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Abstract

We study two-sided decentralized matching markets in which participants have uncertain
preferences. We present a statistical model to learn the preferences. The model incorporates
uncertain state and the participants’ competition on one side of the market. We derive an
optimal strategy that maximizes the agent’s expected payoff and calibrate the uncertain
state by taking the opportunity costs into account. We discuss the sense in which the
matching derived from the proposed strategy has a stability property. We also prove a
fairness property that asserts that there exists no justified envy according to the proposed
strategy. We provide numerical results to demonstrate the improved payoff, stability and
fairness, compared to alternative methods.

Keywords: Decentralized Matching, Uncertain Preference, Calibration, Stability, Fair-
ness

1. Introduction

Many real-world decision-making problems can be viewed from an economic point of view
and a statistical point of view. The economic point of view focuses on scarcity of shared re-
sources and the need to coordinate among multiple decision-makers. Thus, decision-makers
must assess preferences over outcomes and those preferences need to interact in determin-
ing an overall set of outcomes. The statistical point of view recognizes that preferences are
often not known a priori, but must be learned from data; moreover, agents’ decisions are
often influenced by latent state variables whose values must be inferred in order to deter-
mine a preferred outcome. Unfortunately, it is uncommon that these two perspectives are
brought together in the literature, with economic work rarely addressing the need to learn
preferences from data, and statistical machine learning rarely addressing scarcity and its
consequences for decision-making. In this paper we aim to bridge this gap, studying a core
microeconomic problem—two-way matching markets—in the setting in which preferences
must be learned from data. Moreover, we focus on decentralized matching markets, re-
flecting several desiderata that are common in the machine-learning literature—that agents
are autonomous and private, and that scalability and avoidance of central bottlenecks is a
principal concern of an overall system design.

Two-sided matching markets have played an important role in microeconomics for sev-
eral decades (see Roth and Sotomayor, 1990), both as a theoretical topic and as a mainstay
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of real-world applications. Matching markets are used to allocate indivisible “goods” to
multiple decision-making agents based on mutual compatibility as assessed via sets of pref-
erences. Matching markets are often organized in a decentralized way such that each agent
makes their decision independently of others’ decisions. Examples include college admis-
sions, decentralized labor markets, and online dating.

Matching markets embody a notion of scarcity in which the resources on both sides of
the market are limited. Moreover, congestion is a key issue in decentralized decision-making
under scarcity, as participants may not be able to make enough offers and acceptances to
clear the market (Roth and Xing, 1997). A major challenge for research on decentralized
matching markets is to ease congestion in practice and to understand the implication of
congestion for stability, fairness, and welfare.

The uncertainty of participants’ preferences is ubiquitous in real-world decentralized
matching markets. For instance, college admissions in the United States face applicants’
uncertain preferences. The admitted students of a college may receive offers from other
colleges. Students need to accept one or reject all offers, often within a short period.
The process provides little opportunity for the college to learn students’ preferences, which
depends on colleges’ competition and colleges’ uncertain popularity in the current year.
Consequently, the college may end up enrolling too many or too few students relative to
its capacity (Avery et al., 2003). It is of college’s interest to decide which applicants to
admit, such that the entering class will meet reasonably close to its quota and be close to
the attainable optimum in quality (Gale and Shapley, 1962).

This paper develops a statistical model to study participants’ strategies under uncertain
preferences in two-way matching markets. We use the classical college admissions market
as our running example. In the proposed model, there are a set of agents (for example,
colleges), each with limited capacity, and a set of arms (for example, students), each can
be matched to at most one agent. Agents value two attributes of an arm: a “score” (for
example, SAT/ACT score) that is common to all agents and a “fit” (for example, college-
specific essay) that is agent-specific and is independent across agents. According to their
score and fit, agents rank arms, but they do not observe arms’ preferences, which have
no restriction. The model incorporates the arm’s uncertain preference into an acceptance
probability, depending on both the unknown state and agents’ competition. We want to
learn arms’ acceptance probabilities from the historical data of arms’ binary choices, where
arms’ attributes may vary over time. Various statistical learning algorithms allow efficient
learning of the acceptance probability under the proposed model. To fix ideas, we present
the penalized log-likelihood method in the reproducing kernel Hilbert space (RKHS) to
learn the acceptance probability. We show that the estimate achieves the minimax rate-
optimality.

We focus on the single-stage decentralized matching that involves a simple timeline:
agents simultaneously pull sets of arms (for example, colleges offer admissions to students).
Each arm accepts one of the agents (if any) that pulled it. We derive an optimal strategy
called calibrated decentralized matching (CDM), which maximizes agents’ expected payoffs.
We calibrate the unknown state by perturbing the state and balancing the marginal utility
and the marginal penalty. The proposed calibration procedure takes the opportunity costs
into account. The CDM can perform the calibration in both the average-case and worst-case
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scenarios, depending on maximizing the averaged or minimal expected payoff concerning
the unknown true state.

We show that asymptotically CDM makes it safe for agents to act straightforwardly on
their preferences. That is, CDM ensures incentive compatibility for agents. We also show
that CDM yields a stable outcome for the market. Our notion of stability is similar to that
of Liu et al. (2014), which is designed to study decentralized matching with incomplete
information. This stability notion extends the classical notion of stability due to Gale and
Shapley (1962) that assumes complete information of participants’ preferences. We prove
that CDM is asymptotically stable. Moreover, we show that CDM is asymptotically fair
for arms, in the sense of no justified envy in the matching procedure according to CDM.

The CDM algorithm can serve as a recommendation engine in decentralized matching
markets. Indeed, our results add a learning component to the decentralized market and
help participants decide which participants on the other side of the market are the best to
connect to. In particular, even with an unknown state, agents can estimate the probability
of successfully pulling an arm using historical data. The prediction of match compatibility
is also possible in another direction that arms can learn how much an agent may prefer
them. The CDM procedure reduces congestion in the decentralized matching market via
recommendation and achieves optimal expected payoffs for agents.

1.1 Related Work

We propose a statistical model for learning strategies in decentralized matching markets.
In particular, we focus on many-to-one decentralized matching with uncertain participants’
preferences. Our work is related to two strands of literature. First, there has been significant
work in the economics literature on congestion in decentralized markets, where participants
cannot make enough offers and acceptances to clear the market. Roth and Xing (1997)
discussed such a decentralized market for graduating clinical psychologists, especially the
market’s timing aspect, which lasts over a day. They found that such a decentralized but
coordinated market exhibits congestion since the interviews that a student could schedule
were limited, and the resulting matching was unstable. Das and Kamenica (2005) considered
that both sides of the decentralized market have uncertain preferences and presented an
empirical study of the resulting matchings. Unlike these works, we provide an analytical
model and study the implications for congestion. Haeringer and Wooders (2011) considered
the decentralized job matching with complete information, where agents and arms are
assumed to know the entire sequence of actions employed by their opponents. However,
we consider incomplete information, where agents do not know their opponents’ actions.
Coles et al. (2013) showed how introducing a signaling device in a decentralized matching
market alleviates congestion. We instead focus on the optimal strategy under uncertain
preference without signaling. Liu et al. (2020) extended the multi-armed bandits framework
(see Bubeck and Cesa-Bianchi, 2012) to multiple agents. They proposed an algorithm to
achieve a low cumulative regret for decentralized matching. By contrast, we study the
optimal strategy for single-stage matching that involves no accumulated regret.

Another closely related literature strand is the algorithmic and economic problems on
college admissions (see Gale and Shapley, 1962). The general setting involves multiple
colleges competing for students in decentralized markets. Recently, Epple et al. (2006)
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modeled equilibrium admissions, financial aid, and enrollment. Fu (2014) studied effects of
tuition on equilibria, incorporating application costs, admissions, and enrollment. Unlike
these works, we emphasize students’ multidimensional abilities and the uncertainty of stu-
dents’ acceptance probability. Chade and Smith (2006) provided an optimal algorithm for
students’ application decisions, characterized as a portfolio choice problem. Hafalir et al.
(2018) discussed student efforts instead of colleges’ response to congestion in decentral-
ized college admissions with restricted applications. We instead consider colleges’ optimal
strategies. Avery and Levin (2010) studied early admissions when colleges have no enroll-
ment uncertainty and showed that a cutoff strategy is optimal in equilibrium. Chade et al.
(2014) developed a decentralized Bayesian model of college admissions for two colleges and
a continuum of students under a particular preference structure. By contrast, we study
multiple colleges in the face of enrollment uncertainty. Azevedo and Leshno (2016) adopted
a continuum model for students in a centralized market. They found a characterization of
equilibria in terms of supply and demand. This model is different from the decentralized
market studied in our paper. Che and Koh (2016) considered aggregated uncertainty in col-
lege admissions and focused on two colleges and a continuum of students. By contrast, our
model considers incomplete information with multiple colleges and a finite number of arms.
We study a statistical model for learning strategies in the face of enrollment uncertainty
using historical data.

The paper is organized as follows. Section 2 introduces the model. Section 3 studies the
optimal strategy in decentralized matching under uncertain preferences. Section 4 shows
the proposed strategy’s properties, including incentive compatibility, stability and fairness.
Section 5 presents the results of an empirical study. Section 6 concludes the paper with
further research directions. Technical proofs are provided in the Appendix.

2. Model and Uncertain Preferences

In this section, we define a model of decentralized matching markets with incomplete in-
formation. Denote a set of m agents by P = {P1, P2, . . . , Pm} and a set of n arms by
A = {A1, A2, . . . , An}, where P and A are participants on the two sides of the market.
Each agent can attempt to pull multiple arms and there are no constraints on the overlap
among the choices of different agents. When multiple agents select the same arm, only
one agent can successfully pull the arm, with the choice of agent made according to the
arm’s preferences. For example, P and A might represent colleges and students in the
college admissions market, or firms and workers in the decentralized labor market. Col-
leges send admission offers to applicants. When multiple colleges send offers to the same
applicant, the applicant can accept at most one offer. Suppose that each agent Pi has
a quota of successfully pulling qi ≥ 1 arms, where q1 + q2 + · · · + qm ≤ n. We denote
[m] ≡ {1, . . . ,m}, [n] ≡ {1, . . . , n}, and [K] ≡ {1, . . . ,K}.

In decentralized matching markets, agents and arms make their decisions independently
of the decisions made by others. This feature distinguishes decentralized matching from
centralized matching, which makes use of central clearinghouses to coordinate decision-
making. Notable examples of centralized matching include the national medical residency
matching (Roth, 1984) and public school choice (Abdulkadiroğlu and Sönmez, 2003). While
centralized matching has been the major focus of the literature on matching, we see decen-
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tralized matching as having a potentially greater range of applications, and as providing
a better platform on which to bring machine-learning tools to bear. Indeed, decentralized
matching is natural when (i) arms have uncertain preferences that depend on an unknown
state that has a local component, and (ii) agents possess incomplete information on other
agents’ decisions.

2.1 Running Example

Our running example is the college admissions market, where colleges match with students
(see Gale and Shapley, 1962). College admissions in countries such as the United States,
Korea, and Japan are organized in a decentralized way, where colleges make admission
offers to applicants. The admitted students accept or reject the offers, often within a short
period of time. Consider a college Pi ∈ P with a quota of enrolling qi students. It is not
satisfactory for college Pi to only make offers to the qi best-qualified students since some
students may reject offers. The enrollment uncertainty for Pi can be attributed to a lack of
two types of information. First, Pi has little knowledge of which other colleges admit the
applicants admitted by Pi. Second, Pi is uncertain about students’ preferences: how each
applicant ranks the colleges that she has applied to. Thus colleges do not know their own
popularity in the current year, which is an aggregate over the uncertain rankings by each
applicant. In the face of such uncertainty, college Pi needs to decide which applicants to
admit such that the entering class will meet reasonably close to its quota qi and be close to
the attainable optimum in quality.

2.2 Latent Utility

We assume that agents’ deterministic preferences are a function of underlying latent utilities.
In particular, we consider the following latent utility model:

Ui(Aj) = vj + eij , ∀i ∈ [m] and j ∈ [n], (1)

where vj ∈ [0, 1] is arm Aj ’s systematic score, which is available to all agents, and eij ∈ [0, 1]
is an agent-specific idiosyncratic fit available only to agent Pi. For example, in college
admissions, vj can be a function of student Aj ’s test score on a nationwide test observed
by all colleges. The eij corresponds to a function of student Aj ’s performance on college-
specific essays or tests conducted by college Pi. In Appendix A.1, we show that a general
utility function with multidimensional scores and fits can be transformed to the model (1)
via the ANOVA decomposition. Thus, the separable structure in model (1) is without less
of generality and allows us to characterize the pattern of competition of agents in Section
3. Similar separable structures have been used in the matching markets literature (see, e.g.,
Choo and Siow, 2006; Menzel, 2015; Chiappori and Salanié, 2016; Ashlagi et al., 2020). The
analysis that we present in this paper will also hold if one restricts the range of eij to [0, ē]
with some ē < 1. This restriction may be necessary for some applications. For instance,
suppose the idiosyncratic fit in college admissions is viewed as more important to colleges
than the systematic score. In this case, enrolled students may find it unfair to have other
enrolled students with significantly lower test scores than theirs. This, in turn, would result
in a reputation cost for the college.
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2.3 Uncertain Preferences

The arms’ preferences for agents involve uncertainty. Let the parameter si ∈ [0, 1] represent
the state of the world for agent Pi (Savage, 1972), such that each arm Aj ∈ A accepts Pi
with probability

πi(si, vj), ∀i ∈ [m] and j ∈ [n].

Here πi(si, vj) models the competition of agents through the dependence on the score vj .
Moreover, πi(si, vj) incorporates the uncertainty of an arm’s preference with respect to Pi
and the competing agents via the state si. We assume that πi(si, vj) is strictly increasing
and continuous in si. Thus, a large value of si corresponds to the case that agent Pi is
popular. The true state is unknown a priori to Pi. In college admissions, for example, the
yield is defined as the rate at which a college’s admitted students accept the offers. The
yield is a proxy for the state si (see Che and Koh, 2016). The yield of the current year is
unknown a priori to the college.

Theorem 1 There exists a probability mass function πi(si, vj) characterizing the probability
of Aj accepting Pi. Moreover, the expected utility that agent Pi receives from pulling arm
Aj ∈ A is

E[utility] = (vj + eij) · πi(si, vj), i ∈ [m] and j ∈ [n]. (2)

For example, we show the explicit form of πi(si, vj) for a two-agent model with agents P1

and P2. Consider that P1 pulls an armAj ∈ A. Denote by µ1(s1) the probability that an arm
prefers P1. Let µ2(s2) = 1−µ1(s1) be the probability that an arm prefers P2, where the state
s2 = 1− s1. We write σ2 as P2’s strategy, which is defined by σ2(vj , e2j) = 1{P2 pulls Aj}.
Since Aj would be pulled by P1 with probability 1 − σ2(vj , e2j) and pulled by both P1

and P2 with probability σ2(vj , e2j), Aj would accept P1 with probability 1 − σ2(vj , e2j) +
µ1(s1)σ2(vj , e2j). Since e2j is unknown to Aj and σ2 is determined by e2j , the averaged
probability that Aj accepts P1 is π1(s1, vj) = 1−E[σ2(vj , e2j)] +µ1(s1)E[σ2(vj , e2j)], where
the expectation is taken over e2j . Hence, π1(s1, vj) represents the probability of Aj accepting
P1 due to the uncertain state and the competition between agents.

2.4 Learning Arms’ Uncertain Preferences

Agents decide which arms to pull based on the attributes of the arms and historical matches.
In general, we do not make the assumption that an arm with the same score and fit appears
in the historical data in the matching market. Indeed, no college admissions applicant likely
has exactly the same attributes as the applicants in previous years. Even the “repeated
applicants” will often change their records in their second applications. The repeated appli-
cants either have no offer or reject all their offers and wait a full year to apply for colleges.
The value of learning from the historical matches accrues when the data are used to estimate
an untried arm’s acceptance probability.

Denote by At = {At1, At2, . . . , Atnt
} the set of arms at t ∈ [T ] ≡ {1, . . . , T}. Let sti be the

state of agent Pi at time t. The state sti is unknown until time t+ 1, and it varies over time.
For instance, the yield rate of a college may change over the years. For any arm Atj ∈ At,
there are an associated pair of score and fit values, (vtj , e

t
ij), obtained from Eq. (1), where

i ∈ [m], j ∈ [nt]. We refer to (vtj , e
t
ij) as the attributes of arm Atj . Define the set

Bti = {j | Pi pulls arm Atj at time t for 1 ≤ j ≤ nt},
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where |Bti | = nit and nit ≤ nt. For any j ∈ Bti , the outcome that Pi observes is whether
an arm Atj accepted Pi, that is, ytij = 1{Atj accepts Pi}. Here, the iid outcome ytij has the
likelihood πi(s

t
i, v

t
j) that ytij = 1 and the likelihood 1− πi(sti, vtj) that ytij = 0.

The goal in this section is to estimate the function πi based on historical data. Denote
the training data by D = {(sti, vtj , etij , ytij) : i ∈ [m]; j ∈ Bti ; t ∈ [T ]}. Let the log odds ratio
be

fi(si, v) = log

(
πi(si, v)

1− πi(si, v)

)
.

There exist a variety of methods in supervised learning that can efficiently estimate the
log odds ratio (Hastie et al., 2009). For concreteness, we focus on using a penalized log-
likelihood method for the log odds ratio estimation in a reproducing kernel Hilbert space
(RKHS) (Wahba, 1999). To this end, we assume that fi is from RKHS HKi with the
reproducing kernel Ki. Then we find fi ∈ HKi to minimize

T∑
t=1

∑
j∈Bti

[
−ytijfi(sti, vtj) + log

(
1 + exp

(
fi(s

t
i, v

t
j)
))]

+
1

2

T∑
t=1

nitλi‖fi‖2HKi
, (3)

where ‖·‖HKi
is a RKHS norm and λi ≥ 0 is a tuning parameter. Consider a tensor product

structure of the RKHS HKi defined Ki((si, v), (s′i, v
′)) = Ks

i (si, s
′
i)K

v
i (v, v′) based on ker-

nels Ks
i and Kv

i (Wahba et al., 1995). Assume a random feature expansion of the following
form: Ks

i (si, s
′
i) = Ews [φ

s
i (si, ws)φ

s
i (s
′
i, ws)] and Kv

i (v, v′) = Ewv [φvi (v, wv)φ
v
i (v
′, wv)], where

φsi (·, ws) and φvi (·, wv) are random features (Rahimi and Recht, 2008). Let {ws1, ws2, . . . , wsp}
and {wv1, wv2, . . . , wvp} be the sets of p independent copies of ws and wv, respectively. Write
the feature vector as ψi(si, v) ∈ Rp with the lth entry equal to 1√

pφ
s
i (si, wsl)φ

v
i (v, wvl), for l =

1, . . . , p. Then Ki((si, v), (s′i, v
′)) can be approximated by the product ψi(si, v)Tψi(s

′
i, v
′).

Let the matrix Φi have rows ψi(s
t
i, v

t
j)

T, where j ∈ Bti and t ∈ [T ]. By the representer

theorem in Kimeldorf and Wahba (1971), the solution to Eq. (3) has the form f̂i(si, v) =
ψi(si, v)TΦT

i ci for some vector ci. We only need to find θi = ΦT
i ci ∈ Rp to obtain a solution

to Eq. (3):

f̂i(si, v) = ψi(si, v)Tθi, ∀i ∈ [m]. (4)

Denote by Yi the response vector with entries ytij , j ∈ Bti and t ∈ [T ]. Applying the
Newton-Raphson method to Eq. (3) yields the following iterative updates for vector θi:

θ
(ν+1)
i =

(
ΦT
iW

(ν)
i Φi +

T∑
t=1

nitλiI

)−1
ΦT
iW

(ν)
i

{
Φiθ

(ν) + (W
(ν)
i )−1[Yi − π(ν)i ]

}
, ν ≥ 1.

Here, θ
(ν)
i is the νth update of θi, and W

(ν)
i = diag[π

(ν)
i (sti, v

t
j)(1− π

(ν)
i (sti, v

t
j))]j∈Bti ,1≤t≤T is

a weight matrix with π
(ν)
i = [1 + exp(−f (ν)i )]−1 and f

(ν)
i = φT

i θ
(ν)
i . The tuning parameter

λi ≥ 0 can be selected using cross validation or GACV (see Wahba, 1999).

Theorem 2 The integrated squared error of the estimate in Eq. (4) satisfies the following
inequality:

E[(f̂i − fi)2] ≤ cf
[
T (log T )−1

]−2r/(2r+1)
, ∀i ∈ [m],
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for sufficiently large T , where we let λi ≤ cλ[T (log T )−1]−2r/(2r+1) and p ≥ cp[T (log T )−1]−2r/(2r+1).
Here the constants cf , cλ, cp > 0 are independent of T , and r ≥ 1 denotes the smoothness of
kernels such that Ks

i (s, ·) and Kv
i (v, ·) have squared integrable rth-order derivatives. More-

over, the estimate in Eq. (4) is minimax rate-optimal.

We make three remarks on the theorem. First, although fi depends on both covariates
s and v, the optimal rate given in the theorem is very close to the minimax rate for the one-
dimensional model, with the only difference in the logarithm term. Second, it is possible to
extend the theorem to allow different orders of the smoothness of the kernels Ks

i and Kv
i .

Finally, we can predict the acceptance probability for a new arm. Let AT+1 = {A1, . . . , An}
be the set of arms at time T + 1, where each arm Aj has attributes obtained from Eq. (1).

Using the estimated log odds ratio f̂i in Eq. (4) and given the state si at time T + 1, we
have the estimate

π̂i(si, vj) = [1 + exp(−f̂i(si, vj))]−1 (5)

as the prediction of the probability that arm Aj would accept agent Pi at time T + 1.

3. Optimal Strategies in Decentralized Matching

We study single-stage decentralized matching that involves a simple timeline. First, Nature
draws a state denoted by s∗i for agent Pi such that the arms’ preferences are realized. Next,
arms simultaneously show their interests to all agents. For example, students apply to
colleges. Under the assumption that students face negligible application costs, submitting
applications to all colleges is the dominant strategy. The reason is that students do not
know how colleges evaluate their academic ability or personal essays (Avery and Levin,
2010; Che and Koh, 2016). Then, agents simultaneously decide which arms to pull based
on the arm’s attributes. Finally, each arm accepts one of the agents (if any) that pulled it.
See an illustration in the left plot of Figure 1.

3.1 Agent’s Expected Payoff

An agent’s expected payoff consists of two parts: the expected utilities of arms that the
agent pulls and the penalty for exceeding the quota. Let Bi(si) ⊆ AT+1 be the set of arms
that agent Pi pulls at T + 1 given the state si. By Eq. (2), agent Pi’s expected payoff is

Ui[Bi(si)] =
∑

j∈Bi(si)

(vj + eij) · πi (si, vj)− γi ·max

 ∑
j∈Bi(si)

πi(si, vj)− qi, 0

 . (6)

Here, γi denotes the marginal penalty for exceeding the quota. We assume that γi >
maxj∈AT+1{vj + eij}; that is, the penalty is larger than an arm’s latent utility. Eq. (6)
excludes the situation when Pi faces extra uncertainty in receiving the reward even if Pi has
successfully pulled an arm. For example, in the dating market, Eq. (6) models the agent’s
expected payoff from the dates, instead of a subsequent relationship that may eventually
result from a date. The following theorem shows that the agent’s optimal strategy is the
cutoff strategy with respect to the arms’ latent utilities.
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Figure 1: The left plot shows the process of single-stage matching in a decentralized market,
with no centralized clearinghouse for coordination. The middle plot shows the
cutoff êi(si, v) of Theorem 3 when Eq. (7) holds. The dotted line represents
b−i (si) − v in verifying Eq. (7). The dashed line represents b̂i(si) − v, and if
thresholding to ei ∈ [0, 1], it yields the cutoff êi(si, v), which is denoted by the
blue solid line segments. The shaded area represents B̂i(si). The right plot shows
the cutoff êi(si, v) when Eq. (7) does not hold.

Theorem 3 The expected payoff Ui[Bi(si)] in Eq. (6) is maximized if and only if agent Pi
uses a cutoff strategy with respect to arms’ latent utilities, ∀i ∈ [m]. That is, Pi pulls arms
from the set

B̂i(si) = {j |Aj ∈ AT+1 whose attributes (vj , eij) satisfy eij ≥ êi(si, vj)
}
,

where the cutoff êi(si, v), chosen according to Eq. (8), is decreasing in v ∈ [0, 1] and satisfies
dêi(si, v)/dv = −1 when êi(si, v) ∈ (0, 1).

We now specify the cutoff êi(si, v). Suppose that arms on the cutoff have the latent
utility bi ≥ 0. The expected number of arms in B̂i(si) that would accept Pi is:

Πi(bi) ≡
∑

j∈AT+1

1 (eij ≥ min{max{bi − vj , 0}, 1})πi(si, vj).

If there exists some bi ≥ 0 such that Πi(bi) = qi, we let b̂i(si) = bi and we have êi(si, v) =
min{max{b̂i(si)− v, 0}, 1}. On the other hand, if there is no solution to Πi(bi) = qi, we let

b+i (si) = arg max
bi≥0

{Πi(bi) > qi} and b−i (si) = arg min
bi≥0

{Πi(bi) < qi} .

To choose between b+i (si) or b−i (si), it is necessary to balance the expected utility and the
expected penalty for exceeding the quota due to pulling arms on the boundary. Define two
cutoffs e+i (si, v) ≡ min{max{b+i (si) − v, 0}, 1} and e−i (si, v) ≡ min{max{b−i (si) − v, 0}, 1},
which correspond to arm sets B+i (si) = {j | eij ≥ e+i (si, vj)} and B−i (si) = {j | eij ≥

9
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e−i (si, vj)}, respectively. Then the arms on the boundary are those in the set {B+i (si) \
B−i (si)}, whose expected utility is larger than the expected penalty if∑

j∈B+i (si)\B−i (si)

(vj + eij) · πi(si, vj) ≥ γi
∑

j∈B+i (si)

πi(si, vj)− γiqi. (7)

If Eq. (7) holds, let b̂i(si) = b+i (si); otherwise, let b̂i(si) = b−i (si). Finally, we define the
cutoff

êi(si, v) = min{max{b̂i(si)− v, 0}, 1}. (8)

It is clear that d êi(si, v)/dv = −1 when êi(si, v) ∈ (0, 1). Thus, Pi prefers the arms with
larger latent utilities defined by Eq. (1). Figure 1 illustrates this cutoff strategy. Although
arms independently accept or reject agents in decentralized markets, the cutoff êi(si, v) in
Eq. (8) ensures that the expected number of arms accepting Pi excluding those on the
boundary is bounded by the quota qi. According to Eq. (7), the arm on the boundary is
pulled if the expected utility is larger than the expected penalty.

The cutoff strategy in Theorem 3 relates to the straightforward behavior (see Fisman
et al., 2006), where agents pull arms that they value more than those they do not pull.
Theorem 3 shows that although agents face uncertainty with respect to acceptance of their
offers in decentralized markets, the straightforward behavior suffices.

3.2 Calibrated Decentralized Matching (CDM)

Let s∗i be the true state for agent Pi at time T+1. Theorem 3 shows that the cutoff strategy
maximizes Pi’s expected payoff if s∗i is known. However, the true state s∗i is generally
unknown in practice. A natural question is how to calibrate the state si in Theorem 3.
We propose a calibration method for si that maximizes the average-case expected payoff
Es∗i {Ui[B̂i(si)]} over the uncertain true state s∗i . To formulate the theorem, we introduce

some additional notation. Let ∂B̂i(si) be the marginal set, defined as the change of set
B̂i(si) with respect to a perturbation of si:

∂B̂i(si) ≡ lim
δsi→0+

{
B̂i(si − δsi) \ B̂i(si)

}
.

Theorem 4 The average-case expected payoff, Es∗i {Ui[B̂i(si)]}, is maximized if si ∈ (0, 1)
is chosen as the solution to

P(s∗i 6= si)
∑

j∈∂B̂i(si)

(vj + eij) · Es∗i [πi(s
∗
i , vj) | s∗i 6= si]

= γi
[
1− Fs∗i (si)

] ∑
j∈∂B̂i(si)

Es∗i [πi(s
∗
i , vj) | si < s∗i ≤ 1],

(9)

where Fs∗i is the cumulative distribution function of s∗i ∈ [0, 1].

We refer to the calibration by Theorem 4 as the mean calibration since it maximizes the
agent’s average-case expected payoff. The key idea of the proof is to balance the tradeoff
between the opportunity cost and the penalty for exceeding the quota. In particular, the
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left side of Eq. (9) considers the opportunity cost and the marginal utility, and the right side
of Eq. (9) estimates the marginal penalty for exceeding the quota. We make four remarks
on the theorem. First, the calibrated state in Theorem 4 is different from the naive mean
estimate E[s∗i ] of the true state. The latter is inefficient in maximizing the agent’s expected
payoff in decentralized matching.

Second, the calibration in Theorem 4 takes agents’ competition into account. Note that
Es∗i [πi(s

∗
i , vj)|si < s∗i ≤ 1] in Eq. (9) is strictly increasing in si due to the monotonicity

of πi(si, vj) in si. Thus, it is more costly for an agent to pull an arm when the agent is
popular. This result is intuitive because when an agent Pi is popular, it is more likely that
an arm Aj pulled by multiple agents would accept Pi. Since Pi has a larger probability of
exceeding the quota when Pi is popular, it is more costly for Pi to pull Aj compared to the
case when Pi is not popular.

Third, the distribution Fs∗i is estimable from historical states {s1i , . . . , sTi }. For example,
the kernel density method gives the estimate:

f̂s∗i (·) =
1

T

T∑
t=1

Ks
i

(
· − sti
h

)
, and F̂s∗i (si) =

∫ si

0
f̂s∗i (s)ds. (10)

Here, h is the bandwidth parameter, and Ks
i is the kernel introduced in Section 2.4. It

is well-known that the estimate f̂s∗i (·) is rate-optimal (Silverman, 1986). Moreover, it is
possible to incorporate side information into the estimation of Fs∗(·). For example, one
can incorporate the belief that an agent tends to be popular at T + 1 by overweighting the
popular states. If Eq. (9) has more than one solution, then si is chosen as the largest one. If
the distribution Fs∗i has discrete support, we change the objective in Theorem 4 to choosing
the minimal si ∈ [0, 1] such that the left side of Eq. (9) is not less than the right side of
Eq. (9). Here the search of si starts from the maximum value in the support and decreases
to the minimal value.

Finally, we apply Eq. (5) to estimate the acceptance probability πi(si, v) in practice. This
estimate is consistent and rate-optimal, according to Theorem 2. Besides the average-case
expected payoff in Theorem 4, we also consider the worst-case expected payoff concerning
s∗i . In the following theorem, we propose a maximin calibration, where the calibration

maximizes the minimal expected payoff mins∗i {Ui[B̂i(si)]} over the uncertain true state s∗i .

Theorem 5 The worst-case expected payoff mins∗i {Ui[B̂i(si)]} is maximized if si ∈ [0, 1] is
chosen as the solution to∑

j∈B̂i(si)

(vj + eij) · [πi(1, vj)− πi(0, vj)]− γi
∑

j∈B̂i(si)

πi(1, vj) + γiqi

=
∑

j∈B̂i(1)

(vj + eij) · πi(1, vj)−
∑

j∈B̂i(0)

(vj + eij) · πi(0, vj).

Algorithm 1 summarizes the resulting algorithm, which we refer to as calibrated decen-
tralized matching (CDM).
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Algorithm 1 Calibrated decentralized matching (CDM)

1: Input: Historical data D = {(sti, vtj , etij , ytij) : i ∈ [m]; j ∈ Bti ; t ∈ [T ]}; New arm set

AT+1 with attributes {(vj , eij) : i ∈ [m]; j ∈ [n]} at time T + 1; Penalty {γi : i ∈ [m]}
for exceeding the quota.

2: for i = 1, 2, . . . ,m do
3: Predict the acceptance π̂i(si, vj) by Eq. (5);
4: Estimate the state distribution Fs∗i (·) by the kernel density estimate in Eq. (10);
5: Calibrate the state si according to Theorem 4 or Theorem 5;
6: Calculate the cutoff strategy B̂i(si) by Theorem 3.
7: end for
8: Output: The arm sets B̂1(s1), B̂2(s2), . . . , B̂m(sm) for agents.

4. Properties of CDM: Incentives, Stability and Fairness

Each participant alone, on both sides of the market, knows their own preference. However,
the decentralized market has no centralized system for eliciting the participants’ preferences.
The proposed CDM algorithm provides a mechanism to aggregate the historical data of the
arms’ choices. It also provides a framework for the learning of the agent strategies. This
section addresses the question of whether CDM gives the agents incentives to act according
to their true preferences. Such incentive-compatibility property for agents is desired for the
design of matching markets (Roth, 1982).

A related problem to incentives is the stability of the matching outcomes that we obtain.
We show that any pair of agent and arm has no incentive to disregard the CDM matching
and seek an alternative outcome in the context of incomplete information in decentralized
markets.

Finally, a different kind of problem concerning the matching procedure is fairness. For
example, it is crucial to have a matching procedure that is fair for students in college
admissions. We show that the CDM is fair for arms.

4.1 Incentives of Agents

We first need to define what is meant by a procedure giving agents incentives to act ac-
cording to their true preferences in decentralized matching. The matching problem is a
noncooperative game among the agents, whose payoffs are defined by the outcome of the
matching process. A procedure that gives agents an incentive to act according to true
preferences is defined as one that aggregates participants’ actions so that, in the resulting
noncooperative game, it is a dominant strategy for each agent to act on their preferences
honestly. In such a procedure, no matter what strategies other players may play, an agent
who deviates from the true preference can achieve no better outcome than if the agent had
acted on their preferences honestly.

Theorem 6 As T → ∞, the CDM gives agents an incentive to act straightforwardly on
their true preferences. That is, agents pull arms according to the arms’ latent utilities in
Eq. (1).
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Arms pulled by multiple agents self-select based on preference. The CDM algorithm pro-
vides a mechanism to aggregate the historical matches from arms’ preference-based sorting
in decentralized markets. Theorem 6 affirms an incentive-compatibility property for agents
even with arbitrary uncertain preference profiles of arms. This theorem also distinguishes
CDM from strategies according to arms’ expected utilities in Eq. (2) (see Das and Kamenica,
2005).

4.2 Stability

An agent-arm pair (Pi, Aj) is referred to as matched if Pi pulls Aj , and Aj accepts Pi. A
blocking pair is an agent-arm pair that is not matched, but both the agent and arm prefer
to be matched together. Gale and Shapley (1962) defined a matching of arms to agents to
be stable if there is no blocking pair. This definition was motivated by the concern that
following a matching process, some agent-arm pairs may deviate together, thus hindering
the implementation of the intended matching outcome. This form of stability is widely
considered to be a key factor in a successful implementation of a centralized clearinghouse
(Roth, 1990).

Gale and Shapley (1962) also proved that the set of stable matching is never empty.
Among all stable matchings, the one that is the most preferred by all arms is called an arm-
optimal matching. The one that is the most preferred by all agents is called an agent-optimal
matching. The arm- (or agent-) optimal matching is also agents’ (or arms’) least-preferred
matching among all stable matchings (Knuth, 1997).

The stability of a centralized matching relies on the stringent assumption of complete in-
formation on the preferences of the participants. In our decentralized matching formulation,
it is more natural to assume that agents only have incomplete information on preferences.
Thus we require a modification of the stability notion in Gale and Shapley (1962). In par-
ticular, it is necessary to specify the uninformed agents’ beliefs that might block a candidate
stable matching (cf. Liu et al., 2014). We formulate the following notion of individual ra-
tionality to specify the beliefs of uninformed agents. Let Ni be the expected number of
arms that would accept an agent Pi under Pi’s current strategy. An additional arm Aj with
attributes (vj , eij), which has a smaller latent utility than those currently pulled by Pi, is
acceptable to Pi if and only if individual rationality holds:

(vj + eij) · πi(si, vj) ≥ γi ·max {Ni + πi(si, vj)− qi, 0} . (11)

In other words, under Pi’s current strategy, Aj is acceptable to Pi if and only if Aj ’s expected
utility is at least the expected penalty for exceeding the quota.

A matching in a decentralized market is defined as stable if there is no blocking pair
under the individual rationality condition (11). This stability notion is motivated by consid-
ering feasibility constraints (for example, single-stage interaction) in decentralized markets.
In practice, participants are often compelled to accept the outcomes in such markets. For
instance, the procedure in which some high school athletes are matched to colleges involves
signing “letters of intent,” which prohibits athletes from further negotiating with other col-
leges. Suppose that an arm, Aj , does not satisfy Eq. (11). Then Pi finds that Aj only has a
small latent utility but pulling Aj may incur a large penalty due to exceeding the quota. It
is individually rational that Pi does not pull Aj in order to receive at least zero payoff. After
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the matching procedure, suppose Pi finds that Aj is acceptable. That is, Pi has remaining
capacity, and Aj prefers to match to Pi. Still, Pi has no incentive to disregard the matching
and seek an alternative outcome due to the feasibility constraints of decentralized markets.

Theorem 7 As T →∞, the CDM procedure yields a stable matching. That is, agent and
arm has no incentive to disregard the CDM matching and seek an alternative outcome in
decentralized markets.

There exists a lattice structure of stable matchings yielded by the CDM algorithm. If
CDM allows each agent to pull all arms, the outcome is the arm-optimal stable matching. If
CDM allows each agent to pull arms up to their quota, and those pulled arms are distinct, the
outcome is the agent-optimal stable matching (Roth, 2008). In practice, the stable matching
yielded by CDM is generally between the agent-optimal and arm-optimal matchings due
to the competition of agents and a lack of coordination. Indeed, agents are incentivized
to pull more arms than their quotas in decentralized markets in order to hedge against
the uncertainty of whether the pulled arms will accept them. On the other hand, arms
may benefit from this uncertainty. For example, suppose the college admissions market
uses a clearinghouse to form a centralized market. All students apply to top colleges. In
that case, the deferred acceptance algorithm yields the college-optimal matching (Gale and
Shapley, 1962; Knuth, 1997). Compared to the CDM outcomes, students are worse off in
the centralized market.

In contrast to CDM, the strategies of pulling arms according to the expected utilities in
Eq. (2) may result in an unstable matching. For instance, if the agent Pi decides according
to Aj ’s expected utility, πi(si, vj)(vj + eij), then Pi will not pull Aj if the acceptance
probability πi(s, vj) is small enough such that the expected utility of Aj is the smallest
among all arms, while the latent utility (vj + eij) of Aj is the largest. As a result, (Pi, Aj)
will form a blocking pair if Aj is unmatched, and the matching is unstable.

4.3 Fairness

We consider fairness in terms of “no justified envy” (Balinski and Sönmez, 1999; Abdulka-
diroğlu and Sönmez, 2003). Here an arm Aj has justified envy if Aj prefers an agent Pi′

to another agent Pi that pulls Aj , even though Pi′ pulls an arm Aj′ which ranks below Aj
according to the true preference of Pi′ . A matching procedure in decentralized markets is
fair if no arm has justified envy.

Theorem 8 As T →∞, the CDM is fair for arms. That is, no arm has justified envy in
the matching outcome realized by CDM.

We now compare CDM with the oracle arm set, where the latter maximizes agents’
average-case expected payoff by assuming complete information on opponent agents’ strate-
gies. For any arm set Bi ⊆ AT+1, let OBi be the set of true states under which agent Pi’s
strategy of pulling Bi results in the over-enrollment:

OBi ≡
{
s∗i ∈ [0, 1]

∣∣∣ ∑
j∈Bi

πi(s
∗
i , vj) > qi

}
, ∀i ∈ [m].
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Under the true state s∗i , agent Pi’s expected payoff of pulling Bi is

Ui[Bi] =
∑
j∈Bi

(vj + eij) · πi (s∗i , vj)− γi ·max

∑
j∈Bi

πi(s
∗
i , vj)− qi, 0

 .

Then Pi’s average-case expected payoff Es∗i {Ui[Bi]} is

∑
j∈Bi

(vj + eij) · Es∗i [πi(s
∗
i , vj)]− γi · P (s∗i ∈ OBi)

∑
j∈Bi

Es∗i [πi(s
∗
i , vj) | s∗i ∈ OBi ]− qi

 .

Hence, the oracle arm set B∗i for maximizing Es∗i {Ui[Bi]} becomes

B∗i =

{
j ∈ AT+1

∣∣∣∣∣ vj + eij ≥ γi · P(s∗i ∈ OB∗i )
Es∗i [πi(s

∗
i , vj) | s∗i ∈ OB∗i ]

Es∗i [πi(s∗i , vj)]

}
. (12)

Che and Koh (2016) discussed a particular case of the oracle arm set in a two-agent model.
Eq. (12) generalizes the oracle set to multiple agents. Although B∗i has a closed-form expres-
sion in Eq. (12), B∗i is not estimable from training data. The reason is that the probability
P(s∗i ∈ OB∗i ) requires the knowledge of opponent agents’ strategies, which are unknown in
decentralized markets. Moreover, we show that the matching procedure according to the
strategy of Pi pulling arms from B∗i will be unfair for arms.

Figure 2: Fairness of CDM compared to the unfairness of oracle arm set B∗i . The dotted
curve represents the cutoff for B∗i in Eq. (12). The solid line segments denote the

cutoff for CDM. The arms in B(2)i have justified envy towards arms in B(1)i .

Theorem 9 The strategy corresponding to the oracle set in Eq. (12) is unfair if for at least
one agent Pi, there exists an interval (v′, v′′) ⊂ [0, 1] such that

E
[
∂πi(s

∗
i , v)

∂v

∣∣∣∣ s∗i 6∈ OB∗i ] < E
[
∂πi(s

∗
i , v)

∂v

∣∣∣∣ s∗i ∈ OB∗i ] < 0, ∀v ∈ (v′, v′′). (13)
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(a) Latent utility (b) Arm’s preference (c) Expected utility

A1 A2 A3

P1 2 3 2.5

P2 2 2.5 3

P3 2.5 2 3

P1 P2 P3

A1 3 2 1

A2 2 3 1

A3 1 3 2

A1 A2 A3

P1 0.52 1.99 2.5

P2 0.67 0 0

P3 2.5 2 1.05

Table 1: (a) Arm’s latent utilities for each agent, which corresponds to Eq. (1). For example,
P1 receives utility 2.5 when it successfully pulls A3. (b) Arms’ preferences with the
number indicating the arms’ ranking of agents. For example, A1 ranks P3 first, P2

second, P1 third. These preferences are unknown to agents. (c) Expected utilities,
which corresponds to Eq. (2). For example, P1 expects to receive utility 0.52 if it
pulls A1.

Here, Eq. (13) means that the probability of arms with score v ∈ (v′, v′′) accepting Pi
decreases less when Pi is popular (s∗i ∈ OB∗i ) than that when Pi is not popular (s∗i 6∈ OB∗i ).
This condition holds for many decentralized matching examples, such as the two-agent
example in Section 2.3.

Figure 2 illustrates the unfairness of the strategy corresponding to the oracle set. The
proof of Theorem 9 shows that the slope of B∗i ’s cutoff curve is in the interval (−1, 0), for

any v ∈ (v′, v′′). Hence, there are arms not selected to B∗i (for example, those in B(2)i ).

However, they rank higher than some selected arms (for example, those in B(1)i ) according

to agent Pi’s true preference. Thus, arms in B(2)i have justified envy towards arms in B(1)i .
On the contrary, Theorem 3 shows that the slope of CDM’s cutoff equals −1 and hence the
agent prefers arms with larger latent utilities.

5. Numerical Experiments

In this section, we provide a numerical investigation of the fairness and stability properties
of CDM. We also study the payoffs achieved by CDM compared to alternative methods.

5.1 Stability and Fairness of CDM

Suppose that there are three agents, P1, P2, P3, and three arms, A1, A2, A3. The latent
utilities and the arms’ true preferences are given in Table 1. Arms have scores and fits as
follows: v1 = v2 = v3 = 2, and e11 = e21 = e32 = 0, e13 = e22 = e31 = 0.5, e12 = e23 =
e33 = 1, respectively. Each agent has quota q = 1 and the penalty for exceeding the quota
is γ = 10. Agents have to make decisions on which arms to pull without knowing the arms’
true preferences. We compare the CDM procedure with the greedy action, which chooses
arms with maximum expected utilities and total expected acceptance up to the quota (Das
and Kamenica, 2005).

The training data are simulated by having each agent pull a random number of arms ac-
cording to its latent utilities. Figure 3 shows arms’ acceptance probabilities πi(s

∗
i , vj) based
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Figure 3: Arms’ acceptance probabilities for three agents. (a) P1, (b) P2, (c) P3.

on a total of 2000 rounds of random proposals. Since there is a unique true state, the es-
timates of acceptance probabilities converge. The CDM procedure suggests that P1 pulls A2,
P2 pullsA1, A2, A3, and P3 pullsA3, and it gives the stable matching (A1, P2), (A2, P1), (A3, P3).
On the contrary, the greedy action suggests that P1 pulls A3, P2 pulls A1, A2, A3, and P3

pulls A1, and it yields the following matching: (A1, P3), (A2, P2), (A3, P1). We note three
differences between the two matchings. First, the greedy action is unfair since A2 has
justified envy towards A3 in the sense that A2 prefers P1 to P2. However, P1 pulls A3

that ranks below A2 according to the true preference of P1. Second, the greedy action also
yields an unstable matching since (A2, P1) is a blocking pair. On the other hand, CDM
is fair and yields a stable matching. The stable matching is both agent-optimal and arm-
optimal in this example. Finally, the total payoff that agents receive using CDM equals
3 + 2 + 3 = 8, which is larger than the total payoff that agents receive from the greedy
action, 2.5 + 2.5 + 2.5 = 7.5.

5.2 Lattice Structure for the Stability of CDM

We consider the decentralized matching with four different preference structures: S1, S2,
S3, S4. The market consists of three agents and three arms. Each agent has the same quota
q = 1 and penalty γ = 5. Table 2 gives arms’ latent utilities and true preferences. The
training data are simulated by having agents pull random numbers of arms according to their
latent utilities. The last column of Table 2 gives estimates of arms’ acceptance probabilities,
πi(s

∗
i , vj), after 2000 rounds of random proposals and under each of the structures S1—S4.

These acceptance probabilities are evaluated at convergence.

We find that CDM gives stable matchings under all of the structures S1—S4. However,
these stable matchings have different optimality in terms of agents’ and arms’ welfare. In
particular, the matching in S1 is (A1, P1), (A2, P3), (A3, P2), which is both agent-optimal and
arm-optimal; the matching in S2 is (A1, P2), (A2, P1), (A3, P3), which is arm-optimal but not
agent-optimal; the matching in S3 is (A1, P2), (A2, P3), (A3, P1), which is not agent-optimal
or arm-optimal; the matching in S4 is (A1, P1), (A2, P2), (A3, P1), which is not agent-optimal
or arm-optimal. This lattice structure corroborates the results in Section 4.2. We further
make three remarks on these matchings. First, some arms benefit from the decentralized
matching compared with the centralized matching using the agent-proposing DA algorithm.
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Latent utility of S1 Arm’s preference of S1 Acceptance probability of S1

A1 A2 A3

P1 2.5 3 2

P2 3 2.5 2

P3 3 2.5 2

P1 P2 P3

A1 1 2 3

A2 2 3 1

A3 1 2 3

A1 A2 A3

P1 1 0.34 1

P2 0.35 0 0.65

P3 0 1 0.45

Latent utility of S2 Arm’s preference of S2 Acceptance probability of S2

A1 A2 A3

P1 3 2.5 2

P2 2.5 3 2

P3 2.5 2 3

P1 P2 P3

A1 3 1 2

A2 1 2 3

A3 2 3 1

A1 A2 A3

P1 0.10 1 0

P2 1 0.35 0

P3 0.32 0 1

Latent utility of S3 Arm’s preference of S3 Acceptance probability of S3

A1 A2 A3

P1 2 3 2.5

P2 2.5 2 3

P3 3 2.5 2

P1 P2 P3

A1 1 2 3

A2 3 1 2

A3 2 3 1

A1 A2 A3

P1 1 0.22 0.67

P2 0.66 1 0.24

P3 0.22 0.66 1

Latent utility of S4 Arm’s preference of S4 Acceptance probability of S4

A1 A2 A3

P1 3 2 2.5

P2 2 2.5 3

P3 2 2.5 3

P1 P2 P3

A1 3 2 1

A2 2 1 3

A3 1 3 2

A1 A2 A3

P1 0.43 0.29 1

P2 0.69 1 0

P3 1 0.22 0.35

Table 2: The left column shows arms’ latent utilities for each agent. The middle column
shows arms’ preferences, where the number indicates the arms’ ranking of agents.
The right column shows arms’ acceptance probabilities.

For example, the CDM matching in S2 is arm-optimal. The agent-proposing DA would give
the agent-optimal matching, that is, the arms’ least-preferred stable matching.

Second, no strategy in decentralized markets guarantees yielding the agent-optimal
matching, mainly due to the competition of agents and a lack of coordination. Consider the
S3 structure as an example, where CDM suggests that P1 pulls A1, A2, P2 pulls A2, A3 and
P3 pulls A1, A3. In this example, the strategy, according to the CDM, is a subgame perfect
equilibrium since each agent’s action is the best response against other agents’ actions. For
instance, if P1 changes to the strategy by only pulling A2 while other agents’ strategies do
not change, this gives the following matching: (A1, P2), (A2, P3), (A3, P2), where P1 is worse
off due to the unfilled quota. If P1 changes to pull all arms A1, A2, A3 while other agents’
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strategies do not change, then the resulting matching is (A1, P1), (A2, P3), (A3, P1), where
P1 is also worse off due to exceeding the quota. A similar argument applies to P2 and P3.
Hence, no agent has an incentive to change its strategy. In contrast, the agent-proposing
DA permits each agent to pull one arm each time according to its latent utility. Such co-
ordination results in the agent-optimal matching. However, if there is no coordination, the
competition of agents generates uncertainty on the acceptance of the pulled arms. Hence,
agents have the incentive to pull more arms than their quotas to combat the uncertainty.

Third, we discuss individual rationality in Eq. (11). Without this condition, any stable
matching can be supported by a subgame perfect equilibrium, and only stable matchings
can arise in equilibrium (Alcalde and Romero-Medina, 2000). However, under Eq. (11),
the set of stable matchings is enlarged. It includes (but may not coincide with) the set
of subgame perfect equilibria. Consider S4 as an example, where CDM suggests that P1

pulls A1, A3, and P2 pulls A2, A3, and P3 pulls A2, A3. The strategy given by CDM is not
a subgame perfect equilibrium. However, the resulting matching is stable under Eq. (11).
For instance, P3 finds A1 having a larger expected penalty for exceeding the quota than its
expected utility. That is, P3 finds A1 unacceptable. Hence, there is no blocking pair.

5.3 Agents’ Payoffs Achieved by CDM

Consider ten agents and varying numbers of arms: {50, 70, 90, 110, 130, 150}. Each arm has
a score vj and fits eij drawn uniformly from [0, 1]. The agents’ preferences are determined
by arms’ latent utilities as in Eq. (1). Each agent has the same quota q = 5 and the same
penalty γ chosen from {2, 2.5, 3}. The simulation generates random arm preferences with
10 different states from {s1, . . . , s10} ⊂ [0, 1]. The training data are simulated by having
agents pull random numbers of arms according to their latent utilities. We train 20 times
under each of the arms’ preference structures. This training data simulates the history of
20 experiments. The testing data draws a random state from {s1, . . . , s10} and generates
the corresponding arms’ preferences. This example simulates top colleges competing for
top students. Students’ preferences are uncertain and depend on colleges’ reputation and
popularity in the current year.

We compare the agent’s expected payoff achieved by CDM with that of other methods.
In particular, we also consider (i) the simple cutoff strategy where the agent chooses q
best arms; (ii) the greedy action where the agent chooses arms with maximum expected
utilities and a total expected acceptance up to q. Figure 4 reports the agent P1’s averaged
payoffs over 500 data replications. Here, all agents other than P1 use the CDM with mean
calibration and P1 uses one of the three methods. It is seen that CDM gives the largest
average payoffs compared to alternative methods, and the advantage of CDM is robust
to different numbers of arms and penalty levels. We make two further remarks. First,
the state’s calibration is useful in improving the agent’s expected utility under uncertain
preferences of the arms. For example, CDM outperforms the simple cutoff strategy that
has no calibration on the uncertain state. Second, CDM performs particularly well if the
matching market has intense competition. In this simulated market where arms’ preferences
are random, a smaller number of arms corresponds to a higher competition level. It is seen
that CDM is significantly better than other methods in the regime of small numbers of
students. On the other hand, the simple cutoff strategy does not work well with small
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Figure 4: Performance of three strategies with varying numbers of arms. The results are
averaged over 500 data replications. Penalty levels (a) γ = 2, (b) γ = 2.5, (c)
γ = 3.
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Figure 5: Performance of two calibration methods with varying numbers of arms. The
results are averaged over 500 data replications. Penalty levels (a) γ = 2, (b)
γ = 2.5, (c) γ = 3.

numbers of students. The reason is that under an intense competition among the agents,
arms reject most offers sent according to the simple cutoff strategy.

We also compare two different calibration methods: CDM and state expectation. The
latter calibrates the unknown state using the naive mean estimate of states. The state
expectation method was discussed in Section 3.2. Figure 5 shows P1’s averaged payoffs over
500 data replications. Here, all agents other than P1 use the CDM with mean calibration
and P1 uses one of the two methods. We observe that CDM is adaptive to different levels
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of penalty γ. However, the state expectation method degrades quickly as γ increases. This
difference between the two methods is because CDM balances the marginal payoff and the
marginal penalty for exceeding the quota. Hence CDM is sensitive to the penalty γ, while
the state expectation method is not.

5.4 Simulated Graduate School Admission

This section provides a simulation of graduate school admissions, where the programs of
graduate schools have limited quotas. Suppose there are a total of 50 graduate schools
from three tiers of colleges: five top colleges {P1, . . . , P5}, ten good colleges {P6, . . . , P15},
and 35 other colleges {P16, . . . , P50}. Each has the same quota q = 5 and penalty γ = 2.5.
The simulation generates students’ preferences with ten different states {s1, . . . , s10} ⊂
[0, 1]. For any state, students’ preferences for colleges from the same tier are random.
However, students always prefer top colleges to good colleges, and then the other colleges.
The random preferences depend on the state due to colleges’ uncertain reputation and
popularity in the current year. We consider varying numbers of students, ranging over
{250, 260, 270, 280, 290, 300}. For each number of students, there are ten students having
a score vj chosen uniformly and independently from [0.9, 1] and 100 students having score
vj drawn uniformly and independently from from [0.7, 0.9). The rest of the students have
score vj chosen uniformly and independently from [0, 0.7). The fits eij for all college-student
pairs are drawn uniformly from [0, 1]. The colleges’ preferences are determined by students’
latent utilities according to Eq. (1). We consider a simple case that students face negligible
application costs. Since students do not know how colleges evaluate their fits (e.g., personal
essays), submitting applications to all colleges is students’ dominant strategy.

We compare the colleges’ expected payoffs achieved by three methods: CDM, simple
cutoff strategy, and greedy action. The latter two methods are described in Section 5.3. The
training data are simulated from colleges’ random proposing, where colleges admit random
numbers of students according to their latent utilities. We train 20 times under each of the
students’ preference structures. This training data simulates admissions over 20 years. The
testing data draws a random state from {s1, . . . , s10}, which gives the corresponding student
preferences. The CDM procedure estimates the acceptance probability using Eq. (5). Figure
6 reports the averaged payoffs of three colleges P1, P6 and P16 over 500 data replications.
Here colleges P1, P6 and P16 belong to the three different tiers, respectively. In Figure 6(a1)
and (a2), all colleges other than P1 use the CDM with mean calibration, and P1 uses one
of the three methods. The same setup applies to Figure 6(b1) and (b2) and Figure 6(c1)
and (c2). It is seen that the CDM gives the largest average payoffs for all of P1, P6 and
P16. CDM performs particularly well for tier 2 and tier 3 colleges compared to the simple
cutoff strategy. Moreover, CDM outperforms the greedy action, especially for tier 1 and
2 colleges. The reason is that greedy action does not calibrate the state which results in
enrolling too many students.

6. Discussion

This paper devises a statistical model to estimate uncertain preferences and manage compe-
tition in decentralized matching markets. The proposed model serves as a first step towards
bridging the statistical machine learning literature and the microeconomic objectives of de-
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Figure 6: Performance of three strategies with varying numbers of students. The results
are averaged over 500 data replications. (a1) and (a2): College P1 from tier 1.
(b1) and (b2): College P6 from tier 2. (c1) and (c2): College P16 from tier 3.

centralized matching. In the model, arms have uncertain preferences that depend on the
unknown state of the world. The arms’ acceptance probabilities also depend on agents’
competition. We propose an optimal strategy called calibrated decentralized matching
(CDM) that maximizes agents’ expected payoffs. Various statistical learning algorithms
allow efficient learning of the acceptance probability under the proposed model. The CDM
procedure calibrates the unknown state by perturbing the state and balancing the marginal
utility and the marginal penalty for exceeding the capacity. This calibration procedure
takes the opportunity cost into account. We show that CDM makes it safe for agents to
act straightforwardly on their preferences. The CDM procedure achieves stability under in-
complete information, where the formulation of the individual rationality condition models
agents’ beliefs. Moreover, CDM is fair for arms in the sense that arms have no justified
envy.
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It is possible to extend the CDM to multi-stage decentralized matching applications such
as college admissions with a waiting list, and we are currently working on that extension.
Another possible extension is to consider algorithmic strategies where agents’ preferences
exhibit complementarities in decentralized matching. For instance, some firms demand
workers that complement one another in terms of their skills and roles. Another interesting
extension is to consider decentralized markets with indifferent preferences. For example,
many applicants may be indistinguishable for a college. Still, it is necessary to break
ties since the college may have insufficient capacity to admit all applicants in the same
indifference class.
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Appendix A. Proofs

A.1 ANOVA Decomposition for General Utility Function

Suppose that each arm Aj ∈ A is described by xj and (εT1j , ε
T
2j , . . . , ε

T
mj)

T, where xj is a
multidimensional vector available to all agents and εij is a multidimensional vector that is
only available to agent Pi. In college admissions, xj can be student Aj ’s high school record
and test score on a nationwide exam such as SAT/ACT, and εij represents student Aj ’s
college-specific essays or test scores.

Proposition 10 For any agent-specific latent utility function Ui, the ANOVA decomposi-
tion allows the separable form

Ui(Aj) = vj + eij , ∀i ∈ [m] and j ∈ [n].

Here, vj ∈ R is a function of xj and is common to all agents. The agent-specific eij ∈ R is
a function of xj and εij and is considered only by agent Pi. Thus, the separable structure
of the utility function in Eq. (1) can be assumed without loss of generality.

Proof Denote the utility function Ui(Aj) ≡ Ui(xj , εij) ∈ R. By the analysis of variance
(ANOVA) decomposition, we have that for Pi ∈ P, Aj ∈ A,

vj ≡
1

m

m∑
i=1

Eεij [Ui(xj , εij)] and

e†ij ≡ Eεij [Ui(xj , εij)]−
1

m

m∑
i=1

Eεij [Ui(xj , εij)], e‡ij ≡ Ui(xj , εij)− Eεij [Ui(xj , εij)].
(14)

Here, vj represents the average utility of xj and is common to all agents. The e†ij is agent

Pi’s adjustment for the utility of xj . The e‡ij is the utility of εij received by agent Pi.

Thus, e†ij and e‡ij are agent-specific and they are only known to agent Pi. Moreover, letting

eij ≡ e†ij + e‡ij , then Eq. (14) implies the desired result that Ui(xj , εij) = vj + eij . We refer
to Figure 7 for an illustration on the ANOVA decomposition.

The utility function Ui(xj , εij) is generally assumed to be strictly increasing in xj and
nondecreasing in εij (Che and Koh, 2016; Lee, 2016). Then vj in Eq. (14) is strictly in-
creasing in xj , and eij is nondecreasing in εij , for any i ∈ [m].

We demonstrate the ANOVA decomposition in Eq. (14) through the college admission
example. The score vj in Eq. (14) represents the “public valuation” of a high school’s quality,
high school GPA, and SAT/ACT score. Although most colleges place the highest impor-
tance on academic achievement in evaluating applications, each factor’s specific weight can
differ from college to college. Moreover, “holistic admission”—such that a high SAT/ACT
score and a high GPA is no guarantee of admission—is not rare in college admissions, es-
pecially for top colleges. The decomposition in Eq. (14) incorporates the college-specific

weight for students’ academic performance and extracurricular activity to terms e†ij and e‡ij .

The term e†ij in Eq. (14) can represent college-specific adjustment, which is “private valu-
ation” of a student’s high school record and SAT/ACT score, in addition to special talent,
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Figure 7: ANOVA decomposition of the utility function corresponding to Eq. (14).

grades of challenging college preparatory curriculum and work experience. For example,
some colleges may place a larger weight on the SAT/ACT score than other colleges. The

term e‡ij in Eq. (14) is a college-specific “private valuation” of students’ writing skills and
compelling personal stories.

A.2 Proof of Theorem 1: Acceptance Probability

Proof The uncertainty of the arm’s acceptance comes from two parts: state of the world
and agents’ strategies. We prove the existence of an acceptance probability mass function
(PMF) πi(si, vj) by a three-step construction. First, Nature draws the state ω and arms’
preferences for agents that are characterized by ω. Then agent-specific states are determined
as a function of ω: si = si(ω) for i ∈ [m].

Second, we derive an arm’s acceptance probability. Suppose now agent Pi pulls arm
Aj . Since Aj would accept its most preferred agent among those who have pulled it, Aj ’s
acceptance of Pi depends on other agents’ strategies. Let I ⊆ [n] and PI ≡ {Pi, i ∈ I}. We
define

µi,I∪{i}(ω, vj , ej) ≡ P(Aj accepts Pi | PI∪{i} pulls Aj).

That is, µi,I∪{i}(ω, vj , ej) is the probability mass function (PMF) that an arm with the same
score and fits as Aj would accept Pi conditional on agents PI∪{i} have pulled the arm. The
µi,I∪{i}(ω, vj , ej) depends on arms’ preferences as characterized by ω, and also on agents’
strategies determined by the score vj and the vector of fits ej = (e1j , . . . , emj). Moreover,
µi,I∪{i}(ω, vj , ej) is a valid PMF as it satisfies∑

k∈I∪{i}

µk,I∪{i}(ω, vj , ej) = 1, ∀j ∈ [n]. (15)

Third, we derive an arm’s acceptance probability from an agent’s perspective. Suppose
again that agent Pi pulls arm Aj . Let I−i ≡ {I : I ⊆ [n] \ {i}} be the family of subsets of
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[n] \ {i}. Then by Tonelli’s theorem,

P(Aj accepts Pi | Pi pulls Aj)

= E
[
P(Aj accepts Pi | PI∪{i} pulls Aj , P[n]\(I∪{i}) do not pull Aj)

]
= EI∈I−i

[
Ee−i,j [µi,I∪{i}(ω, vj , ej) · 1(PI pulls Aj) · 1(P[n]\(I∪{i}) do not pull Aj)]

]
,

(16)

where e−i,j = (e1j , . . . , ei−1,j , ei+1,j , . . . , en,j). Conditional on vj , 1(PI pulls Aj) only de-
pends on {ek, k ∈ I}, and similarly, 1(P[n]\(I∪{i}) do not pull Aj) only depends on {ek, k ∈
[n] \ (I ∪ {i})}. By definition,

πi(si, vj) = P(Aj accepts Pi | Pi pulls Aj).

By Eqs. (15) and (16), it is clear that πi(si, vj) is a valid marginal PMF of acceptance. In
particular, πi(si, vj) is averaged over other agents’ strategies except Pi’s. Note that πi(si, vj)
does not depend on eij since πi is defined by conditioning on Pi’s strategy, that is, Pi pulls
Aj . In other words, the probability πi(si, vj) represents the uncertainty of Aj accepting Pi.

Finally, the expected utility that agent Pi receives from pulling arm Aj ∈ A is

E[utility] = E[utility | successful pulling] · P(successful pulling)

= (vj + eij) · πi(si, vj).

This completes the proof.

Remark 11 Although the probability µi,I∪{i}(ω, vj , ej) defined in the proof captures the
distribution of arms’ preferences, it is imperfect in practice for two reasons. First, if Pi
wants to estimate µi,I∪{i}(ω, vj , ej), it requires Pi to identify other agents who are also
pulling Aj, that is, to identify the set I. However, each agent’s choice set for arms differs
over time and Pi cannot learn which arms the other agents are pulling since the market is
decentralized and communications among agents are not allowed. Second, µi,I∪{i}(ω, vj , ej)
relies on the fit vector e−i,j = (e1j , . . . , ei−1,j , ei+1,j , . . . , en,j) which is unknown to agent Pi.
On the contrary, πi(si, vj) does not require the knowledge of which agents are pulling Aj
besides Pi, and πi(si, vj) is independent of the fit e−i,j. As a result, πi(si, vj) is estimable
by Pi using historical data.

A.3 Proof of Theorem 2: Optimal Estimation of Acceptance

Proof Let f̃i be the minimizer of Eq. (3), that is,

f̃i = arg min
fi∈HKi


T∑
t=1

∑
j∈Bti

[
−ytijfi(sti, vtj) + log

(
1 + exp

(
fi(s

t
i, v

t
j)
))]

+
1

2

T∑
t=1

nitλi‖fi‖2HKi

 .

By the results in Chapters 5 of Lin (1998), we obtain that

Esi,v[(f̃i − fi)2] ≤ c1
[
T (log T )−1

]−2r/(2r+1)
as T →∞,
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where λi ≤ cλ[T (log T )−1]−2r/(2r+1). Here, cλ, c1 > 0 are constants independent of T .
Moreover, the estimate f̃i is minimax rate-optimal. By the generalization properties of
random features (Rudi and Rosasco, 2017), it is known that if the number of random
features satisfies

p ≥ cp[T (log T )−1]−2r/(2r+1),

then there exists some constant c2 > 0 such that

Esi,v[(f̂i − f̃i)2] ≤ c2
[
T (log T )−1

]−2r/(2r+1)
as T →∞.

By the triangle inequality, there exists some constant cf > 0 such that

Esi,v[(f̂i − fi)2] ≤ Esi,v[(f̂i − f̃i)2] + Esi,v[(f̃i − fi)2]

≤ cf
[
T (log T )−1

]−2r/(2r+1)
as T →∞.

Therefore, the estimate f̂i in Eq. (4) is minimax rate-optimal.

A.4 Proof of Theorem 3: Cutoff Strategy

Proof First, we show that the cutoff strategy with respect to the fits is optimal. Suppose
that arms Aj1 , Aj2 ∈ AT+1 have the same score vj1 = vj2 , but Aj1 has a worse fit than
Aj2 for agent Pi. Now assume that Aj1 was pulled by Pi but Aj2 was not, that is, Aj1 ∈
B̂i(si), Aj2 6∈ B̂i(si). Then the expected number of arms accepting Pi is unchanged if Pi
replaces Aj1 with Aj2 in B̂i(si). On the other hand, since the Pi’s expected payoff in Eq. (6)
is strictly increasing in fit eij , Pi has a strictly larger expected payoff if Pi replaces Aj1 with
Aj2 . Hence, Pi should pull Aj2 instead Aj1 . This argument holds regardless of strategies of
other agents.

Second, we prove that the cutoff êi(si, v) in Eq. (8) is well-defined. If the boundary
{B+i (si) \ B−i (si)} is not empty, the expected penalty due to exceeding the quota is

γi
∑

j∈B+i (si)

πi(si, vj)− γiqi.

The expected utility of pulling arms on the boundary is∑
j∈B+i (si)\B−i (si)

(vj + eij) · πi(si, vj).

Agent Pi pulls an arm if the expected utility is at least the expected penalty, which justifies
the condition specified by Eq. (7). Moreover, since êi(si, v) ∈ [0, 1], we conclude that the
cutoff is well-defined.

Third, we prove that the cutoff êi(si, v) is the unique optimal cutoff. Let ẽi(si, v) ∈ [0, 1]
be any other cutoff. We define a mixed strategy

σi(si, v, ei; t) ≡ t · 1{ei ≥ ẽi(si, v)}+ (1− t) · 1{ei ≥ êi(si, v)}, for t ∈ [0, 1].
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The expected payoff of using the mixed strategy σi is

Ui(t) ≡
∑

j∈AT+1

(vj + eij) · πi(si, vj) · σi(si, vj , eij ; t)

− γi ·max

 ∑
j∈AT+1

πi(si, vj) · σi(si, vj , eij ; t)− qi, 0

 .

It is clear that Ui(t) is concave in t. We discuss the local change dUi(0)/dt in three cases.

Case (I). Consider removing a single arm from B̂i(si). If the arm is from the non-empty
boundary {B+i (si) \ B−i (si)}, the condition specified in Eq. (7) implies that Pi’s expected
payoff will decrease if not pulling the arm. Moreover, since removing any other arms from
B̂i(si) results in a greater loss of Pi’s expected payoff compared to removing the arms on
the non-empty boundary, we have dUi(0)/dt < 0 in this case.

Case (II). Consider adding a new arm to B̂i(si), where the new arm has attributes
{vj′ , eij′} and it is not from the set B+i (si). Denote by B′i(si) the new arm set with the
added arm. Note that Pi pulls a new arm only if the arm has a larger expected utility than
the expected penalty due to exceeding the quota, that is,

(vj′ + eij′) · π(si, vj′) ≥ γi
∑

j∈B′i(si)

πi(si, vj)− γiqi. (17)

Since the new arm is not in B+i (si), we have

∑
j∈B′i(si)

πi(si, vj)− qi

=
∑

j∈B′i(si)

πi(si, vj)−
∑

j∈B+i (si)

πi(si, vj) +
∑

j∈B+i (si)

πi(si, vj)− qi

≥
∑

j∈B′i(si)

πi(si, vj)−
∑

j∈B+i (si)

πi(si, vj)

≥ πi(si, vj′).

(18)

Because that γi > supj∈AT+1{vj +eij}, Eq. (18) is contradictory to Eq. (17). Hence, adding

a new arm to B̂i(si) induces a loss in Pi’s expected payoff. Hence, dUi(0)/dt < 0 in this
case.

Case (III). Consider removing an arm with attributes (vj , eij) from B̂i(si) and simul-

taneously adding new arms to B̂i(si). Suppose that the new arms are from the arm set
B′′i (si) with attributes (vj′′ , eij′′). Using the argument similar to Eq. (18), we know that the
following condition must hold: ∑

j′′∈B′′i (si)

πi(si, vj′′) ≤ πi(si, vj).
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Since (vj′′ , eij′′) 6∈ B+i (si), by definition, vj′′ + eij′′ < vj + eij . Hence, the expected utility of
added arms satisfies ∑

j′′∈B′′i (si)

(vj′′ + eij′′) · πi(si, vj′′)

< (vj + eij)
∑

j′′∈B′′i (si)

πi(si, vj′′) ≤ (vj + eij) · πi(si, vj).

Therefore, exchanging an arm in B̂i(si) with arms not in B̂i(si) results in a smaller expected
payoff for Pi. Hence, dUi(0)/dt < 0 in this case.

Combining the cases (I), (II), (III), we conclude that dUi(0)/dt < 0. By the concavity
of Ui(t) in t, we obtain

Ui(1) = Ui(0) +
dUi(0)

dt
(1− 0) < Ui(0),

which implies that êi(si, v) is the unique optimal cutoff. This completes the proof.

A.5 Proof of Theorem 4: Mean Calibration for CDM

Figure 8: Cost of a strategy in the face of uncertain true state s∗i .

Proof By the proof of Theorem 3, B̂i(si) ⊆ B̂i(si − δsi) for any δsi ∈ (0, si). Hence,
the marginal set ∂B̂i(si) is well-defined. Let Vi(s

∗
i , B̂i(si)) be the expected utility that Pi

receives by pulling arms from B̂i(si) and under the true state s∗i . That is,

Vi(s
∗
i , B̂i(si)) ≡

∑
j∈B̂i(si)

(vj + eij) · πi(s∗i , vj).

Let Ni(s∗i , B̂i(si)) be the expected number of arms in B̂i(si) accepting Pi under s∗i . That is,

Ni(s∗i , B̂i(si)) ≡
∑

j∈B̂i(si)

πi(s
∗
i , vj).

Similarly, we define Vi(s
∗
i , ∂B̂i(si)) and Ni(s∗i , ∂B̂i(si)) for the marginal set ∂B̂i(si). Let the

marginal utility be

ui(s
∗
i , ∂B̂i(si)) ≡

Vi(s
∗
i , ∂B̂i(si))

Ni(s∗i , ∂B̂i(si))
.
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Since the true state s∗i is unknown, the cost of pulling the arm set B̂i(si) consists of two
parts. See an illustration in Figure 8. The first is the over-enrollment cost (OE), which
occurs if the calibration parameter si < s∗i . Then the realized number of arms in B̂i(si)
accepting Pi will be greater than the expected number of arms in B̂i(si) accepting Pi. That
is, Ni(s∗i , B̂i(si)) > Ni(si, B̂i(si)) = Ni(s∗, B̂i(s∗i )) = qi. Thus, OE depends on si and can be
written as

OE(si)

≡ Es∗i
[
γi

{
Ni(s∗i , B̂i(si))−Ni(s∗i , B̂i(s∗i ))

}
−
{
Vi(s

∗
i , B̂i(si))− Vi(s∗i , B̂i(s∗i ))

} ∣∣∣ si < s∗i ≤ 1
]

= Es∗
[∫ s∗i

t=si

[γi − ui(s∗i , ∂B̂i(t))] · Ni(s∗i , ∂B̂i(t))dt

∣∣∣∣∣ si < s∗i ≤ 1

]
.

Here, OE(si) equals the penalty of the arms in B̂i(si) which would accept Pi exceeding the
quota, and deducts the utility of these arms.

The second part of the cost is under-enrollment (UE), which occurs if the calibration
parameter si > s∗i . Then Ni(s∗, B̂i(si)) < Ni(s∗i , B̂i(s∗i )) = qi. The UE(si) equals the
opportunity cost in the sennse that Pi could have successfully pulled more arms:

UE(si) ≡ Es∗i [Vi(s
∗
i , B̂i(s∗i ))− Vi(s∗i , B̂i(si)) | 0 ≤ s∗i < si]

= Es∗i

[∫ si

t=s∗i

ui(s
∗
i , ∂B̂i(t)) · Ni(s∗i , ∂B̂i(t))dt

∣∣∣∣∣ 0 ≤ s∗i < si

]
.

Therefore, the goal of finding si to maximize the Pi’s average-case expected payoff can be
written as:

arg max
si∈(0,1)

{
Es∗i

[
Vi(s

∗
i , B̂i(si))− γi max{Ni(s∗i , B̂i(si))− qi, 0}

]}
.

This goal is equivalent to finding si to minimize the weighted sum of OE(si) and UE(si)
with the occurrence probabilities as the weights:

arg min
si∈(0,1)

{
(1− Fs∗i (si))OE(si) + (Fs∗i (si)− P(s∗i = si))UE(si)

}
.

By the first-order condition, the minimizer si ∈ (0, 1) satisfies

[1− P(s∗i = si)]Es∗i [Vi(s
∗
i , ∂B̂i(si)) | s∗i 6= si]

= γi(1− Fs∗i (si))Es∗i [Ni(s∗i , ∂B̂i(si)) | si < s∗i ≤ 1].
(19)

This result proves Eq. (9). Note that there always exists a solution to Eq. (9) since when
si → 0+, Fs∗i (si)→ 0, γi > ui(s

∗
i , ∂B̂i(si)); and when si → 1−, Fs∗i (si)→ 1, Vi(s

∗
i , ∂B̂i(si)) >

0; and the right side of Eq. (9) is strictly decreasing in si.
Here, we assume the calibration parameter si ∈ (0, 1) in the definitions of OE(si) and

UE(si). We prove that this assumption is without less of generality by showing that if
si = 1, Pi can pull more arms to obtain a larger expected payoff, and if si = 0, Pi can
pull less arms to obtain a larger expected payoff. Consider that if si = 1 and Pi pulls an
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additional arm A which is not pulled currently, that is, A 6∈ B̂i(1). Then the expected
number of arms that accept agent Pi is

Ni(s∗i , B̂i(1) ∪ {A}) = Ni(s∗i , B̂i(1)) +Ni(s∗i , {A})

Let s̃i satisfy Ni(s̃i, B̂i(1) ∪ {A}) = qi. Since Ni(s∗i , B̂i(1) ∪ {A}) > Ni(s∗i , B̂i(1)), we have
s̃i < 1. Let A be the arm such that s̃i > 1− εs for some sufficiently small εs > 0. Then the
difference of average-case expected payoffs from pulling two arm sets B̂i(1)∪{A} and B̂i(1)
is

Es∗i [Vi(s
∗
i , {A})]− γiEs∗i

[
qi −Ni(s∗i , B̂i(1) ∪ {A})

∣∣∣ s̃i < s∗i ≤ 1
]

= Es∗i [Vi(s
∗
i , {A})]− γiEs∗i [Ni(s∗i , {A}) | s̃i < s∗i ≤ 1]

+ γiEs∗i
[
qi −Ni(s∗i , B̂i(1))

∣∣∣ s̃i < s∗i ≤ 1
]

> Es∗i [Vi(s
∗
i , {A})]− γiEs∗i [Ni(s∗i , {A}) | s̃i < s∗i ≤ 1]

= Ui(A)Es∗i [Ni(s∗i , {A}) | 0 ≤ s∗i ≤ s̃i]− [γi − Ui(A)]Es∗i [Ni(s∗i , {A}) | s̃i < s∗i ≤ 1]

> 0,

where Ui(A) is the latent utility of arm A defined in Eq. (1). The last step holds for
sufficiently small εs > 0. Similarly, if si = 0, Pi can benefit by pulling less arms. Thus, the
assumption that si ∈ (0, 1) is without less of generality.

If Fs∗i (·) has discrete support, we require that UE(si) is at least OE(si). By the first-
order condition similar to Eq. (19), we find the minimal si ∈ [0, 1] such that

[1− P(s∗i = si)]Es∗i [Vi(s
∗
i , ∂B̂i(si)) | s∗i 6= si]

≥ γi(1− Fs∗i (si))Es∗i [Ni(s∗i , ∂B̂i(si)) | si < s∗i ≤ 1],
(20)

where the search of si starts from the maximum value in the support to the minimal value.
We note that the calibration in Eq. (20) is a conservative counterpart as compared with
the calibration such that OE(si) is at least UE(si):

[1− P(s∗i = si)]Es∗i [Vi(s
∗
i , ∂B̂i(si)) | s∗i 6= si]

≤ γi(1− Fs∗i (si))Es∗i [Ni(s∗i , ∂B̂i(si)) | si < s∗i ≤ 1].
(21)

The calibration in Eq. (20) is preferred to that in Eq. (21) since we want the calibration to
be sensitive to the penalty γi. This completes the proof.

A.6 Proof of Theorem 5: Maximin Calibration for CDM

Proof We use the notations Vi(s
∗
i , B̂i(si)) and Ni(s∗i , B̂i(si)) defined in Appendix A.5. The

maximum over-enrollment cost for any si ∈ [0, 1] is

max
s∗i∈[0,1]

{OE(si)} = γi{Ni(1, B̂i(si))−Ni(1, B̂i(1))} − {Vi(1, B̂i(si))− Vi(1, B̂i(1))}.
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Since γi > supj∈AT+1{vj + eij}, maxs∗i {OE(si)} is strictly decreasing in si. The maximum
under-enrollment cost for any si ∈ [0, 1] is

max
s∗i∈[0,1]

{UE(si)} = Vi(0, B̂i(0))− Vi(0, B̂i(si)),

which is strictly increasing in si. Hence, the goal of maximizing the minimal total expected
payoff maxsi mins∗i {U

S
i (B̂i(si))} is equivalent to minimizing the larger one between OE(si)

and UE(si):

min
si∈[0,1]

max

{
max
s∗i
{OE(si)},max

s∗
{UE(si)}

}
.

This objective amounts to finding si such that

max
s∗i∈[0,1]

{OE(si)} = max
s∗i∈[0,1]

{UE(si)}. (22)

This proves Theorem 5. Moreover, there exists a unique solution to Eq. (22) since when
si = 0, maxs∗i {OE(0)} > maxs∗i {UE(0)} = 0, and when si = 1, maxs∗i {UE(1)} > 0 =
maxs∗i {OE(1)}, and together with the fact that maxs∗i {OE(si)} and maxs∗i {UE(si)} are
monotonic continuous functions of si.

If Fs∗i (·) has discrete support, we requires that the maximal UE(si) is at least the maxi-
mal OE(si). Hence, we need to change the goal in Eq. (22) to finding the minimal si ∈ [0, 1]
such that maxs∗i {UE(si)} ≥ maxs∗i {OE(si)}. This completes the proof.

A.7 Proof of Theorem 6: Incentives of Agents

Proof First, by Theorem 3, CDM uses the cutoff strategy to arms’ latent utilities in
Eq. (1). Since arms’ latent utilities determine agents’ true preferences, agents act according
to their true preferences under CDM.

Second, Theorem 2 proves the consistency of the acceptance probability estimate using
historical data. Theorems 4 and 5 show that the CDM maximizes the agent’s expected
payoff, given the population acceptance probability. Here the expected payoff is measured
in either average-case or worst-case concerning the uncertain true state. Thus, it is a
dominant strategy for each agent to act according to the CDM.

Combining these two observations, we conclude that as T → ∞, CDM is a procedure
that gives agents the incentives to act according to true preferences.

A.8 Proof of Theorem 7: Stability of CDM

Proof Suppose that an agent-arm pair (Pi, Aj) forms a blocking pair. Then it implies one
of the following two cases:

(I). Pi prefers Aj to some of its matched arms.

(II). Pi has unfilled quota and Aj is unmatched.
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For case (I), Pi must have pulled Aj according to the cutoff strategy of CDM by Theorem
3. However, Pi must have been subsequently rejected by Aj in favor of some agent that
Aj liked better. Hence, Aj must prefer its currently matched agent to Pi and there is no
instability.

For case (II), Pi did not pull Aj since otherwise, Aj would have accepted Pi. Note
that Theorem 2 proves the consistency of acceptance probability estimate using historical
data. The individual rationality in Eq. (11) implies that Pi would find Aj unacceptable in
the decentralized market, given the population acceptance probability. Thus, there is no
instability.

Combining these two cases, we conclude that as T →∞, CDM yields a stable matching
in decentralized markets.

A.9 Proof of Theorem 8: Fairness of CDM

Proof By Theorem 6, the CDM gives agents the incentives to act on their true preferences,
as T → ∞. Hence, each agent pulls arms according to its true preference for arms. If an
arm Aj prefers an agent Pi′ to another agent Pi that pulls Aj , then all arms pulled by Pi′

must rank above Aj according to the true preference of Pi′ . By definition, we conclude that
the matching procedure according to CDM is fair.

A.10 Proof of Theorem 9: Unfairness of the Oracle Set

Proof Denote by e∗i (v) the cutoff curve corresponding to the oracle arm set B∗i in Eq. (12):

e∗i (vj) = min
{

max
{
γi · P(s∗i ∈ OB∗i )

Es∗i [πi(s
∗
i , vj) | s∗i ∈ OB∗i ]

Es∗i [πi(s∗i , vj)]
− vj , 0

}
, 1
}
, ∀j.

The average-case expected utility of an arm from the cutoff curve is

Ui(vj , e∗i (vj)) = (vj + e∗i (vj)) · Es∗i [πi(s
∗
i , vj)]− γi · P(s∗i ∈ OB∗i )Es∗i [πi(s

∗
i , v) | s∗i ∈ OB∗i ].

Hence, for e∗i (vj) ∈ (0, 1),
Ui(vj , e∗i (vj)) = 0.

Since the acceptance probability πi(si, v) is strictly increasing in si, Es∗i [πi(s
∗
i , v) | s∗i ∈

OB∗i ] > Es∗i [πi(s
∗
i , v)]. Thus, for e∗i (vj) ∈ (0, 1),

vj + e∗i (vj) = γi · P(s∗i ∈ OB∗i )
Es∗i [πi(s

∗
i , vj) | s∗i ∈ OB∗i ]

Es∗i [πi(s∗i , vj)]

> γi · P(s∗i ∈ OB∗i ).

(23)

By Eq. (13), we can derive that

Es∗i

[
∂πi(s

∗
i , vj)

∂v

]
< Es∗i

[
∂πi(s

∗
i , vj)

∂v

∣∣∣∣ s∗i ∈ OB∗i ] < 0, ∀vj ∈ (v′, v′′).
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This inequality together with Eq. (23) yield that for vj ∈ (v′, v′′) and e∗i (vj) ∈ (0, 1),

∂Ui(v, e∗i (v))

∂v

∣∣∣∣
v=vj

= Es∗i [πi(s
∗
i , vj)] + (vj + e∗i (vj))Es∗i

[
∂πi(s

∗
i , vj)

∂v

]
− γi · P(s∗i ∈ OB∗i )Es∗i

[
∂πi(s

∗
i , vj)

∂v

∣∣∣∣ s∗i ∈ OB∗i ]
< Es∗i [πi(s

∗
i , vj)].

Thus, by the implicit function theorem,∣∣∣∣de∗i (vj)dv

∣∣∣∣ =

∣∣∣∣ ∂Ui(vj , e∗i (vj))/∂v∂Ui(vj , e∗i (vj))/∂e∗i

∣∣∣∣ < Es∗i [πi(s
∗
i , vj)]

Es∗i [πi(s∗i , vj)]
= 1, ∀vj ∈ (v′, v′′),

Therefore, we can find two arm sets B(1)i ,B(2)i ⊆ (v′, v′′)× [0, 1] and a constant c0 such that,

for all (vj , eij) ∈ B(1)i , eij > e∗i (vj) and vj + eij < c0, and for all (vj , eij) ∈ B(2)i , eij < e∗i (vj)

and vj +eij > c0. Hence, the arms in B(2)i have justified envy toward arms in B(1)i . We refer
to Figure 2 for an illustration. By definition of fairness, the strategy corresponding to the
oracle set in Eq. (12) is unfair.
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