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Motivation

The problems of event counting within a given time horizon
They naturally arise in a wide range of disciplines

(e.g.), epidemiology, insurance claims, corporate defaults, ...
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Motivation (cont.)

A rare event often refers to
infrequently observable events

It may have widespread impacts,
potentially leading to the instability
of an entire system

Rare events often involve extreme

losses that fall far from the mean

An accurate estimation of the
distributional tail behavior is
challenging but critical

Inaccurate estimates can lead to
suboptimal resource allocation or
missed opportunities
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Motivation (cont.)

A rare event is an event occurring
with a small probability

(Q1) What would be the likelihood
that a given (large) number of

events is observed by some
horizon?

(Q2) What would be the expected

consequence under such
circumstances?
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Monte Carlo (MC) Simulation

Consider a counting process N
I NT counts the number of events on [0,T] for some T > 0

Tail probability of our interest is written as,

" , "k(T) = P(NT � k) = E
�
1{NT�k}

�

for some k sufficiently large (relative to T)

The mathematical model is often too complicated to be solved by
analytical methods for many real-world problems
I When the underlying models are complex, Monte Carlo (MC) is the

standard and useful method of assigning a numerical value to "
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Monte Carlo (MC) Simulation (cont.)

An advantage of MC methods is that they often generalize to related
(and practically more important) problems
I The Bayes’ formula allows one to investigate the expected behavior of

any random variable X conditional on a tail scenario

E (X |NT � k) =
E(X · 1{NT�k})

"

I Just like ", one can estimate E(X · 1{NT�k}) via MC sampling
I No knowledge of the law of X conditional on the tail event is required

For rare event problems, however, this MC simulation approach
should not be implemented naively
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Drawbacks of plain MC

A plain MC (pMC) method is inaccurate and inefficient for small "
I The plain MC scheme needs 1/" replications on average to get a

single occurrence
I The further we move into the tail, the smaller " becomes
I The pMC scheme generates very few nonzero samples, leading to

inefficiencies

) It is not adequate when the " is too small to observe the sufficient
number of events that hits the rare event threshold
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Drawbacks of plain MC (cont.)

Let ' denote an unbiased estimator of "
⇣
" = E(')

⌘

I A standard measure to quantify the (in)efficiency is the relative error

⌫ =

p
Var(')
"

I The pMC estimator, ' = 1{NT�k}, yields

⌫ =
p

1/" � 1!1 as " # 0

I It becomes even more notorious for estimating E (X |NT � k)

In the rare event regime when the denominator vanishes, our hope is to get
a bounded relative error (BRE) in the limit
I This has motivated the design of variance reduction methods which supply

alternative estimators ' to reduce Var(')
I Important sampling aims to choose a ‘good’ distribution for variance

reduction based on a measure-change argument
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Our approach

A bit of intuition (P vs. P?)
I Let P be the reference probability measure for pMC
I We construct a (conditional) tail sampling measure P? (distinct from P) with

P? (NT � k) = 1

I We draw samples of “adjusted” ' under P?
() A measure-change theory is needed for correcting the distortion)

A measure-change argument (P ! P?)
I Estimate the expectation by twisting the probability measure

" = P(NT � k) = E
⇣
1{NT�k}

⌘
=

Z

⌦
1{NT�k}dP

=

Z

⌦
1{NT�k}
| {z }
= 1

· dP
dP?|{z}
= '

dP? = E?
�
'
�

I Can we find such a pair of (P?,')? () Yes)

I Can we achieve ⌫? =
p

Var?(')
" < 1 as " # 0? () Yes, in many cases)
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Main Contributions

This study develops a novel, easy to simulate and fast MC estimator of
rare event probabilities via (conditional) Tail Sampling (cTS) schemes

It accommodates any model specification provided it can be simulated

Our algorithm provides meaningful efficiency gains by ensuring each
simulated path hits the rare event with probability one

It guarantees that none of the simulated paths will be wasted

Our approach facilitates a reduction in the sampling error that often
contaminates event time simulation estimators
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Main Contributions (cont.)

The cTS approach possesses attractive properties for simulation
Our method does not require the computation of any optimal or tuning
parameter(s) and eliminates the need for numerical inversion procedures
They can be extended to estimate conditional expectations on the tail event

E (X |NT � k) =
E(X · 1{NT�k})

E(1{NT�k})
=

E?(X̂ · ')
E?(')

We test our algorithms on a wide spectrum of applications using
empirically motivated reduced-form models

Our findings illustrate the superior performance of the proposed cTS
scheme over plain MC
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Overview

Part I: Tail Probability Estimation

" = P (NT � k) for large k (relative to T)

Part II: Conditional Expectations on the Tail

E
⇣
X

���NT � k
⌘
=

E
�
X · 1{NT�k}

�

"

Part III: Applications to Finance & Insurance
I Expected aggregate loss conditional on systemic credit events
I (Ultra-short) Term structure of credit spreads on defaultable securities
I Expected maximum drawdown conditional on catastrophic scenarios
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Part I:

Tail Probability Estimation



Basic setup

Fix a measurable space (⌦,⌃)

We construct both P and P? on (⌦,⌃)
I P: the reference measure for plain MC (pMC)
I P?: the conditional tail-sampling measure for cTS

Introduce a sequence of ordered stopping times {⌧`}`�0 such that

0 = ⌧0 < ⌧1 < ⌧2 < · · · , where lim
`!1
⌧` = 1

Define the counting process

Nt =
X

`�1

1{⌧`t}

For integer ` � 1, define ✓` = ⌧` � ⌧`�1 (> 0) as the inter-arrival times
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Basic setup (cont.)

Construct a sequence of nonnegative
processes {h`}`�1

I Each h` is activated between event
arrival times

The sequence of variables {Z`}`�1
specifies initial conditions as

h`0 =

8>><>>:
Z` if ` = 1
h`�1
✓`
+ Z` if ` � 2

Define � as

�t+⌧`�1 = h`t for t 2 [0,✓`)

We take F = (Ft)t�0 with F1 ✓ ⌃ to be
the right-continuous (and completed)
filtration generated by the pair (N,�)
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The plain MC framework (under P)

Time-change scheme (Meyer 1971)

A complete probability space (⌦,⌃,P)

Introduce an i.i.d. sequence of standard exponential r.v.’s {E`}`�1

Define the random (hitting) time ✓` by

✓` = inf
n
t > 0 :

Z t

0
h`s ds � E`

o

We view the h` as the (conditional) inter-arrival rate of the `th event of N;
i.e., we refer to each process {h`}`�1 an inter-arrival intensity of N

The event counting process N admits � as its intensity
I The intensity represents the conditional mean arrival rate at each time

for small � > 0

�t = lim
�#0

E
⇣
Nt+� �Nt

��� Ft

⌘

�
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Our (conditional) tail sampling scheme (under P?)

We construct the cTS measure P? specific to the tail event {NT � k}
1. For some � > 0, we construct P� as the probability measure on (⌦,⌃) under

which N adopts the following values as its intensity:

8><>:
� for t 2 [0, ⌧k)
�t for t � ⌧k

2. For a fixed T > 0, we construct P?� as

P?� (A ) , P�(A | NT � k) for all A 2 ⌃

3. Under the Portmanteau theorem (for convergence of measures), we take the
limiting measure

P?� ) P? as � # 0

Primary properties of P?
I The change of measure is only absolutely continuous (P? ⌧ P); not equivalent
I It concentrates all probability mass on {NT � k} ) P?(NT � k) = 1
I The sequence {⌧1, . . . , ⌧k} forms the uniform order statistics on [0,T]
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Our (conditional) tail sampling scheme (under P?)

Let {u`}k`=1 be a collection of i.i.d. uniform order statistics on [0,T]
For ` = 1, . . . , k, we redefine the spacing ✓` = u` � u`�1 (by setting ⌧` = u` )

Define ⌘` = h`✓` exp
✓
�

R ✓`
0 h`sds

◆
and

'k(T) =
Tk

k!

kY

`=1

⌘`

Theorem (Conditional Tail Sampling)
For any T > 0 and integer k � 1, we have

" = P(NT � k) = E?
⇣
'k(T)

⌘
.

For the sake of notational simplicity, we will use E and E? interchangeably

16 40



Simulation Algorithm (Sketch)

1. Draw an ordered sample of {u1, . . . ,uk}
uniformly from [0,T]

2. Compute 'k(T) from a conditional
sample path of {h`t }k`=1 on t 2 [0,✓`)

3. Return the sample mean of 'k(T)

Exact Bridge Transform

Conditional Point Sampling

Doubly Stochastic Poisson Processes

'k(T) =
Tk

k!

kY

`=1

h`✓` exp
 
�

Z ✓`

0
h`sds

!
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Asymptotic analysis for BRE

The T/k! 0 asymptotics Asymptotic optimality

Theorem (Bounded relative error)
Suppose that we have

T(x)
k(x) ! 0 as x!1. The cTS estimator '(x) of "(x)

achieves its asymptotic bounded relative error; i.e.,

lim sup
x!1

p
Var?

�
'(x)

�

"(x)
< 1 ,

if the following conditions hold:

1. (Upper Bound): lim sup
x!1

E?
0
BBBBBB@

k(x)Y

`=1

 
⌘`

E?(⌘`)

!2
1
CCCCCCA < 1

2. (Lower Bound): lim inf
x!1 E?

0
BBBBBB@

k(x)Y

`=1

⌘`
E?(⌘`)

1
CCCCCCA > 0

(Note): ⌘` = h`✓` exp
✓
�

R ✓`
0 h`s ds

◆
p! h`0 as T/k! 0 (under mild regularity conditions)
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Example #1: Tail probability estimation

Epidemiologic Network

This example deals with a risk analysis model of how diseases can be
transmitted within a networked population

Epidemiologic networks can take various forms, including social networks,
contact networks, and more complex models that incorporate factors such
as disease incubation periods and transmission probabilities

The network can be used to study the dynamics of disease transmission,
identify sources of infection, and develop strategies for disease control and
prevention

Several natural and human-made systems, including the World Wide Web,
citation networks, and some social networks, contain few nodes (called
hubs) with unusually high degree as compared to the other nodes
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Example #1: Tail probability estimation (cont.)

A realistic network structure of the Barabási-Albert model
Our network analysis adopts the Barabási-Albert (BA) model

It reflects the scale-free power-law of degree distribution by addressing the
preferential attachment feature existing in real-world networks
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Example #1: Tail probability estimation (cont.)

A bottom-up formulation of self-exciting intensity specification

For given n 2N agents, each infection indicator process Ni 2 {0, 1} admits
its intensity with !i > 0

�i =
⇣
!ix0 + xi

⌘ ⇣
1 �Ni

⌘

�i denotes the intensity of the infection process of the ith agent
I x0 ) the systematic risk factor as the common source of indirect transmission
I {xi}ni=1 ) a set of idiosyncratic factors as the drivers of direct contagion

Model specification

The intensity of the infection counting process Nt =
Pn

i=1 Ni
t is obtained by

�t =
nX

i=1

�i
t for t � 0
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Example #1: Tail probability estimation (cont.)

Let n be the rarity parameter for estimating P
�
NTn � kn

�
with relative errors

I We set Tn = c/n and kn = µn for c = 300 and µ = 0.1
I We increase the size of the network and shrink the investigation horizon, while

keeping the threshold at 10% of the population
I We allow 60 seconds of CPU time for each estimation

(a) Estimated P
⇣
NTn � kn

⌘
(b) Relative Errors (Log scale)

22 40



Part II:

Conditional Expectations on the Tail



Motivation

We focus on the extreme values of a distribution, where the probability is
low but the consequences can be significant
I The conditional expectation on the tail events can facilitate an

understanding of how a random variable behaves in such
circumstances

The Bayes’ formula allows one to investigate the expected behavior of any
random variable X conditional on a tail scenario

E (X |NT � k) =
E(X · 1{NT�k})

"

I No knowledge of the law of X conditional on the tail event is required
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Marked Point Process

Consider a sequence of random quantities (e.g., random losses) ⇡` � 0 as
a mark associated with each arrival time ⌧` for ` � 1

The loss process L is defined as

Lt =
NtX

`=1

⇡` ,

where the jump times of N and L coincide, and the `-th jump size of L is ⇡`

N can be described as a special example of L, where ⇡` = 1 for all ` � 1
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An extended cTS scheme

Fix some (T1,T2) such that 0 < T1  T2 to estimate E
✓
LT2

���� NT1 � k
◆

Now we extend the tail sampling scheme specific to the tail event {NT1 � k}
Let

n
uT1
`

ok

`=1
be a collection of i.i.d. uniform order statistics on [0,T1]

Also consider an i.i.d. sequence of standard exponential random variables
{E`}`�k+1

We redefine the spacing ✓` as

✓` =

8>><>>:
uT1
` � uT1

`�1 for ` = 1, . . . , k
inf

n
t > 0 :

R t

0 h`s ds � E`
o

for ` � k + 1
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Conditional Tail Sampling Algorithm
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Conditional Tail Sampling Algorithm
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Conditional Tail Sampling Algorithm
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Theorems for conditional expectations

Theorem (Extended conditional tail sampling)
For any integer k � 1, the following identities hold for (0 <) T1  T2:

E
✓
LT2 · 1{NT1

�k}
◆
= E?

⇣
LT2 · 'k

⇣
T1

⌘⌘
; E

⇣
LT2

��� NT1 � k
⌘
=

E?
⇣
LT2 · 'k

⇣
T1

⌘⌘

E?
⇣
'k

⇣
T1

⌘⌘ .

Theorem (Relative error bound)
Let ' , 'k(T1). Then, we have

q
Var

⇣
LT2

���NT1 � k
⌘

E
⇣
LT2

���NT1 � k
⌘ 

p
E

�
'2�

E
�
'
� ·

r
E

✓
L2

T2
· '2

◆

E
⇣
LT2 · '

⌘ ,

if Cov
⇣
LT2', '

⌘
� 0 holds.
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Example #2: Systemic Credit Loss

Default Clustering in a Stochastic Network

This example examines the potential (expected) consequences that a
financial system or market may face in extreme or tail-risk scenarios in a
shorter horizon

This analysis focuses on understanding how the credit risk at the
system-level evolves when the financial system experiences severe stress
or crisis events at the beginning

We are interested in estimating both

P
⇣
NT(x) � k(x)

⌘
and E

✓
NT

���� NT(x) � k(x)
◆
,

where T(x)! 0 and k(x)!1 as x!1 Model specification
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Example #2: Systemic Credit Loss (cont.)

Estimated P
⇣
NT(x) � k(x)

⌘
and their relative errors

I We take T(x) = T/x with T = 5 and k(x) = 5x

(a) P
⇣
NT(x) � k(x)

⌘
(b) Relative Errors (Log scale)
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Example #2: Systemic Credit Loss (cont.)

Estimated E
✓
NT

���� NT(x) � k(x)
◆

and their relative errors
I We take T(x) = T/x with T = 5 and k(x) = 5x

(a) E
⇣
NT

��� NT(x) � k(x)
⌘

(b) Relative Errors (Log scale)
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Part III:

Applications to Financial Examples



Example #3: Defaultable Security Pricing

(Short) Term structure of credit spreads for risky zero coupon bonds

To estimate the term structure of credit spreads by determining fair
compensation for bearing credit risk across various maturities
I Our focus is on the short-term regime with a small value of T # 0

Practical relevance with “small” T

When a depository institution establishes a daily interest facility (DIF), the
central bank adjusts the DIF rate to account for the overnight credit

spread between unsecured and collateralized overnight lending

The growing prevalence of blockchain technology has created a need for
an ultra-short tenor interest rate curve that can be estimated at an intraday

level to enable immediate settlement of transactions in the real-time
interbank money market
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Example #3: Defaultable Security Pricing (cont.)

An illustrative model specification (⌧: Default arrival time)

Short-rate process: drt = (y � rt)dt + �
p

rtdWr
t

A state process: dxt = a(b � xt)dt + c
p

xtdWx
t , Wr ?Wx

Default intensity process: �t =
⇣
⇢rt +

p
1 � ⇢2xt

⌘
· 1{⌧>t}, ⇢ 2 (0, 1)

Recovery process: Rt =
�0

�0+�t�
2 (0, 1)

Loss process: Lt = (1 � R⌧) · 1{⌧t} =
�⌧�

�0 + �⌧�|    {z    }
= mark

·1{⌧t}

(Our interest): Term structure of credit spreads as T # 0

) No closed-form solution is available for defaultable security pricing

Pricing details
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Example #3: Defaultable Security Pricing (cont.)

(Left panel): A fixed simulation time budget of 60 seconds
I The true value of the short-horizon limit of credit spread is indicated by a

horizontal thick dotted line Credit triangle

(Right panel): Set T = 1/252 across different simulation time budgets
I The relative margin of error is defined as the ratio of deviation around the point

estimate of s(T) at the 99% confidence interval

(a) Estimated s(T) (b) Relative Margin of Error (Log scale)
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Example #4: Maximum drawdown

An example of insurance risk analysis

Let (N,L) denote the claim counting and the associated loss processes

A reserve process is defined for some ↵ > 0 as

Rt = R0 + ↵t � Lt

The drawdown process is expressed as

Dt = sup
s2[0,t]

Rs � Rt

For some fixed T > 0, the maximum drawdown is given by

D?T = sup
t2[0,T]

Dt

by measuring the largest reserve drop from its peak to trough in [0,T]
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Example #4: Maximum drawdown (cont.)

(Our interest): The estimation of E
⇣

D?T
��� NT � k

⌘

The conditional expectation of maximum drawdown can be expressed as

E
⇣

D?T
��� NT � k

⌘
=

E
⇣
D?T · 1{NT�k}

⌘

E
⇣
1{NT�k}

⌘ (Plain Monte Carlo)

It can be rewritten under the tail sampling scheme as

E
⇣

D?T
��� NT � k

⌘
=

E
⇣
D?T · 'k(T)

⌘

E
�
'k(T)

� (Conditional Tail Sampling)

where we have
⇢
⌧`

d
= u`

�k

`=1
under the cTS scheme

D?T can be expressed as a function of {⌧`}NT
`=1 given the intensity trajectory

details
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Example #4: Maximum drawdown (cont.)

Estimated Tail Probabilities: P (NT � k) for 5  k  40

We allow 60 seconds of CPU time for each estimation

The cTS scheme shows an efficient variance reduction under the stochastic
regime-changing intensity dynamics details

(a) Estimated P (NT � k) (b) Relative Error (Log scale)
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Example #4: Maximum drawdown (cont.)

Estimated Conditional Expectations: E
⇣
D?T

��� NT � k
⌘

for 5  k  40

We allow 60 seconds of CPU time for each estimation

Our proposed cTS scheme is computationally more efficient than the
benchmark pMC method as k increases

(a) Estimated E
⇣
D?T

��� NT � k
⌘

(b) Relative Error (Log scale)
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Conclusion

This study develops a novel, easy to simulate and fast MC estimator of rare
event probabilities via conditional Tail Sampling (cTS)

I It accommodates any model specification provided it can be simulated

Our algorithms provide meaningful efficiency gains by ensuring each
simulated path hits the rare event with probability one
I It ensures that none of the simulated paths will be wasted

The limiting measure possesses attractive properties for simulation
I Our approach facilitates a substantial reduction in the sampling error

We test our algorithms on a wide spectrum of applications using empirically
motivated reduced-form models
I Our findings illustrate the superior performance of the proposed cTS scheme

over plain MC

Our proposed methodology has potential for application in a wide

range of real-world problems!
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Thank you!



Appendix



Appendix: Importance sampling

The intuition behind importance sampling is to shift the sampling process
from a difficult-to-sample distribution to a more manageable distribution



Exact bridge transform

The unbiased estimator of 'k(T) can be exactly sampled efficiently when
the sequence {h`0}`�1 satisfies the Markov property

P (NT � k) = E
�
'k(T)

�

=
Tk

k!
E

0
BBBBB@

kY

`=1

h`✓`E
 

exp
⇣
�

Z ✓`

0
h`sds

⌘������✓`, h
`
0, h
`
✓`

!1CCCCCA

This implies that an unbiased estimator of P (NT � k) is available by
sampling {u1, . . . ,uk} when exact samples of h`✓` can be simulated
conditional on h`0 for ` = 1, . . . , k
... and, in many cases, the bridge transform

E
 

exp
⇣
�

Z ✓`

0
h`sds

⌘������✓`, h
`
0, h
`
✓`

!

can be evaluated without bias; e.g., see (Broadie & Kaya 2006) Return



Extension: Conditional Point Sampling

Corollary (Conditional Point Sampling)

For any integer k � 1, we have

P(NT = k) = E?
✓
'k(T) · e�

R ✓k+1
0 hk+1

s ds
◆
,

where ✓k+1 = T � uk. Return



Doubly stochastic Poisson processes

Time-change argument (Meyer 1971)

General statement

I N maybe be identified with a
time-changed standard Poisson
process

I Given the filtration G = (FAt )t�0,
there exists a G-adapted Poisson
process C of unit rate such that

Nt = CAt

where At =
R t

0 �sds

Doubly stochastic Poisson processes

I No arrival time ⌧` may affect the
dynamics of the intensity �

I Nt = CAt holds in distribution for
a standard Poisson process C
independent of A

P
⇣
CAT � k

⌘
= E

�
'k(AT)

�
(� = 1 for C)

=
1
k!

E
⇣
Ak

T e��kAT
⌘

(�k =
uk
AT
⇠ Beta(k, 1))

=
1

(k � 1)!
E
 

1
k

Ak
T E

✓ 1
k

e��kAT

����� AT

◆

|                      {z                      }
=�(k,AT )

!

=
1

(k � 1)!
E
 
(k � 1)!

0
BBBBB@1 � e�AT

k�1X

`=0

A`T
`!

1
CCCCCA

!

= 1 �
k�1X

`=0

E
⇣
A`Te�AT

⌘

`!

= P (NT � k) Return



Appendix: Asymptotic optimality

The T/k! 0 asymptotics BRE

Assumption
There exists a function f (x) > 0 with

1
f (x) log k(x)! 0 as x!1 such that

lim inf
x!1

1
f (x)

log "(x) � �1 ,

which is consistent with large deviations theory for rare events.

Assumption
The function f (x) defined above satisfies

lim sup
x!1

1
f (x)

log P (A (x))  �2 ,

where the event A (x) is given by A (x) =
�
'(x) �M(x)

 
with

M(x) , e�f (x)
k(x)Y

`=1

k(x)
e · ` ⇡

e�f (x)

p
2⇡k(x)

< 1 (Stirling’s approx.)



Appendix: Asymptotic optimality (cont.)

The T/k! 0 asymptotics (cont.) BRE

Theorem (Asymptotic optimality condition)
The cTS estimator '(x) is an asymptotically optimal estimator of "(x), if

P
⇣
A (x)

⌘
# 0 as x!1 holds.

Corollary (Approximate cTS with asymptotic optimality)
Define e'(x) , min{'(x),M(x)} and let e"(x) , E

�e'(x)
�
. Then, the following

statements are true:

(i) e'(x) is an asymptotically optimal estimator of e"(x).

(ii) We have 0 < e"(x)  "(x) for all x.

(iii) We have

���e"(x) � "(x)
��� 

⇣
1 �M(x)

⌘
· P (A (x)) for all x.



Example #1: Tail probability estimation (cont.)

The systematic factor x0 evolves with some 0 > 0 and y0 > 0 by satisfying

dx0
t = 0

⇣
y0 � x0

t

⌘
dt + dJt

by driving the innovation of systematic factor dynamics
I Jt =

Pn
j=1 �0jN

j
t captures the indirect feedback mechanism by driving the

innovation of systematic factor dynamics
I �0j � 0 addresses the instant contribution of individual j’s infection to the

systematic risk factor

The idiosyncratic factor process xi follows

dxi
t = i

⇣
yi � xi

t

⌘
dt +

nX

j=1

�ijdNj
t

I The vector �i = (�i1, . . . , �in) � 0 represents i’s sensitivity to events in the
system for i = 1, . . . ,n

return



Example #1: Tail probability estimation (cont.)

The construction of this model involves processes hi` which specify the
conditional rate of arrival of the `th event at the ith component

Letting S` = { i : Ni
⌧`�1
= 0} denote the components that “survive” by time

⌧`�1,

h`t =
X

i2S`

hi`
t

specifies the inter-arrival intensity of N which defines ✓` under P

The distribution of the component that generates the `th event is

P(⌧` = ⇠i | F⌧`�) = P?(⌧` = ⇠i | F⌧`�)

=
�i
⌧`�
�⌧`�

=
hi`
✓`

h`✓`
1  i  n

return



Example #2: Systemic Credit Loss

Default Clustering in a Stochastic Network

Suppose that there are m = 100 defaultable entities in the system

I A policymaker should be concerned about failure of an abnormally large
fraction of the total population in the system

A bottom-up formulation

I Consider a systematic risk factor x0 � 0 and a set of idiosyncratic factor
processes {xi}mi=1 so that each default indicator process Ni admits

�i =
⇣
!ix0 + xi

⌘
(1 �Ni)

as its intensity
I Here, !i > 0 is the systematic factor loading of the ith name in the system

return



Example #2: Systemic Credit Loss (cont.)

We assume that ⌘0 is the strong solution of the SDE given by

dx0
t = 0

⇣
✓0 � x0

t

⌘
dt + �0

q
x0

t dW0
t

We further assume that ⌘i is governed by the SDE under the statistical
probability measure P

dxi
t = i

⇣
✓i � xi

t

⌘
dt + �i

q
xi

tdWi
t +

mX

j=1

�ijdNj
t ,

I (W0,W1, . . . ,Wm) is a vector of mutually independent Brownian motions
I The Feller conditions are respected to ensure x0 > 0 and xi > 0 almost surely
I

⇣
�i1, . . . , �im

⌘
represents name i’s sensitivity to defaults in the system

I The jump sensitivity are constructed by drawing each �ij from [0, 1/m] uniformly

return



Example #3: Defaultable Security Pricing (cont.)

The default-free bond price with unit face value: V0(T) = E
✓
e�

R T
0 rsds

◆

The defaultable bond price with unit face value:

V�(T) = E
✓
e�

R T
0 rsds 1{⌧>T} + R⌧e�

R ⌧
0 rsds 1{⌧T}

◆

= E
✓
e�

R T
0 rsds

◆

|       {z       }
=V0(T)

�E
 ⇣

e�
R T
0 rsds � R⌧e�

R ⌧
0 rsds

⌘

|                     {z                     }
:=XT (⌧)

1{⌧T}

!

= V0(T) � E
⇣
XT(u1) '1(T)

⌘

The credit spread is given by

s(T) = � log V�(T)
T

+
log V0(T)

T

= � 1
T

log
 
1 � E

�
XT(⌧) · 1{⌧T}

�

V0(T)

!
= � 1

T
log

 
1 � E?

�
XT(u1) · '1(T)

�

V0(T)

!

return



Example #3: Defaultable Security Pricing (cont.)

Theorem (Plain Monte Carlo)
The pMC estimator of E

⇣
XT(⌧) 1{⌧>T}

⌘
has unbounded relative error as T # 0.

Theorem (Conditional Tail Sampling)
The tail-sampling estimator of E?

�
XT(u1) '1(T)

�
has bounded relative error as T # 0.

The short-horizon limit of the credit spread is given by

lim
T#0

s(T) = (1 � R0)�0 ,

which is also known as the credit triangle formula

return



Example #4: Maximum drawdown (cont.)

We adopt a Markov regime-switching model to model the dynamics of the
stochastic claim intensity process �
I We presume that there are two claim regimes in that the state process

st 2 {0, 1} for t � 0 follows the continuous-time Markov chain with s0 = 0
I The time-t intensity process takes the form of �t , �st 2 {�0,�1}, where the

time until the next regime-shift from state i to j is exponentially distributed with
rate vij > 0 for i , j

I For numerical analysis, we specify the baseline parameter set as

(�0,�1) = (1.5, 3.0), T = 5.0, R0 = 25, ↵ = 3.0, (v01, v10) = (0.5, 1.0)

and {⇡1,⇡2, . . .} are uniformly drawn from [0.5, 1.5] independently

Notice that the Markov regime-switching intensity process � and the
claim-counting process N satisfy a doubly stochastic property
Due to its deterministic nature of the reserve process between two
consecutive claim times with ↵ > 0, it is sufficient to check the running
maximum of Rt and Dt for t 2 [0,T] just before each claim arrival time

return
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