Beyond James-Stein estimation for PCA.

Alex Shkolnik (shkolnik@ucsb.edu)

(joint with Youhong Lee)

6th International Conference on Statistics & Econometrics, Waseda University, Tokyo, Japan. August 1, 2023.

Department of Statistics & Applied Probability University of California, Santa Barbara

Let
$$\langle x, y \rangle = \sum_{\ell=1}^{m} x_{\ell} y_{\ell}$$
 for $x, y \in \mathbb{R}^{m}$ and $|x| = \sqrt{\langle x, x \rangle}$.

n

Largest singular value decomposition involves (s, w, v) with

$$\mathbf{Y}w = (\theta \mathbf{X} + \mathcal{E})w = \mathbf{s}v$$

such that s = |Yw| is maximized over all $w \in \mathbb{R}^n$ with |w| = 1.

Largest singular value decomposition involves (s, w, v) with

$$\mathbf{Y}w = (\theta \mathbf{X} + \mathcal{E})w = \mathbf{s}v$$

such that s = |Yw| is maximized over all $w \in \mathbb{R}^n$ with |w| = 1.

- $v \in \mathbb{R}^p$ is the left singular vector (|v| = 1).
- $w \in \mathbb{R}^n$ is the right singular vector (|w| = 1).
- $s \in \mathbb{R}$ is the largest singular value.

Largest singular value decomposition involves (\mathfrak{z}, w, u) with

$$\mathbf{Y}w = (\mathbf{\theta}\mathbf{X} + \mathbf{\mathcal{E}})w = \mathbf{\mathcal{I}}v$$

such that $\beta = |Yw|$ is maximized over all $w \in \mathbb{R}^n$ with |w| = 1. GOAL. Estimate θ and X (upto unidentifiability).

- Note,
$$v = \theta/|\theta|$$
 and $w = X/|X|$ when $\mathcal{E} = 0$.

- And
$$s = |\theta|$$
 provided $|X| = 1$ (w.l.o.g.).

"Behaviour" of *E* determines the accuracy otherwise.

Asymptotics' Horseshoe

Let $Y = \theta X^{\top} + \mathcal{E}$ regarding the length $|\theta|$ as the signal strength. Limit behaviour of the following quantity is insightful.

$$\tau_p = |\theta| \sqrt{n/p}$$

e.g., $\tau_p \rightarrow \infty$ implies consistency of many important estimates.

Let $Y = \theta X^{\top} + \varepsilon$ regarding the length $|\theta|$ as the signal strength. Limit behaviour of the following quantity is insightful.

$$\tau_p = |\theta| \sqrt{n/p}$$

e.g., $\tau_p \rightarrow \infty$ implies consistency of many important estimates.

CONDITION 1. τ_p converges in $(0, \infty)$ as $p \to \infty$. Borrowed from Wang & Fan (2017).

Note that $n \ge 2$ may remain finite or tend to ∞ as well.

Asymptotics' Horseshoe

Our results will fail at RMT (sup $|\theta| < \infty$).

Inconsistency of the left singular vector

Let $Y = \theta X + \varepsilon$ and for the noise matrix ε , define

$$\Gamma = \mathcal{E}^{\top} \mathcal{E} / p.$$

ASSUMPTION A. Condition 1 holds with $\lim_{p \uparrow \infty} |\theta| = \infty$. Additionally,

(1) There exists ν which converges in $(0, \infty)$ and satisfies

$$|\Gamma - \nu^2 \mathbf{I}| \le C_p \sqrt{n/p}$$

for random sequence C_p with $\limsup_p C_p < \infty$ almost surely,

- (2) We have $\limsup_{p} |\mathcal{E}^{\top}\theta|^2/p < \infty$ almost surely,
- (3) We have $\lim_{p} \langle \mathcal{E}^{\top} \theta, X \rangle / p = 0$ almost surely,
- (4) $\langle X, X \rangle / n \neq 0$ almost surely for every $n \leq \infty$.

Let s_j be the *j* th singular value of $Y (= \theta X^{\top} + \varepsilon)$.

Let ψ be a function of the singular values specified as,

$$\psi^{2} = 1 - \left(\frac{\sum_{j < p} \beta_{j}^{2}}{\beta_{p}^{2}}\right) \left(\frac{1 + n/p}{n - n/p - 1}\right).$$

Left singular vector v estimates $u = \theta/|\theta|$ inconsistently.

Theorem. Suppose Assumption A holds. Then, almost surely,

$$\langle v, u \rangle^2 \sim \psi^2 \qquad (p \uparrow \infty)$$

and eventually ψ is in the interval (0, 1). Moreover, the singular value β is also inconsistent, but the right singular vector is consistent.

Asymptotics' Horseshoe

Theorem 1 holds if $\tau_p = |\theta| \sqrt{n/p}$ converges, but fails at RMT (where $\sup_p |\theta| < \infty$, i.e., Johnstone's spike model (Johnstone & Lu 2009)).

INCONSISTENCY OF THE LEFT SINGULAR VECTOR.

Some James-Stein results

The James-Stein estimator for the left singular vector is

$$v^{\text{JS}} \propto m + c(v - m) \quad \left(c = 1 - \frac{1 - \psi^2}{1 - \langle v, q \rangle^2}\right)$$

normalized to $|v^{\text{JS}}| = 1$ for $m = \langle v, q \rangle q$ and any unit vector q.

The James-Stein left singular vector

Let $q \in \mathbb{R}^p$ be any (sequence) of unit length vectors such that assumption A still holds with q replacing $u = \theta/|\theta|$.

- Let
$$d^2 = \frac{1-\psi^2}{\psi^2}$$
.

Theorem 2. Suppose Assumption A holds. Then,

$$\langle v^{\mathrm{JS}}, u \rangle^2 - \langle v, u \rangle^2 \sim \langle v, q \rangle^2 \mathrm{d}^2 (1 - \mathrm{c})$$

and c converges in (0, 1) almost surely as $p \to \infty$.

Remarks.

- $\ddagger v^{\text{JS}}$ improves upon the left singular vector if $\langle v, q \rangle \neq 0$ ev.
- The result fails as we transition into the RMT regime.

Stepping stone to a CLT theorem for James-Stein.

- Let
$$\kappa^2 = \lim_{p \to \infty} \langle v^{\text{JS}}, u \rangle^2$$
.
- Let $d^2 = \frac{1 - \psi^2}{\psi^2}$.

Theorem 3. Suppose Assumption A holds with n fixed. Then,

$$\langle v^{\mathrm{JS}}, u \rangle^2 - \kappa^2 \sim (\mathrm{cd})^2 \mathscr{R}_1 + 2(\mathrm{cd})(1-\mathrm{c}) \,\mathscr{R}_2 + (1-\mathrm{c})^2 \,\mathscr{R}_3$$

where every rate $\mathscr{R}_j \to 0$ as $p \to \infty$ almost surely.

REMARK. Each rate \mathscr{R}_j may be reasonably assumed to decay at the rate \sqrt{p} (weakly) or, more finely as $\sqrt{p \log \log p}$ (LIL).

Recall, $Y = \theta X + \varepsilon$ with $\Gamma = \varepsilon^{\top} \varepsilon / p \sim \nu^2 I$ and $\tau_p = |\theta| \sqrt{n/p}$. The first fundamental rate with coefficient (cd)² is given by,

 $\mathscr{R}_1 = \left(\frac{\tau_p^2 - \tau_\infty^2}{\tau_\infty^2}\right) + \left(\frac{\langle \mathbf{X}, (\Gamma - \nu^2 \mathbf{I}) \mathbf{X} \rangle}{|\mathbf{X}|^2 \nu^2}\right).$

Recall $Y = \theta X + \varepsilon$ and $u = \theta/|\theta|$.

The second fundamental rate with coefficient 2(cd)(1-c) is given by,

$$\mathscr{R}_{2} = \frac{\langle \mathbf{X}, \mathcal{E}^{\top} u_{q} \rangle}{|\mathbf{X}| \nu \sqrt{p}} \quad \left(u_{q} = \frac{u - \langle u, q \rangle q}{\sqrt{1 - \langle u, q \rangle^{2}}} \right).$$

Recall $Y = \theta X + \varepsilon$ and $u = \theta/|\theta|$.

The third fundamental rate with coefficient $(1 - c)^2$ is given by,

$$\mathscr{R}_3 = \langle u, q \rangle - \lim_{p \to \infty} \langle u, q \rangle.$$

Theorem 3. Suppose Assumption A holds with n fixed. Then,

$$\langle v^{\mathrm{JS}}, u \rangle^2 - \kappa^2 \sim (\mathrm{cd})^2 \mathscr{R}_1 + 2(\mathrm{cd})(1-\mathrm{c}) \,\mathscr{R}_2 + (1-\mathrm{c})^2 \,\mathscr{R}_3$$

where every rate $\mathscr{R}_i \to 0$ as $p \to \infty$ almost surely.

Working out the covariances of the \mathscr{R}_j allows for a CLT.

References.

- Johnstone, I. M. & Lu, A. Y. (2009), 'On consistency and sparsity for principal components analysis in high dimensions', *Journal of the American Statistical Association* **104**(486), 682–693.
- Wang, W. & Fan, J. (2017), 'Asymptotics of empirical eigenstructure for high dimensional spiked covariance', *The Annals of Statistics* 45(3), 1342–1374.