Optimizing the Ledoit-Wolf Estimator through
High-Dimensional Regularization

Youhong Lee (joint with Alex Shkolnik)

Department of Statistics and Applied Probability, UC Santa Barbara

August 2, 2023

Youhong Lee (UCSB) High-Dimensional Ledoit-Wolf Estimators August 2, 2023 1/26



Outline
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e A High-Dimensional Approach to Optimizing the Ledoit-Wolf
Estimator
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Section 1

The Ledoit-Wolf (LW) Estimator for Covariance
Estimation
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The Sample Covariance Matrix

The Sample Covariance Matrix

For a p X n data matrix Y, let the sample covariance matrix be

S = lYYT
n

where p is the feature dimension and n is the sample size.

@ For our calculation purposes, we make the assumption that the
population mean equals zero.

@ The sample covariance matrix characterizes the linear relationships
among the variables in terms of their variances and covariances.

@ The sample covariance matrix is recognized as a consistent estimator
for the population covariance matrix, denoted by X.
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Properties of S in High Dimensions

The Sample Covariance Matrix

For a p x n data matrix Y, let the sample covariance matrix be

1
S=-YY"
n

where p is the feature dimension and n is the sample size.

@ However, in high-dimensional settings where p greatly exceeds n, S
displays certain unfavorable characteristics.

@ As suggested by Ledoit & Wolf (2004), S lacks invertibility when
p > n (this can be a critical issue as the inverse of S may be required
for computing the minimum variance portfolio).

@ The Marchenko—Pastur law indicates that the spectrum of S deviates
considerably from its population counterpart.
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The Ledoit-Wolf (LW) Estimator

Ledoit & Wolf (2004)

The Ledoit-Wolf (LW) Estimator is given by
$=aS+(1-a)F

where S denotes the sample covariance matrix, F stands for a shrinkage
target, and « € [0, 1] represents a shrinkage constant.

o Ledoit & Wolf (2004) proposes a James-Stein type shrinkage
estimator for the covariance matrix.

@ This estimator is constructed as a linear combination of the sample
covariance matrix and a predetermined shrinkage target.

@ This approach leads us to two important questions:

@ What would be the most appropriate shrinkage target?
@ What degree of shrinkage is optimal?
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The Ledoit-Wolf (LW) Estimator
Ledoit & Wolf (2004)

The Ledoit-Wolf (LW) Estimator is given by

A

Y =aS+(1-a)F

where S denotes the sample covariance matrix, F stands for a shrinkage
target, and « € [0, 1] represents a shrinkage constant.

@ A simply structured deterministic matrix can be used as a shrinkage
target.

F = identity, a factor model, constant correlation, etc.

@ The optimal shrinkage constant is selected to minimize an error rate.

a* € arg aren[é)rjl] Risk(a)
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A Choice of the Optimal Shrinkage Constant

Ledoit & Wolf (2004)
The Ledoit-Wolf (LW) Estimator is given by

A

Y =aS+(1-a)F

where S denotes the sample covariance matrix, F stands for a shrinkage
target, and « € [0, 1] represents a shrinkage constant.

@ More specifically, the optimal shrinkage constant is selected to
asymptotically minimize the risk function of the Frobenius norm as

loss.
lim % € arg min lim B [|3 - ¥|?]

n—o0 agl0,1] n—oo

@ In other words, &* is a consistent estimator for the minimizer of the

risk function.

Youhong Lee (UCSB) High-Dimensional Ledoit-Wolf Estimators August 2, 2023 8/26



A Choice of the Optimal Shrinkage Constant

@ However, empirical studies indicate that the optimal shrinkage
constant may be overestimated in situations where the ratio n/p is
relatively small.

Loss vs. Shrinkage Constant, n/p = 0.01
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Refining the Optimal Shrinkage Constant Selection

@ We introduce a new analysis within the high-dimension, low-sample
size (HL) regime.

@ Our approach involves selecting an optimal shrinkage constant that
minimizes its p-asymptotic loss as p — oc.

lim_ a” € arg min lim_ Error(a)
p— a€l0,1] P~
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Section 2

A High-Dimensional Approach to Optimizing
the Ledoit-Wolf Estimator
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A Loss Function with the Frobenius Norm

Definition 1
Our loss function is defined as the squared Frobenius norm between the
true and estimated covariance matrices divided by p,

L(a) = S AP = tr (A%a)

where A = ¥ — 3 denotes the difference between the true and estimated
covariance matrices with ~ = aS + (1 — o)F.
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A Minimizer of the Loss Function

A minimizer of the the loss function is given by

. tr((F-S)(E-5))
wr((F —SP)

@ The minimizer is unique almost surely.

@ For a convex combination, the minimizer may be truncated to ensure
a € [0,1].

@ Note that the numerator can be expressed as
tr (F — S)(X —8)) = tr(FX) — tr(SX) — tr (S(F — S))

so we have two unobservable terms, tr(FX) and tr(SX).

Youhong Lee (UCSB) High-Dimensional Ledoit-Wolf Estimators August 2, 2023 13/26



The Market Model

@ We adopt the assumption that that the population covariance matrix
follows the market model

Y = poluu’ + 6%1

where u is the leading eigenvector with its corresponding eigenvalue
po? 4 82 for some ¢® > 0 and 62 > 0 and I is the identity matrix.

@ Correspondingly, we employ the single factor shrinkage target,
represented as

F= pa%qu + 5,2:1

where g is an educated guess about the leading eigenvector and
02 >0 and §2 > 0 are constants.
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Lemmas for Unknown Quantities

@ We derive random variables that are asymptotically equivalent to the
two unknown quantities, tr(FX) and tr(SX).

For two sequences of random variables, a, and by, denote a, ~ b, if
limp— oo Z—‘; = 1 almos surely. Then, under some assumptions,

(a)
tr(SX) ~ pa®s®(u, v)?

where v is the leading eigenvector of S corresponding to the largest
eigenvalue s? with ¥ = po?uu’ + 6°1.

(b)

tr(FX) ~ o?0f(u, 9)°

with F = po*,2_-qu + 621
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An Asymptotic Minimizer of the Loss Function

Let o = ey t?F(ZFS?Su)’gV))z_tr(S(F_S)). Then, under some

assumptions, o’ asymptotically minimizes the loss function such that

a/Na*

where o is the true minimizer.

@ We observe that o is composed of estimable quantities, specifically
o2, (u,q), and (u, v).

@ Our analysis replicates the methods used in related literature, such as
Jung et al. (2012), Goldberg et al. (2021), and Shkolnik (2022).
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Consistent Estimators for Eigenvalues and
Eigenvectors

Let 2 = % with m, = 1+ n/p be an estimator of §2, and let

62 = s2/p — 62/n be an estimator of 2. Then, under some assumptions,
6°~a and 6% ~ 82,
Moreover, if we define ¢ > 0 by 9)? = 32/52, then

b~ <U, V> and <Vaq>/¢N <U7q>'

e Consequently, we derive p-consistent estimators for o2, (u, q), and
{u,v).

@ These estimators contribute to the construction of a new shrinkage
parameter, &’
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An Asymptotic Minimizer of the Loss Function

242 2 2 2_ o A2c2,2 _
Let & = PooE(v.a) /ﬁ((;’fs;z;b SE=5) be an estimator of o*. Then,

under some assumptions, &' asymptotically minimizes the loss function
such that

& ~a*

where o is the true minimizer.

@ We note that &' consists solely of sample quantities.

@ Thus, & offers a practical formula for determining the shrinkage
constant, based on a p-asymptotic analysis.
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A Comparison of the Optimal Shrinkage Constants

Loss vs. Shrinkage Constant, n/p = 0.01
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Numerics: Distribution of Shrinkage Constants with
n/p=0.01
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Numerics: Distribution of Shrinkage Constants with
n/p = 0.05
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Numerics: Distribution of Shrinkage Constants with
n/p=0.25
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Numerics: Distribution of Shrinkage Constants with
n/p=1
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Section 3

Summary
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Summary

© The Ledoit-Wolf estimator is a widely adopted method for covariance
estimation.

@ We present a novel strategy for determining an optimal shrinkage
constant using p-asymptotic analysis.

© Both theoretical and numerical results demonstrate that our new
optimal constant delivers decreased error rates in situations where
n/p is small.
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Thank You!
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