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Let hx; yi D
Pm
`D1x`y` for x; y 2 Rm and jxj D

p
hx; xi.
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Largest singular value decomposition involves .s; w; v/ with

Yw D .�X C E/w D sv

such that s D jYwj is maximized over allw 2 Rn with jwj D 1.

– v 2 Rp is the left singular vector (jvj D 1).

– w 2 Rn is the right singular vector (jwj D 1).

– s 2 R is the largest singular value.
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Largest singular value decomposition involves .s; w; u/ with

Yw D .�X C E/w D sv

such that s D jYwj is maximized over allw 2 Rn with jwj D 1.

Goal. Estimate � and X (upto unidentifiability).

– Note, v D �=j� j andw D X=jXj when E D 0.

– And s D j� j provided jXj D 1 (w.l.o.g.).

“Behaviour” of E determines the accuracy otherwise.
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Asymptotics’ Horseshoe
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Let Y D �X> C E regarding the length j� j as the signal strength.

Limit behaviour of the following quantity is insightful.

£p D j� j
p
n=p

e.g., £p ! 1 implies consistency of many important estimates.

Condition 1. £p converges in .0;1/ as p ! 1.

Borrowed fromWang & Fan (2017).

Note that n � 2may remain finite or tend to 1 as well.
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Asymptotics’ Horseshoe

Our results will fail at RMT (supp j� j < 1).
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Inconsistency of the left singular vector



Let Y D �X C E and for the noise matrix E, define

� D E>E=p :

Assumption A. Condition 1 holds with limp"1 j� j D 1. Additionally,

(1) There exists � which converges in .0;1/ and satisfies

j� � �2 I j � Cp
p
n=p

for random sequence Cp with lim supp Cp < 1 almost surely,

(2) We have lim supp jE>� j2=p < 1 almost surely,

(3) We have limphE>�;Xi=p D 0 almost surely,

(4) hX;Xi=n ¤ 0 almost surely for every n � 1.
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Let sj be the j th singular value of Y.D �X> C E/.

Let be a function of the singular values specified as,

 2 D 1 �

�P
j<p s

2
j

s2p

�� 1C n=p

n � n=p � 1

�
:

Left singular vector v estimates u D �=j� j inconsistently.

Theorem. Suppose Assumption A holds. Then, almost surely,

hv; ui
2

�  2 .p " 1/

and eventually is in the interval .0; 1/. Moreover, the singular value s
is also inconsistent, but the right singular vector is consistent.
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Asymptotics’ Horseshoe

Theorem 1 holds if £p D j� j
p
n=p converges, but fails at RMT (where

supp j� j < 1, i.e., Johnstone’s spike model (Johnstone & Lu 2009)). 9



Inconsistency of the left singular vector.
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Some James-Stein results



The James-Stein estimator for the left singular vector is

vJS / mC c.v �m/

�
c D 1 �

1 �  2

1 � hv; qi2

�
normalized to jvJSj D 1 form D hv; qiq and any unit vector q.
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The James-Stein left singular vector
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Let q 2 Rp be any (sequence) of unit length vectors such that
assumption A still holds with q replacing u D �=j� j.

– Let d2 D
1� 2

 2 .

Theorem 2. Suppose Assumption A holds. Then,

hvJS; ui
2

� hv; ui
2

� hv; qi
2d2.1 � c/

and c converges in .0; 1/ almost surely as p ! 1.

Remarks.

– ] vJS improves upon the left singular vector if hv; qi ¤ 0 ev.

– The result fails as we transition into the RMT regime.
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Stepping stone to a CLT theorem for James-Stein.

– Let ›2 D limp!1hvJS; ui2.

– Let d2 D
1� 2

 2 .

Theorem 3. Suppose Assumption A holds with n fixed. Then,

hvJS; ui
2

� ›2 � .cd/2R1 C 2.cd/.1 � c/R2 C .1 � c/2R3

where every rateRj ! 0 as p ! 1 almost surely.

Remark. Each rateRj may be reasonably assumed to decay at the
rate

p
p (weakly) or, more finely as

p
p log logp (LIL).
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Recall, Y D �X C E with � D E>E=p � �2I and £p D j� j
p
n=p.

The first fundamental rate with coefficient .cd/2 is given by,

R1 D

�
£2p � £21

£21

�
C

�
hX; .� � �2I/Xi

jXj2�2

�
:
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Recall Y D �X C E and u D �=j� j.

The second fundamental rate with coefficent 2.cd/.1 � c/ is given by,

R2 D
hX;E>uqi

jXj�
p
p

�
uq D

u � hu; qiqp
1 � hu; qi2

�
:
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Recall Y D �X C E and u D �=j� j.

The third fundamental rate with coefficent .1 � c/2 is given by,

R3 D hu; qi � lim
p!1

hu; qi :
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Theorem 3. Suppose Assumption A holds with n fixed. Then,

hvJS; ui
2

� ›2 � .cd/2R1 C 2.cd/.1 � c/R2 C .1 � c/2R3

where every rateRj ! 0 as p ! 1 almost surely.

Working out the covariances of theRj allows for a CLT.
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