u, q⟩2

with F = pσ2
F qq⊤ + δ2

F I.
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An Asymptotic Minimizer of the Loss Function

Theorem 1

Let α′ = p2σ2σ2
F ⟨u,q⟩2−pσ2s2⟨u,v⟩2−tr(S(F−S))

tr((F−S)2) . Then, under some
assumptions, α′ asymptotically minimizes the loss function such that

α′ ∼ α∗

where α∗ is the true minimizer.

We observe that α′ is composed of estimable quantities, specifically
σ2, ⟨u, q⟩, and ⟨u, v⟩.

Our analysis replicates the methods used in related literature, such as
Jung et al. (2012), Goldberg et al. (2021), and Shkolnik (2022).
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Consistent Estimators for Eigenvalues and
Eigenvectors
Lemma 3

Let δ̂2 = (tr(S)−s2)mp
n−mp

with mp = 1 + n/p be an estimator of δ2, and let
σ̂2 = s2/p − δ̂2/n be an estimator of σ2. Then, under some assumptions,

σ̂2 ∼ σ2 and δ̂2 ∼ δ2.

Moreover, if we define ψ ≥ 0 by ψ2 = δ̂2/s2, then

ψ ∼ ⟨u, v⟩ and ⟨v , q⟩/ψ ∼ ⟨u, q⟩.

Consequently, we derive p-consistent estimators for σ2, ⟨u, q⟩, and
⟨u, v⟩.

These estimators contribute to the construction of a new shrinkage
parameter, α̂′.
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An Asymptotic Minimizer of the Loss Function

Theorem 2

Let α̂′ = p2σ̂2σ2
F ⟨v ,q⟩2/ψ2−pσ̂2s2ψ2−tr(S(F−S))

tr((F−S)2) be an estimator of α∗. Then,
under some assumptions, α̂′ asymptotically minimizes the loss function
such that

α̂′ ∼ α∗

where α∗ is the true minimizer.

We note that α̂′ consists solely of sample quantities.

Thus, α̂′ offers a practical formula for determining the shrinkage
constant, based on a p-asymptotic analysis.
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A Comparison of the Optimal Shrinkage Constants
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Numerics: Distribution of Shrinkage Constants with
n/p = 0.01
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Numerics: Distribution of Shrinkage Constants with
n/p = 0.05
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Numerics: Distribution of Shrinkage Constants with
n/p = 0.25
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Numerics: Distribution of Shrinkage Constants with
n/p = 1
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Section 3

Summary
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Summary

1 The Ledoit-Wolf estimator is a widely adopted method for covariance
estimation.

2 We present a novel strategy for determining an optimal shrinkage
constant using p-asymptotic analysis.

3 Both theoretical and numerical results demonstrate that our new
optimal constant delivers decreased error rates in situations where
n/p is small.
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Thank You!
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