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MoTIvATION

The problems of event counting within a given time horizon

m They naturally arise in a wide range of disciplines
(e.g.), epidemiology, insurance claims, corporate defaults, ...




MoTIVATION (CONT.)

The highest score made in a Soccer game

A rare event often refers to was 149-0, one of the team started scoring
infrequently observable events own goals to protest against the referee's
decision.

m |t may have widespread impacts,
potentially leading to the instability
of an entire system

Rare events often involve extreme
losses that fall far from the mean

m An accurate estimation of the
distributional tail behavior is
challenging but critical

m Inaccurate estimates can lead to
suboptimal resource allocation or
missed opportunities




MoTIVATION (CONT.)

Frequency Of Soccer Results
Percentage of men’s English league games ending in a given score,
for tiers 1-4, 1888 through 2013-14 season

FINAL VISITOR SCORE
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Monte CarLo (MC) SimuLATION

m Consider a counting process N
> Nr counts the number of events on [0, T] for some T > 0
m Tail probability of our interest is written as,
£ &x(T) =P(Nt > k) =E (l{NTZk})

for some k sufficiently large (relative to T)

m The mathematical model is often too complicated to be solved by
analytical methods for many real-world problems
> When the underlying models are complex, Monte Carlo (MC) is the
standard and useful method of assigning a numerical value to ¢




MonTe CARLO (MC) SIMULATION (CONT.)

m An advantage of MC methods is that they often generalize to related
(and practically more important) problems

> The Bayes’ formula allows one to investigate the expected behavior of
any random variable X conditional on a tail scenario

E(X - Tingk)

E(X|Nr>k) = )

> Just like ¢, one can estimate E(X - 1y,»x) via MC sampling
> No knowledge of the law of X conditional on the tail event is required

m For rare event problems, however, this MC simulation approach
should not be implemented naively



Drawsacks oF PLAIN MC

m A plain MC (pMC) method is inaccurate and inefficient for small ¢
> The plain MC scheme needs 1/¢ replications on average to get a
single occurrence
> The further we move into the tail, the smaller ¢ becomes

> The pMC scheme generates very few nonzero samples, leading to
inefficiencies

= It is not adequate when the ¢ is too small to observe the sufficient
number of events that hits the rare event threshold




Draweacks oF PLAIN MC (con.

m Let ¢ denote an unbiased estimator of ¢ (e =E(p) )

> A standard measure to quantify the (in)efficiency is the relative error

_ +/ Var(p)

&

> The pMC estimator, ¢ = 1y, ), Yields

v=+1l/e-1—>00 as ¢€/0

> It becomes even more notorious for estimating E (X | Nt > k)

m In the rare event regime when the denominator vanishes, our hope is to get
a bounded relative error (BRE) in the limit

> This has motivated the design of variance reduction methods which supply
alternative estimators ¢ to reduce Var(¢p)

> Important sampling aims to choose a ‘good’ distribution for variance
reduction based on a measure-change argument



OUR APPROACH

m A bit of intuition (P vs. P*)
> Let P be the reference probability measure for pMC
> We construct a (conditional) tail sampling measure P* (distinct from P) with

P*(Ny > k) =1

> We draw samples of “adjusted” ¢ under P*
(= A measure-change theory is needed for correcting the distortion)




OUR APPROACH

m A bit of intuition (P vs. P*)
> Let P be the reference probability measure for pMC
> We construct a (conditional) tail sampling measure P* (distinct from P) with

P*(Ny > k) =1

> We draw samples of “adjusted” ¢ under P*
(= A measure-change theory is needed for correcting the distortion)

m A measure-change argument (P — P*)
> Estimate the expectation by twisting the probability measure

e=P(Ny>k)=E (1|NT2H) = L 1{NT2k]dP

dpP
= f =k - 75w 4P* = E* (9)
o N

=1 -

> Can we find such a pair of (P*,p)? (= Yes)

/Var* (p)

&

8]

> Can we achieve v* = <ocase | 0? (= Yes,inmany cases)



MAIN CONTRIBUTIONS

This study develops a novel, easy to simulate and fast MC estimator of
rare event probabilities via (conditional) Tail Sampling (cTS) schemes

m |t accommodates any model specification provided it can be simulated

Our algorithm provides meaningful efficiency gains by ensuring each
simulated path hits the rare event with probability one

m [t guarantees that none of the simulated paths will be wasted

m Our approach facilitates a reduction in the sampling error that often
contaminates event time simulation estimators




MAIN CONTRIBUTIONS (CONT.)

The cTS approach possesses attractive properties for simulation

m Our method does not require the computation of any optimal or tuning
parameter(s) and eliminates the need for numerical inversion procedures

m They can be extended to estimate conditional expectations on the tail event
E(X 1)  E*(X-9)
E(1in2k) E*(¢)

E(X|Nr > k) =

We test our algorithms on a wide spectrum of applications using
empirically motivated reduced-form models

m Our findings illustrate the superior performance of the proposed cTS
scheme over plain MC




OVERVIEW

m Part I: Tail Probability Estimation

e=P(Ny>k) forlargek (relative to T)

m Part Il: Conditional Expectations on the Tail

E (X - Iiny2k)

E(X|Nr 2 k)= -

m Part lll: Applications to Finance & Insurance
> Expected aggregate loss conditional on systemic credit events
> (Ultra-short) Term structure of credit spreads on defaultable securities
> Expected maximum drawdown conditional on catastrophic scenarios




PaRrT I:
TAIL PROBABILITY ESTIMATION




Basic seTup

m Fix a measurable space (QQ, X)

m We construct both P and P* on (Q, X)

> P: the reference measure for plain MC (pMC)
> P*: the conditional tail-sampling measure for cTS

Introduce a sequence of ordered stopping times {t,},-o such that

0=10<T1<Tp<---,Where lim 7, = c0
{— o0

m Define the counting process

N, = Z 1(T(St|

€21

For integer ¢ > 1, define 6, = 7, — 1,1 (> 0) as the inter-arrival times




Basic seTuP (CONT.)

m Construct a sequence of nonnegative
processes {h},s

> Each hf is activated between event
arrival times

m The sequence of variables {Z;};>;
specifies initial conditions as

hg _ Zt‘ ife=1
O G +Ze (=2
m Define A as
Atee,, =hE for te€]0,0)

m We take FF = ()0 With F, C X to be
the right-continuous (and completed)
filtration generated by the pair (N, A)

Ty

» Time



THE PLAN MC FRAMEWORK (UNDER P)

Time-change scheme (Meyer 1971)
m A complete probability space (QQ, X, P)
m Introduce an i.i.d. sequence of standard exponential r.v.s {E;}r>1

m Define the random (hitting) time 6, by
t
Gg:inf{t>0:fhfd5283}
0

m We view the I as the (conditional) inter-arrival rate of the £ event of N;
i.e., we refer to each process {h‘};> an inter-arrival intensity of N

m The event counting process N admits A as its intensity

> The intensity represents the conditional mean arrival rate at each time
for small A > 0

E(Niua - Ni | 77)

A = lim A




OUR (CONDITIONAL) TAIL SAMPLING SCHEME (UNDER P*)

m We construct the cTS measure P* specific to the tail event {N > k}

1. For some y > 0, we construct P,, as the probability measure on (Q, ) under
which N adopts the following values as its intensity:

Y for t €0, k)
Ay for t> 14

2. For afixed T > 0, we construct P;,* as

PX(«/) £ P)(o/ | Ny 2 K) forall o € ©

3. Under the Portmanteau theorem (for convergence of measures), we take the
limiting measure

P;=P* as y |0




OUR (CONDITIONAL) TAIL SAMPLING SCHEME (UNDER P*)

m We construct the cTS measure P* specific to the tail event {N > k}

1. For some y > 0, we construct P,, as the probability measure on (Q, ) under
which N adopts the following values as its intensity:

Y for t €0, k)
Ay for t> 14

2. For afixed T > 0, we construct P;,* as
P;,‘(%) =P, (& |Nr 2k) forall & e &
3. Under the Portmanteau theorem (for convergence of measures), we take the
limiting measure
P;=P* as y |0

m Primary properties of P*

> The change of measure is only absolutely continuous (P* < P); not equivalent
> |t concentrates all probability mass on {Ny >k} = P*(Nt >k) =1
> The sequence {1, ..., ¢} forms the uniform order statistics on [0, T]




OUR (CONDITIONAL) TAIL SAMPLING SCHEME (UNDER P*)

m Let {u,}f_, be a collection of i.i.d. uniform order statistics on [0, T]
m For{=1,..., k we redefine the spacing 6, = u;, — u,_; (by setting 7, = u; )

m Define n, = Iy exp (— foef hfds) and

T*
(Pk(T) = F H Ne
=1

Theorem (Conditional Tail Sampling)

For any T > 0 and integer k > 1, we have

¢ = P(Nr 2 k) = E*(px(T)).

m For the sake of notational simplicity, we will use E and E* interchangeably




SIMULATION ALGORITHM (SKETCH)

Event 4
Arrival
Intensity

A

Tail-sampling Regime

A ' 1. Draw an ordered sample of {uy, ..., ux}

AUAN uniformly from [0, T]

| \ 2. Compute @i (T) from a conditional
\ | sample path of {r{}¥_ ont €[0,6,)

N\ 3. Return the sample mean of x(T)

» Exact Bridge Transform
» Conditional Point Sampling
k events
» Doubly Stochastic Poisson Processes

| N I N [ A N (N N (N | q
11> Time

Tk k O¢
o(T) = o H hlé[ exp (—f hgds)
T =1 0




AsyMPTOTIC ANALYSIS FOR BRE

The T/k — 0 asymptotics

Theorem (Bounded relative error)

Suppose that we have T((*)

achieves its asymptotic bounded relative error; i.e.,

— 0 asx — oo. The cTS estimator ¢(x) of e(x)

limsupw < oo,

if the following conditions hold:

k(x) 2
. Ne
1. (Upper Bound):  limsup E* < 00
(Upp: ) X_)Dop {!_‘[(E*('](’)) ]

()
2. (Lower Bound): hm mf E*[ J >0
l_[ E*(Tlf)

(Note): n; = hg[ exp (— A e hgds) — i as T/k— 0 (under mild regularity conditions)




ExamPLE #1: TAIL PROBABILITY ESTIMATION

Epidemiologic Network

m This example deals with a risk analysis model of how diseases can be
transmitted within a networked population

m Epidemiologic networks can take various forms, including social networks,
contact networks, and more complex models that incorporate factors such
as disease incubation periods and transmission probabilities

m The network can be used to study the dynamics of disease transmission,
identify sources of infection, and develop strategies for disease control and
prevention

m Several natural and human-made systems, including the World Wide Web,
citation networks, and some social networks, contain few nodes (called
hubs) with unusually high degree as compared to the other nodes




ExampLE #1: TAIL PROBABILITY ESTIMATION (CONT.)

A realistic network structure of the Barabasi-Albert model
m Our network analysis adopts the Barabasi-Albert (BA) model

m It reflects the scale-free power-law of degree distribution by addressing the
preferential attachment feature existing in real-world networks

: 70

60

20




ExampLE #1: TAIL PROBABILITY ESTIMATION (CONT.)

A bottom-up formulation of self-exciting intensity specification

m For given n € N agents, each infection indicator process N' € {0, 1} admits
its intensity with w; > 0

Al = (a),-xo + xi) (1 - Ni)

m A’ denotes the intensity of the infection process of the i agent

> xOI: the systematic risk factor as the common source of indirect transmission
> {x'}iL, = aset of idiosyncratic factors as the drivers of direct contagion

m The intensity of the infection counting process N; = Y., Ni is obtained by

A=Y Al for £20

i=1




ExampLE #1: TAIL PROBABILITY ESTIMATION (CONT.)

m Let n be the rarity parameter for estimating P (Nr, > k) with relative errors

> WesetT, =c/nandk, = un forc=300and yu =0.1

> We increase the size of the network and shrink the investigation horizon, while
keeping the threshold at 10% of the population

> We allow 60 seconds of CPU time for each estimation
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ParT ll;
ConNDITIONAL EXPECTATIONS ON THE TAIL




MoTIvATION

m We focus on the extreme values of a distribution, where the probability is
low but the consequences can be significant
> The conditional expectation on the tail events can facilitate an

understanding of how a random variable behaves in such
circumstances

m The Bayes’ formula allows one to investigate the expected behavior of any
random variable X conditional on a tail scenario

E(X - Lingk)
€

E(X|Nr>k) =

> No knowledge of the law of X conditional on the tail event is required



MARKED PoINT PROCESS

m Consider a sequence of random quantities (e.g., random losses) ©t; > 0 as
a mark associated with each arrival time 7, for £ > 1

m The loss process L is defined as

Lt:Znt’;

=1

where the jump times of N and L coincide, and the ¢-th jump size of L is n,

m N can be described as a special example of L, where i, = 1 forall £ > 1




AN EXTENDED ¢ TS SCHEME

Fix some (T, T,) such that 0 < T; < T, to estimate E (LT2

Nr, 2 k|
m Now we extend the tail sampling scheme specific to the tail event {Nr, > k}

k
Let {u?}k1 be a collection of i.i.d. uniform order statistics on [0, T1]

[

m Also consider an i.i.d. sequence of standard exponential random variables
{Ectesk

m We redefine the spacing 6, as

u?l _”21 fore=1,...,k
t=y. t oy
inf{t>0: [(hds>&} forlzk+1




CoNDITIONAL TAIL SAMPLING ALGORITHM

Event 4
Arrival
Intensity

Tail-sampling Regime

k events




CoNDITIONAL TAIL SAMPLING ALGORITHM

Event 4
Arrival
Intensity

k—— Tail-sampling Regime —»




CoNDITIONAL TAIL SAMPLING ALGORITHM

Event 4
Arrl\./al Tail-sampling Regime <«—— Normal Regime ———
Intensity |
[ |
1 |
| | | |
i | | )
|
| h .
\J! \\\
. |
k events \
| h _
HH———— 1+t F— Time
v T T,




THEOREMS FOR CONDITIONAL EXPECTATIONS

Theorem (Extended conditional tail sampling)

For any integer k > 1, the following identities hold for (0 <) Ty < T5:

B (1r, (1)

E* (x(T1)

Theorem (Relative error bound)

Let ¢ = @i(Ty). Then, we have

E(LTz iy, zk}) =E*(Lr, @(Tn));  E(Lr, |Np, 2k) =

E(L2 -2
Var (L, |Nr, > k) ) VE@) ( T, P ) ,
E (LTziNTl > k) E ((P) E (LTZ o ({))

if Cov (L@, ¢) = 0 holds.



ExampLE #2: SysTemic CReDIT Loss

Default Clustering in a Stochastic Network

m This example examines the potential (expected) consequences that a
financial system or market may face in extreme or tail-risk scenarios in a
shorter horizon

m This analysis focuses on understanding how the credit risk at the
system-level evolves when the financial system experiences severe stress
or crisis events at the beginning

m We are interested in estimating both
P(Nrg > k(x)) and E (NT | Nr k(x)) ,

where T(x) — 0 and k(x) — co as x — oo



ExampLe #2: SysTemic CREDIT Loss (CONT.)

99% C.I. of P(Nry = k(X))

m Estimated P (NT(x) > k(x)) and their relative errors
> We take T(x) = T/x with T = 5 and k(x) = 5x

N DV
107! B Y
e,
10-% =
oy
10-° E
.,

1013 -
1077 .
10-2 “w,
10-25 { =%= Plain Monte Carlo -

@ Tail Sampling Scheme ®

2 3 4 5 6 7 8 9

x

(a) P (NT(x) > k(x))

Relative Errors

* == Plain Monte Carlo
H @ Tail Sampling Scheme




ExampLe #2: SysTemic CREDIT Loss (CONT.)

m Estimated E (NT | Ny = k(x)) and their relative errors
> We take T(x) = T/x with T = 5 and k(x) = 5x

~#= Plain Monte Carlo
®- Tail Sampling Scheme

99% C.I. of E(Nr|Nry = k(x))
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(a) E(Nr | Nru 2 k)

9
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(b) Relative Errors (Log scale)



ParT lll:

APPLICATIONS TO FINANCIAL EXAMPLES




ExampPLE #3: DEFAULTABLE SECURITY PRICING

(Short) Term structure of credit spreads for risky zero coupon bonds

m To estimate the term structure of credit spreads by determining fair
compensation for bearing credit risk across various maturities

> Our focus is on the short-term regime with a small value of T | 0

Practical relevance with “small” T

m When a depository institution establishes a daily interest facility (DIF), the
central bank adjusts the DIF rate to account for the overnight credit
spread between unsecured and collateralized overnight lending

m The growing prevalence of blockchain technology has created a need for
an ultra-short tenor interest rate curve that can be estimated at an intraday
level to enable immediate settlement of transactions in the real-time
interbank money market



ExampLE #3: DerAULTABLE SECURITY PRICING (CONT.)

An illustrative model specification (t: Default arrival time)
Short-rate process: dr; = x(y — r)dt + o \ridW]

A state process: dx; = a(b — x;)dt + c\x, dWF, W' L W*

m Default intensity process: A, = (pr[ + Mxt) Lisy, pe(0,1)

Recovery process: R; = €(0,1)

A+/\

Loss process: Ly = (1 = R;) - Ljz<y = m ey
\__\,..L

= mark

(Our interest): Term structure of credit spreads as T | 0
= No closed-form solution is available for defaultable security pricing



ExampLE #3: DerAULTABLE SECURITY PRICING (CONT.)

m (Left panel): A fixed simulation time budget of 60 seconds
> The true value of the short-horizon limit of credit spread is indicated by a
horizontal thick dotted line
m (Right panel): Set T = 1/252 across different simulation time budgets
> The relative margin of error is defined as the ratio of deviation around the point
estimate of s(T) at the 99% confidence interval
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ExampLE #4: MAXIMUM DRAWDOWN

An example of insurance risk analysis

Let (N, L) denote the claim counting and the associated loss processes

m A reserve process is defined for some a > 0 as

R[=R0+at—Lt

m The drawdown process is expressed as

Dy = sup R; - R;
s€[0,t]

m For some fixed T > 0, the maximum drawdown is given by

DX = sup D,
te[0,T]

by measuring the largest reserve drop from its peak to trough in [0, T]




ExampLE #4: MAXIMUM DRAWDOWN (CONT.)

m (Our interest): The estimation of E (D; | Nr > k)

m The conditional expectation of maximum drawdown can be expressed as
E (D} - Iivyou)
E (1pv;2n)

m It can be rewritten under the tail sampling scheme as
E (D% - pi(T))
E (px(T))

E(D;|Nr2 k)= (Plain Monte Carlo)

E(D;|Nr2k) = (Conditional Tail Sampling)

k
where we have {u 4 Mg} under the cTS scheme
=1

m D7 can be expressed as a function of {w}?’jl given the intensity trajectory




ExampLE #4: MAXIMUM DRAWDOWN (CONT.)

Estimated Tail Probabilities: P (Nt > k) for 5 < k < 40
m We allow 60 seconds of CPU time for each estimation

m The cTS scheme shows an efficient variance reduction under the stochastic
regime-changing intensity dynamics

S-a =%~ Plain Monte Carlo K
Sl ®- Tail Sampling Scheme 4
10 e . 102 ,
S ,~/
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5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
k k
(a) Estimated P (N1 > k) (b) Relative Error (Log scale)




ExampLE #4: MAXIMUM DRAWDOWN (CONT.)

Estimated Conditional Expectations: E (D | N > k) for 5 < k < 40

m We allow 60 seconds of CPU time for each estimation

m Our proposed cTS scheme is computationally more efficient than the
benchmark pMC method as k increases

—#- Plain Monte Carlo » —w- Plain Monte Carlo >
251 - Tail Sampling Scheme - ®- Tail Sampling Scheme !
102 /
/
_ *
320 Va
] .
£ /
g1 £ 10 #
g 3 S,
3 2 . I
10 v g .
8 R .
L “o..
- ¥ .
P » 100 -
P4 -
5 o 15 20 25 30 35 40 s o 15 20 25 30 35 40
K K
(a) Estimated E (D; | Nr > k) (b) Relative Error (Log scale)



CONCLUSION

m This study develops a novel, easy to simulate and fast MC estimator of rare
event probabilities via conditional Tail Sampling (cTS)
> It accommodates any model specification provided it can be simulated

m Our algorithms provide meaningful efficiency gains by ensuring each
simulated path hits the rare event with probability one
> |t ensures that none of the simulated paths will be wasted

m The limiting measure possesses attractive properties for simulation
> Our approach facilitates a substantial reduction in the sampling error

m We test our algorithms on a wide spectrum of applications using empirically
motivated reduced-form models

> Qur findings illustrate the superior performance of the proposed cTS scheme
over plain MC

m Our proposed methodology has potential for application in a wide
range of real-world problems!

40 / 40



Thank you!



APPENDIX




APPENDIX: IMPORTANCE SAMPLING

m The intuition behind importance sampling is to shift the sampling process
from a difficult-to-sample distribution to a more manageable distribution

Probability

—— True Distribution

— Important Sampling




EXACT BRIDGE TRANSFORM

m The unbiased estimator of ¢(T) can be exactly sampled efficiently when
the sequence {I’lg}gzl satisfies the Markov property

P (Nr > k) = E (¢x(T))

Tk - 4 o 4 ¢ 1l
= E [T7,E(exe (- 0 hlds)| O, 1, h,

m This implies that an unbiased estimator of P (Nt > k) is available by
sampling {uy, ..., ux} when exact samples of h{;( can be simulated

conditional on { for £ =1,...,k

® ... and, in many cases, the bridge transform

0¢
E (exp ( = f hgds)
0

can be evaluated without bias; e.g., see (Broadie & Kaya 2006)

Qg,hg,hgg)



ExTeENsION: CoNDITIONAL POINT SAMPLING

Corollary (Conditional Point Sampling)

For any integer k > 1, we have
O+ +
P(Np =) = E* (pu(r) - e=h ),

where Oy = T — u.



DousLy STOCHASTIC POISSON PROCESSES

Time-change argument (Meyer 1971)

m General statement

> N maybe beidentifiedwitha  P(Ca; 2K)=| E(puAp) | (A=1forC)
time-changed standard Poisson
process _ 1 k —prA _ M
> Given the filtration G = (%4, )0, = @ E(A7 e4r) (g = 2 ~ Betak, 1)
there exists a G-adapted Poisson 1 1 1
rocess C of unit rate such that =~ E| = Ak (_ —BrAT| A )
p T E(kATE ze T
Ni = Ca, ()
k=1 Al
t 1 A
where A; = |, Aqds = Elk=11|1-e4r} L
b k-1 (( F|1-e ;f!
m Doubly stochastic Poisson processes
> No arrival time 7, may affect the k-1 E (Aé’e—AT)
dynamics of the intensity A = 1- +
> N = C4, holds in distribution for =0 :
a standard Poisson process C
independent of A

I
=
=
\
z



APPENDIX: ASYMPTOTIC OPTIMALITY

The T/k — 0 asymptotics @D
Assumption

There exists a function f(x) > 0 with = log k(x) — 0 as x — oo such that

f(a)
hm 1nf loge(x) > -1,

f()

which is consistent with large deviations theory for rare events.

Assumption

The function f(x) defined above satisfies

limsup —

o0 f! ( )
where the event </ (x) is given by <7 (x) = {¢(x) = M(x)} with

logP (#/(x)) < -2,

A —f(x) = k(x) e_f(X) ieli 9
M(x) 2 76 H —~ ~——— <1 (Stirling’s approx.)
4

g el \2nk()



APPENDIX: ASYMPTOTIC OPTIMALITY (CONT.)

The T/k — 0 asymptotics (cont.) @D

Theorem (Asymptotic optimality condition)

The cTS estimator ¢(x) is an asymptotically optimal estimator of e(x), if
P(/(x)) L 0 as x — oo holds.

Corollary (Approximate cTS with asymptotic optimality)
Define ¢(x) = min{p(x), M(x)} and let €(x) = E (¢(x)). Then, the following
statements are true:
(i) @(x) is an asymptotically optimal estimator of &(x).
(i) We have 0 < &(x) < (x) for all x.
(ili) We have [&(x) - e(x)| < (1 - M(x)) - P («/(x)) for all x.



ExampLE #1: TAIL PROBABILITY ESTIMATION (CONT.)

m The systematic factor x° evolves with some x, > 0 and y, > 0 by satisfying
dx? = 1 (yo = x?) dt +dJ,

by driving the innovation of systematic factor dynamics

> ] = Z;’:l 60jN{ captures the indirect feedback mechanism by driving the

innovation of systematic factor dynamics
> 6o > 0 addresses the instant contribution of individual j's infection to the
systematic risk factor

m The idiosyncratic factor process x' follows

dx; =K (yl - X;) dt + i 6,]dNi

=1

> The vector 6; = (651, ---,0in) = 0 represents i’s sensitivity to events in the
systemfori=1,...,n



ExampLE #1: TAIL PROBABILITY ESTIMATION (CONT.)

m The construction of this model involves processes K which specify the
conditional rate of arrival of the ¢th event at the ith component

m Letting S, ={i: Ni[_l = 0} denote the components that “survive” by time
Te-1s
W=y n
€Sy

specifies the inter-arrival intensity of N which defines 6, under P
m The distribution of the component that generates the ¢th event is
P(t; = &i|Frym) = PH(te = & | Fopo)

_ M M,
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ExampLE #2: SysTemic CReDIT Loss

Default Clustering in a Stochastic Network

m Suppose that there are m = 100 defaultable entities in the system

> A policymaker should be concerned about failure of an abnormally large
fraction of the total population in the system

m A bottom-up formulation

> Consider a systematic risk factor x° > 0 and a set of idiosyncratic factor
processes {x’}}il so that each default indicator process N' admits

A= (i +2)(1 - N

as its intensity
> Here, w; > 0 is the systematic factor loading of the i" name in the system



ExampLe #2: SysTemic CREDIT Loss (CONT.)

m We assume that 1,° is the strong solution of the SDE given by

dx? = KO(GO - x?)dt + 0p \/;?dW?

m We further assume that ' is governed by the SDE under the statistical
probability measure P

dxﬁ = K; (61 - xi) dt + o; \/;;dW; + i (Sldei ,
j=1

(WO, W1,...,W™) is a vector of mutually independent Brownian motions

The Feller conditions are respected to ensure x° > 0 and x* > 0 almost surely
(6i1, . ,51‘";) represents name i's sensitivity to defaults in the system

The jump sensitivity are constructed by drawing each 6;; from [0, 1/m] uniformly

vVvyyy



ExampLE #3: DerAULTABLE SECURITY PRICING (CONT.)

m The default-free bond price with unit face value: V(T) = E (e‘ b ’Sds)

m The defaultable bond price with unit face value:

ar T
VA(T) =E (e_fo e 1[T>T) + RTE_L e ]-{TST])

_E (g’foT rsds) _E((e,fDT rsds __ RTe*f(,T rsds) 1(15T])

——e
=V(T) =X1(7)

= Vo(T) — E(X1 (1) 1(T))

m The credit spread is given by
log V\(T) . log Vo(T)
T T

——llo 1_E(XT(T)'1115T}) ——llo 1_5*(XT(M1)'(P1(T))
TTT % Vo(D) TTT % Vo(D)

s(T) =




ExampLE #3: DerAULTABLE SECURITY PRICING (CONT.)

Theorem (Plain Monte Carlo)

The pMC estimator of E (Xt(t) 1.>7)) has unbounded relative erroras T | 0.
{r>T}

Theorem (Conditional Tail Sampling)

The tail-sampling estimator of E* (Xr(u1) ¢1(T)) has bounded relative error as T | 0.

m The short-horizon limit of the credit spread is given by

lggl s(T) = (1 = Ro)Ao ,

which is also known as the credit triangle formula



ExAMPLE #4: MAXIMUM DRAWDOWN (CONT.

m We adopt a Markov regime-switching model to model the dynamics of the
stochastic claim intensity process A

> We presume that there are two claim regimes in that the state process
st € {0,1} for t > 0 follows the continuous-time Markov chain with sy = 0

> The time-t intensity process takes the form of A; = A, € {Ao, A1}, where the
time until the next regime-shift from state i to j is exponentially distributed with
rate v;; > 0 fori #j

> For numerical analysis, we specify the baseline parameter set as

(Ao, A1) = (1.5,3.0), T =5.0, Ry =25, a = 3.0, (vp1,010) = (0.5,1.0)

and {my, 7o, ...} are uniformly drawn from [0.5, 1.5] independently
m Notice that the Markov regime-switching intensity process A and the
claim-counting process N satisfy a doubly stochastic property
m Due to its deterministic nature of the reserve process between two
consecutive claim times with a > 0, it is sufficient to check the running
maximum of R; and D; for t € [0, T] just before each claim arrival time
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