Conditional Tall Sampling

 for General (Marked) Point Processes
Baeho Kim

BAEHOKIM@KOREA.AC.KR
Professor of Finance \& Business Analytics

- Korea University Business School

Visiting Scholar

- CDAR, UC Berkeley
(Joint work with Alex Shkolnik)

Motivation

The problems of event counting within a given time horizon

- They naturally arise in a wide range of disciplines (e.g.), epidemiology, insurance claims, corporate defaults, ...

Motivation (cont.)

A rare event often refers to infrequently observable events

■ It may have widespread impacts, potentially leading to the instability of an entire system

Rare events often involve extreme losses that fall far from the mean

- An accurate estimation of the distributional tail behavior is challenging but critical
- Inaccurate estimates can lead to suboptimal resource allocation or missed opportunities

The highest score made in a Soccer game was 149-0, one of the team started scoring own goals to protest against the referee's decision.

Motivation (cont.)

Frequency Of Soccer Results
Percentage of men's English league games ending in a given score, for tiers 1-4, 1888 through 2013-14 season

A rare event is an event occurring with a small probability

- (Q1) What would be the likelihood that a given (large) number of events is observed by some horizon?
- (Q2) What would be the expected consequence under such circumstances?

FINAL VISITOR SCORE

- Consider a counting process N
- N_{T} counts the number of events on [0,T] for some $T>0$
- Tail probability of our interest is written as,

$$
\varepsilon \triangleq \varepsilon_{k}(T)=\mathbf{P}\left(N_{T} \geq k\right)=\mathbf{E}\left(1_{\left\{N_{T} \geq k\right\}}\right)
$$

for some k sufficiently large (relative to T)

- The mathematical model is often too complicated to be solved by analytical methods for many real-world problems
- When the underlying models are complex, Monte Carlo (MC) is the standard and useful method of assigning a numerical value to ε

Monte Carlo (MC) Simulation (cont.)

■ An advantage of MC methods is that they often generalize to related (and practically more important) problems

- The Bayes' formula allows one to investigate the expected behavior of any random variable X conditional on a tail scenario

$$
\mathbf{E}\left(X \mid N_{T} \geq k\right)=\frac{\mathbf{E}\left(X \cdot 1_{\left\{N_{T} \geq k\right\}}\right)}{\varepsilon}
$$

- Just like ε, one can estimate $\mathrm{E}\left(X \cdot 1_{\left|\mathbb{N}_{T} \geq k\right|}\right)$ via MC sampling
- No knowledge of the law of X conditional on the tail event is required

■ For rare event problems, however, this MC simulation approach should not be implemented naively

Drawbacks of plain MC

- A plain MC (pMC) method is inaccurate and inefficient for small ε
- The plain MC scheme needs $1 / \varepsilon$ replications on average to get a single occurrence
- The further we move into the tail, the smaller ε becomes
- The pMC scheme generates very few nonzero samples, leading to inefficiencies
\Rightarrow It is not adequate when the ε is too small to observe the sufficient number of events that hits the rare event threshold

Drawbacks of plain MC (cont.)

- Let φ denote an unbiased estimator of $\varepsilon \quad(\varepsilon=\mathbf{E}(\varphi))$
- A standard measure to quantify the (in)efficiency is the relative error

$$
v=\frac{\sqrt{\operatorname{Var}(\varphi)}}{\varepsilon}
$$

- The pMC estimator, $\varphi=1_{\left\{N_{T} \geq k\right\}}$, yields

$$
v=\sqrt{1 / \varepsilon-1} \rightarrow \infty \quad \text { as } \quad \varepsilon \downarrow 0
$$

- It becomes even more notorious for estimating $\mathbf{E}\left(X \mid N_{T} \geq k\right)$

■ In the rare event regime when the denominator vanishes, our hope is to get a bounded relative error (BRE) in the limit

- This has motivated the design of variance reduction methods which supply alternative estimators φ to reduce $\operatorname{Var}(\varphi)$
- Important sampling aims to choose a 'good' distribution for variance reduction based on a measure-change argument

OUR APPROACH

- A bit of intuition (\mathbf{P} vs. \mathbf{P}^{\star})
- Let \mathbf{P} be the reference probability measure for pMC
- We construct a (conditional) tail sampling measure \mathbf{P}^{\star} (distinct from \mathbf{P}) with

$$
\mathbf{P}^{\star}\left(N_{T} \geq k\right)=1
$$

- We draw samples of "adjusted" φ under \mathbf{P}^{\star}
(\Rightarrow A measure-change theory is needed for correcting the distortion)

OUR APPROACH

- A bit of intuition (\mathbf{P} vs. \mathbf{P}^{\star})
- Let \mathbf{P} be the reference probability measure for pMC
- We construct a (conditional) tail sampling measure \mathbf{P}^{\star} (distinct from \mathbf{P}) with

$$
\mathbf{P}^{\star}\left(N_{T} \geq k\right)=1
$$

- We draw samples of "adjusted" φ under \mathbf{P}^{\star} (\Rightarrow A measure-change theory is needed for correcting the distortion)

■ A measure-change argument ($\mathbf{P} \rightarrow \mathbf{P}^{\star}$)

- Estimate the expectation by twisting the probability measure

$$
\begin{aligned}
\varepsilon=\mathbf{P}\left(N_{T} \geq k\right)=\mathbf{E}\left(1_{\left\{N_{T} \geq k\right\}}\right) & =\int_{\Omega} 1_{\left\{N_{T} \geq k\right\}} d \mathbf{P} \\
& =\int_{\Omega} \underbrace{1_{\left\{N_{T} \geq k\right\}}}_{=1} \cdot \underbrace{\frac{d \mathbf{P}}{d \mathbf{P}^{\star}} d \mathbf{P}^{\star}=\mathbf{E}^{\star}(\varphi)}_{=\varphi} .
\end{aligned}
$$

- Can we find such a pair of $\left(\mathbf{P}^{\star}, \varphi\right)$? (\Rightarrow Yes)
- Can we achieve $v^{\star}=\frac{\sqrt{\operatorname{Var}^{\star}(\varphi)}}{\varepsilon}<\infty$ as $\varepsilon \downarrow 0$? (\Rightarrow Yes, in many cases)

Main Contributions

This study develops a novel, easy to simulate and fast MC estimator of rare event probabilities via (conditional) Tail Sampling (cTS) schemes

- It accommodates any model specification provided it can be simulated

Our algorithm provides meaningful efficiency gains by ensuring each simulated path hits the rare event with probability one

- It guarantees that none of the simulated paths will be wasted
- Our approach facilitates a reduction in the sampling error that often contaminates event time simulation estimators

Main Contributions (cont.)

The cTS approach possesses attractive properties for simulation

- Our method does not require the computation of any optimal or tuning parameter(s) and eliminates the need for numerical inversion procedures
- They can be extended to estimate conditional expectations on the tail event

$$
\mathbf{E}\left(X \mid N_{T} \geq k\right)=\frac{\mathbf{E}\left(X \cdot 1_{\left\{N_{T} \geq k\right\}}\right)}{\mathbf{E}\left(1_{\left\{N_{T} \geq k\right\}}\right)}=\frac{\mathbf{E}^{\star}(\hat{X} \cdot \varphi)}{\mathbf{E}^{\star}(\varphi)}
$$

We test our algorithms on a wide spectrum of applications using empirically motivated reduced-form models

■ Our findings illustrate the superior performance of the proposed cTS scheme over plain MC

- Part I: Tail Probability Estimation

$$
\left.\varepsilon=\mathbf{P}\left(N_{T} \geq k\right) \quad \text { for large } k \text { (relative to } T\right)
$$

■ Part II: Conditional Expectations on the Tail

$$
\mathbf{E}\left(X \mid N_{T} \geq k\right)=\frac{\mathbf{E}\left(X \cdot 1_{\left[N_{T} \geq k\right]}\right)}{\varepsilon}
$$

■ Part III: Applications to Finance \& Insurance

- Expected aggregate loss conditional on systemic credit events
- (Ultra-short) Term structure of credit spreads on defaultable securities
- Expected maximum drawdown conditional on catastrophic scenarios

Part l:

Tail Probability Estimation

- Fix a measurable space (Ω, Σ)
- We construct both \mathbf{P} and \mathbf{P}^{\star} on (Ω, Σ)
- P: the reference measure for plain MC (pMC)
- \mathbf{P}^{\star} : the conditional tail-sampling measure for cTS
- Introduce a sequence of ordered stopping times $\left\{\tau_{\ell}\right\}_{\geq \geq 0}$ such that

$$
0=\tau_{0}<\tau_{1}<\tau_{2}<\cdots, \text { where } \lim _{\ell \rightarrow \infty} \tau_{\ell}=\infty
$$

- Define the counting process

$$
N_{t}=\sum_{t \geq 1} 1_{\left\{\tau_{t} \leq t\right\}}
$$

- For integer $\ell \geq 1$, define $\theta_{\ell}=\tau_{\ell}-\tau_{\ell-1}(>0)$ as the inter-arrival times

BASIC SETUP (CONT.)

- Construct a sequence of nonnegative processes $\left\{h^{\ell}\right\}_{\ell \geq 1}$
- Each h^{ℓ} is activated between event arrival times
- The sequence of variables $\left\{Z_{\ell}\right\}_{\ell \geq 1}$ specifies initial conditions as

$$
h_{0}^{\ell}= \begin{cases}Z_{\ell} & \text { if } \ell=1 \\ h_{\theta_{\ell}}^{\ell-1}+Z_{\ell} & \text { if } \ell \geq 2\end{cases}
$$

- Define λ as

$$
\lambda_{t+\tau_{\ell-1}}=h_{t}^{\ell} \text { for } t \in\left[0, \theta_{\ell}\right)
$$

- We take $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ with $\mathcal{F}_{\infty} \subseteq \Sigma$ to be the right-continuous (and completed) filtration generated by the pair (N, λ)

The plain MC framework (under P)

Time-change scheme (Meyer 1971)

- A complete probability space ($\Omega, \Sigma, \mathbf{P}$)
- Introduce an i.i.d. sequence of standard exponential r.v.'s $\left\{\mathcal{E}_{\ell}\right\} \in \geq 1$

■ Define the random (hitting) time θ_{ℓ} by

$$
\theta_{\ell}=\inf \left\{t>0: \int_{0}^{t} h_{s}^{\ell} \mathrm{d} s \geq \mathcal{E}_{\ell}\right\}
$$

- We view the h^{ℓ} as the (conditional) inter-arrival rate of the $\ell^{\text {th }}$ event of N; i.e., we refer to each process $\left\{h^{\ell}\right\}_{\geq \geq 1}$ an inter-arrival intensity of N
- The event counting process N admits λ as its intensity
- The intensity represents the conditional mean arrival rate at each time for small $\Delta>0$

$$
\lambda_{t}=\lim _{\Delta \downarrow 0} \frac{\mathbf{E}\left(N_{t+\Delta}-N_{t} \mid \mathcal{F}_{t}\right)}{\Delta}
$$

OUR (CONDITIONAL) TAlL SAMPLING SCHEME (UNDER \mathbf{P}^{\star})

- We construct the cTS measure \mathbf{P}^{\star} specific to the tail event $\left\{N_{T} \geq k\right\}$

1. For some $\gamma>0$, we construct \mathbf{P}_{γ} as the probability measure on (Ω, Σ) under which N adopts the following values as its intensity:

$$
\begin{cases}\gamma & \text { for } t \in\left[0, \tau_{k}\right) \\ \lambda_{t} & \text { for } t \geq \tau_{k}\end{cases}
$$

2. For a fixed $T>0$, we construct $\mathbf{P}_{\gamma}^{\star}$ as

$$
\mathbf{P}_{\gamma}^{\star}(\mathscr{A}) \triangleq \mathbf{P}_{\gamma}\left(\mathscr{A} \mid N_{T} \geq k\right) \text { for all } \mathscr{A} \in \Sigma
$$

3. Under the Portmanteau theorem (for convergence of measures), we take the limiting measure

$$
\mathbf{P}_{\gamma}^{\star} \Rightarrow \mathbf{P}^{\star} \text { as } \gamma \downarrow 0
$$

Our (conditional) tall sampling scheme (under \mathbf{P}^{\star})

- We construct the cTS measure \mathbf{P}^{\star} specific to the tail event $\left\{N_{T} \geq k\right\}$

1. For some $\gamma>0$, we construct \mathbf{P}_{γ} as the probability measure on (Ω, Σ) under which N adopts the following values as its intensity:

$$
\begin{cases}\gamma & \text { for } t \in\left[0, \tau_{k}\right) \\ \lambda_{t} & \text { for } t \geq \tau_{k}\end{cases}
$$

2. For a fixed $T>0$, we construct $\mathbf{P}_{\gamma}^{\star}$ as

$$
\mathbf{P}_{\gamma}^{\star}(\mathscr{A}) \triangleq \mathbf{P}_{\gamma}\left(\mathscr{A} \mid N_{T} \geq k\right) \text { for all } \mathscr{A} \in \Sigma
$$

3. Under the Portmanteau theorem (for convergence of measures), we take the limiting measure

$$
\mathbf{P}_{\gamma}^{\star} \Rightarrow \mathbf{P}^{\star} \text { as } \gamma \downarrow 0
$$

■ Primary properties of \mathbf{P}^{\star}

- The change of measure is only absolutely continuous ($\mathbf{P}^{\star} \ll \mathbf{P}$); not equivalent
- It concentrates all probability mass on $\left\{N_{T} \geq k\right\} \Rightarrow \mathbf{P}^{\star}\left(N_{T} \geq k\right)=1$
- The sequence $\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ forms the uniform order statistics on $[0, T]$

OUR (CONDITIONAL) TAlL SAMPLING SCHEME (UNDER \mathbf{P}^{\star})

- Let $\left\{u_{\ell}\right\}_{\ell=1}^{k}$ be a collection of i.i.d. uniform order statistics on $[0, T]$

■ For $\ell=1, \ldots, k$, we redefine the spacing $\theta_{\ell}=u_{\ell}-u_{\ell-1}$ (by setting $\left.\tau_{\ell}=u_{\ell}\right)$

- Define $\eta_{\ell}=h_{\theta_{\ell}}^{\ell} \exp \left(-\int_{0}^{\theta_{\ell}} h_{s}^{\ell} d s\right)$ and

$$
\varphi_{k}(T)=\frac{T^{k}}{k!} \prod_{\ell=1}^{k} \eta_{\ell}
$$

Theorem (Conditional Tail Sampling)

For any $T>0$ and integer $k \geq 1$, we have

$$
\varepsilon=\mathbf{P}\left(N_{T} \geq k\right)=\mathbf{E}^{\star}\left(\varphi_{k}(T)\right)
$$

■ For the sake of notational simplicity, we will use E and E ${ }^{\star}$ interchangeably

Simulation Algorithm (Sketch)

$$
\varphi_{k}(T)=\frac{T^{k}}{k!} \prod_{\ell=1}^{k} h_{\theta_{\ell}}^{\ell} \exp \left(-\int_{0}^{\theta_{\ell}} h_{s}^{\ell} d s\right)
$$

AsYmptotic analysis for BRE

The $T / k \rightarrow 0$ asymptotics

Theorem (Bounded relative error)

Suppose that we have $\frac{T(x)}{k(x)} \rightarrow 0$ as $x \rightarrow \infty$. The cTS estimator $\varphi(x)$ of $\varepsilon(x)$ achieves its asymptotic bounded relative error; i.e.,

$$
\limsup _{x \rightarrow \infty} \frac{\sqrt{\operatorname{Var}^{\star}(\varphi(x))}}{\varepsilon(x)}<\infty,
$$

if the following conditions hold:

1. (Upper Bound): $\underset{x \rightarrow \infty}{\limsup } \mathbf{E}^{\star}\left(\prod_{\ell=1}^{k(x)}\left(\frac{\eta_{\ell}}{\mathbf{E}^{\star}\left(\eta_{\ell}\right)}\right)^{2}\right)<\infty$
2. (Lower Bound): $\quad \liminf _{x \rightarrow \infty} \mathbf{E}^{\star}\left(\prod_{\ell=1}^{k(x)} \frac{\eta_{\ell}}{\mathbf{E}^{\star}\left(\eta_{\ell}\right)}\right)>0$
(Note): $\eta_{\ell}=h_{\theta_{\ell}}^{\ell} \exp \left(-\int_{0}^{\theta_{\ell}} h_{s}^{\ell} d s\right) \xrightarrow{p} h_{0}^{\ell}$ as $T / k \rightarrow 0$ (under mild regularity conditions)

EXAMPLE \#1: TAIL PROBABILITY ESTIMATION

Epidemiologic Network

- This example deals with a risk analysis model of how diseases can be transmitted within a networked population
- Epidemiologic networks can take various forms, including social networks, contact networks, and more complex models that incorporate factors such as disease incubation periods and transmission probabilities
- The network can be used to study the dynamics of disease transmission, identify sources of infection, and develop strategies for disease control and prevention

■ Several natural and human-made systems, including the World Wide Web, citation networks, and some social networks, contain few nodes (called hubs) with unusually high degree as compared to the other nodes

Example \#1: TAIL PROBABILITY EStIMATION (CONT.)

A realistic network structure of the Barabási-Albert model
■ Our network analysis adopts the Barabási-Albert (BA) model

- It reflects the scale-free power-law of degree distribution by addressing the preferential attachment feature existing in real-world networks

Example \#1: Tail probability estimation (cont.)

A bottom-up formulation of self-exciting intensity specification

- For given $n \in \mathbb{N}$ agents, each infection indicator process $N^{i} \in\{0,1\}$ admits its intensity with $\omega_{i}>0$

$$
\lambda^{i}=\left(\omega_{i} x^{0}+x^{i}\right)\left(1-N^{i}\right)
$$

- λ^{i} denotes the intensity of the infection process of the $i^{\text {th }}$ agent
- $x^{0} \Rightarrow$ the systematic risk factor as the common source of indirect transmission
- $\left\{x^{i}\right\}_{i=1}^{n} \Rightarrow$ a set of idiosyncratic factors as the drivers of direct contagion

```
- Model specification
```

- The intensity of the infection counting process $N_{t}=\sum_{i=1}^{n} N_{t}^{i}$ is obtained by

$$
\lambda_{t}=\sum_{i=1}^{n} \lambda_{t}^{i} \text { for } t \geq 0
$$

Example \#1: Tall probability estimation (cont.)

- Let n be the rarity parameter for estimating $\mathbf{P}\left(N_{T_{n}} \geq k_{n}\right)$ with relative errors
- We set $T_{n}=c / n$ and $k_{n}=\mu n$ for $c=300$ and $\mu=0.1$
- We increase the size of the network and shrink the investigation horizon, while keeping the threshold at 10% of the population
- We allow 60 seconds of CPU time for each estimation

(a) Estimated $\mathbf{P}\left(N_{T_{n}} \geq k_{n}\right)$

(b) Relative Errors (Log scale)

Part II:
Conditional Expectations on the Tall

Motivation

- We focus on the extreme values of a distribution, where the probability is low but the consequences can be significant
- The conditional expectation on the tail events can facilitate an understanding of how a random variable behaves in such circumstances
- The Bayes' formula allows one to investigate the expected behavior of any random variable X conditional on a tail scenario

$$
\mathbf{E}\left(X \mid N_{T} \geq k\right)=\frac{\mathbf{E}\left(X \cdot 1_{\left\{N_{T} \geq k\right\}}\right)}{\varepsilon}
$$

- No knowledge of the law of X conditional on the tail event is required

Marked Point Process

- Consider a sequence of random quantities (e.g., random losses) $\pi_{\ell} \geq 0$ as a mark associated with each arrival time τ_{ℓ} for $\ell \geq 1$
- The loss process L is defined as

$$
L_{t}=\sum_{\ell=1}^{N_{t}} \pi_{\ell},
$$

where the jump times of N and L coincide, and the ℓ-th jump size of L is π_{ℓ}

- N can be described as a special example of L, where $\pi_{\ell}=1$ for all $\ell \geq 1$

An extended cTS scheme

■ Fix some (T_{1}, T_{2}) such that $0<T_{1} \leq T_{2}$ to estimate $\mathrm{E}\left(L_{T_{2}} \mid N_{T_{1}} \geq k\right)$
■ Now we extend the tail sampling scheme specific to the tail event $\left\{N_{T_{1}} \geq k\right\}$

- Let $\left\{u_{\ell}^{T_{1}}\right\}_{\ell=1}^{k}$ be a collection of i.i.d. uniform order statistics on [0, T_{1}]
- Also consider an i.i.d. sequence of standard exponential random variables $\left\{\mathcal{E}_{\ell}\right\}_{\ell \geq k+1}$
- We redefine the spacing θ_{ℓ} as

$$
\theta_{\ell}= \begin{cases}u_{\ell}^{T_{1}}-u_{\ell-1}^{T_{1}} & \text { for } \ell=1, \ldots, k \\ \inf \left\{t>0: \int_{0}^{t} h_{s}^{\ell} \mathrm{d} s \geq \mathcal{E}_{\ell}\right\} & \text { for } \ell \geq k+1\end{cases}
$$

Conditional Tall Sampling Algorithm

Conditional Tall Sampling Algorithm

Conditional Tall Sampling Algorithm

Theorems for conditional expectations

Theorem (Extended conditional tail sampling)

For any integer $k \geq 1$, the following identities hold for $(0<) T_{1} \leq T_{2}$:

$$
\mathbf{E}\left(L_{T_{2}} \cdot 1_{\left\{N_{T_{1}} \geq k\right\}}\right)=\mathbf{E}^{\star}\left(L_{T_{2}} \cdot \varphi_{k}\left(T_{1}\right)\right) ; \quad \mathbf{E}\left(L_{T_{2}} \mid N_{T_{1}} \geq k\right)=\frac{\mathbf{E}^{\star}\left(L_{T_{2}} \cdot \varphi_{k}\left(T_{1}\right)\right)}{\mathbf{E}^{\star}\left(\varphi_{k}\left(T_{1}\right)\right)} .
$$

Theorem (Relative error bound)
Let $\varphi \triangleq \varphi_{k}\left(T_{1}\right)$. Then, we have

$$
\frac{\sqrt{\operatorname{Var}\left(L_{T_{2}} \mid N_{T_{1}} \geq k\right)}}{\mathbf{E}\left(L_{T_{2}} \mid N_{T_{1}} \geq k\right)} \leq \frac{\sqrt{\mathbf{E}\left(\varphi^{2}\right)}}{\mathbf{E}(\varphi)} \cdot \frac{\sqrt{\mathbf{E}\left(L_{T_{2}}^{2} \cdot \varphi^{2}\right)}}{\mathbf{E}\left(L_{T_{2}} \cdot \varphi\right)}
$$

if $\operatorname{Cov}\left(L_{T_{2}} \varphi, \varphi\right) \geq 0$ holds.

Example \#2: Systemic Credit Loss

Default Clustering in a Stochastic Network

- This example examines the potential (expected) consequences that a financial system or market may face in extreme or tail-risk scenarios in a shorter horizon
- This analysis focuses on understanding how the credit risk at the system-level evolves when the financial system experiences severe stress or crisis events at the beginning
- We are interested in estimating both

$$
\mathbf{P}\left(N_{T(x)} \geq k(x)\right) \quad \text { and } \quad \mathbf{E}\left(N_{T} \mid N_{T(x)} \geq k(x)\right),
$$

where $T(x) \rightarrow 0$ and $k(x) \rightarrow \infty$ as $x \rightarrow \infty$

- Model specification

Example \#2: Systemic Credit Loss (cont.)

- Estimated $\mathbf{P}\left(N_{T(x)} \geq k(x)\right)$ and their relative errors
- We take $T(x)=T / x$ with $T=5$ and $k(x)=5 x$

Example \#2: Systemic Credit Loss (cont.)

- Estimated $\mathrm{E}\left(N_{T} \mid N_{T(x)} \geq k(x)\right)$ and their relative errors
- We take $T(x)=T / x$ with $T=5$ and $k(x)=5 x$

(a) $\mathbf{E}\left(N_{T} \mid N_{T(x)} \geq k(x)\right)$

(b) Relative Errors (Log scale)

Paft III:

 Applications to Financial Examples
Example \#3: Defaultable Security Pricing

(Short) Term structure of credit spreads for risky zero coupon bonds

- To estimate the term structure of credit spreads by determining fair compensation for bearing credit risk across various maturities
- Our focus is on the short-term regime with a small value of $T \downarrow 0$

Practical relevance with "small" T

- When a depository institution establishes a daily interest facility (DIF), the central bank adjusts the DIF rate to account for the overnight credit spread between unsecured and collateralized overnight lending
- The growing prevalence of blockchain technology has created a need for an ultra-short tenor interest rate curve that can be estimated at an intraday level to enable immediate settlement of transactions in the real-time interbank money market

Example \#3: Defaultable Security Pricing (cont.)

An illustrative model specification (τ : Default arrival time)

- Short-rate process: $d r_{t}=\kappa\left(y-r_{t}\right) d t+\sigma \sqrt{r_{t}} d W_{t}^{r}$
- A state process: $d x_{t}=a\left(b-x_{t}\right) d t+c \sqrt{x_{t}} d W_{t}^{x}, \quad W^{r} \perp W^{x}$
- Default intensity process: $\lambda_{t}=\left(\rho r_{t}+\sqrt{1-\rho^{2}} x_{t}\right) \cdot 1_{\{\tau>t)}, \quad \rho \in(0,1)$
- Recovery process: $R_{t}=\frac{\lambda_{0}}{\lambda_{0}+\lambda_{t-}} \in(0,1)$
- Loss process: $L_{t}=\left(1-R_{\tau}\right) \cdot 1_{\{\tau \leq t\}}=\underbrace{\frac{\lambda_{\tau-}}{\lambda_{0}+\lambda_{\tau-}}}_{=\text {mark }} \cdot 1_{\{\tau \leq t \mid}$
- (Our interest): Term structure of credit spreads as $T \downarrow 0$
\Rightarrow No closed-form solution is available for defaultable security pricing
Pricing details

Example \#3: Defaultable Security Pricing (cont.)

■ (Left panel): A fixed simulation time budget of 60 seconds

- The true value of the short-horizon limit of credit spread is indicated by a horizontal thick dotted line
- Credit triangle

■ (Right panel): Set $T=1 / 252$ across different simulation time budgets

- The relative margin of error is defined as the ratio of deviation around the point estimate of $s(T)$ at the 99% confidence interval

(a) Estimated $s(T)$

(b) Relative Margin of Error (Log scale)

Example \#4: Maximum drawdown

An example of insurance risk analysis

- Let (N, L) denote the claim counting and the associated loss processes
- A reserve process is defined for some $\alpha>0$ as

$$
R_{t}=R_{0}+\alpha t-L_{t}
$$

- The drawdown process is expressed as

$$
D_{t}=\sup _{s \in[0, t]} R_{s}-R_{t}
$$

- For some fixed $T>0$, the maximum drawdown is given by

$$
D_{T}^{\star}=\sup _{t \in[0, T]} D_{t}
$$

by measuring the largest reserve drop from its peak to trough in $[0, T]$

Example \#4: Maximum drawdown (cont.)

- (Our interest): The estimation of $\mathrm{E}\left(D_{T}^{\star} \mid N_{T} \geq k\right)$
- The conditional expectation of maximum drawdown can be expressed as

$$
\mathbf{E}\left(D_{T}^{\star} \mid N_{T} \geq k\right)=\frac{\mathbf{E}\left(D_{T}^{\star} \cdot 1_{\left[\mathbb{N}_{T} \geq k\right.}\right)}{\mathbf{E}\left(1_{\left.\mid N_{T} \geq k\right]}\right)}
$$

(Plain Monte Carlo)

- It can be rewritten under the tail sampling scheme as

$$
\mathbf{E}\left(D_{T}^{\star} \mid N_{T} \geq k\right)=\frac{\mathbf{E}\left(D_{T}^{\star} \cdot \varphi_{k}(T)\right)}{\mathbf{E}\left(\varphi_{k}(T)\right)}
$$

(Conditional Tail Sampling)
where we have $\left\{\tau_{\ell} \stackrel{d}{=} u_{\ell}\right\}_{\ell=1}^{k}$ under the cTS scheme

- D_{T}^{\star} can be expressed as a function of $\left\{\tau_{\ell}\right\}_{\ell=1}^{N_{T}}$ given the intensity trajectory

Example \#4: MaXIMUM DRAWDOWN (coNT.)

Estimated Tail Probabilities: $\mathbf{P}\left(N_{T} \geq k\right)$ for $5 \leq k \leq 40$

- We allow 60 seconds of CPU time for each estimation
- The cTS scheme shows an efficient variance reduction under the stochastic regime-changing intensity dynamics

(a) Estimated $\mathbf{P}\left(N_{T} \geq k\right)$

(b) Relative Error (Log scale)

Example \#4: MaXIMUM DRAWDOWN (coNT.)

Estimated Conditional Expectations: $\mathbf{E}\left(D_{T}^{\star} \mid N_{T} \geq k\right)$ for $5 \leq k \leq 40$

- We allow 60 seconds of CPU time for each estimation
- Our proposed cTS scheme is computationally more efficient than the benchmark pMC method as k increases

(a) Estimated $\mathrm{E}\left(D_{T}^{\star} \mid N_{T} \geq k\right)$

(b) Relative Error (Log scale)

Conclusion

- This study develops a novel, easy to simulate and fast MC estimator of rare event probabilities via conditional Tail Sampling (cTS)
- It accommodates any model specification provided it can be simulated

■ Our algorithms provide meaningful efficiency gains by ensuring each simulated path hits the rare event with probability one

- It ensures that none of the simulated paths will be wasted

■ The limiting measure possesses attractive properties for simulation

- Our approach facilitates a substantial reduction in the sampling error
- We test our algorithms on a wide spectrum of applications using empirically motivated reduced-form models
- Our findings illustrate the superior performance of the proposed cTS scheme over plain MC
- Our proposed methodology has potential for application in a wide range of real-world problems!

Thank you!

Appendix

Appendix: Importance sampling

- The intuition behind importance sampling is to shift the sampling process from a difficult-to-sample distribution to a more manageable distribution

EXACT BRIDGE TRANSFORM

- The unbiased estimator of $\varphi_{k}(T)$ can be exactly sampled efficiently when the sequence $\left\{h_{0}^{\ell}\right\}_{\geq \geq 1}$ satisfies the Markov property

$$
\begin{aligned}
\mathbf{P}\left(N_{T} \geq k\right) & =\mathbf{E}\left(\varphi_{k}(T)\right) \\
& =\frac{T^{k}}{k!} \mathbf{E}\left(\prod_{\ell=1}^{k} h_{\theta_{\ell}}^{\ell} \mathbf{E}\left(\exp \left(-\int_{0}^{\theta_{\ell}} h_{s}^{\ell} d s\right) \mid \theta_{\ell}, h_{0}^{\ell}, h_{\theta_{\ell}}^{\ell}\right)\right)
\end{aligned}
$$

- This implies that an unbiased estimator of $\mathbf{P}\left(N_{T} \geq k\right)$ is available by sampling $\left\{u_{1}, \ldots, u_{k}\right\}$ when exact samples of $h_{\theta_{\ell}}^{\ell}$ can be simulated conditional on h_{0}^{ℓ} for $\ell=1, \ldots, k$
- ... and, in many cases, the bridge transform

$$
\mathbf{E}\left(\exp \left(-\int_{0}^{\theta_{\ell}} h_{s}^{\ell} d s\right) \mid \theta_{\ell}, h_{0}^{\ell}, h_{\theta_{\ell}}^{\ell}\right)
$$

can be evaluated without bias; e.g., see (Broadie \& Kaya 2006)

Extension: Conditional Point Sampling

Corollary (Conditional Point Sampling)

For any integer $k \geq 1$, we have

$$
\mathbf{P}\left(N_{T}=k\right)=\mathbf{E}^{\star}\left(\varphi_{k}(T) \cdot e^{-\int_{0}^{\theta_{k+1}} h_{s}^{k+1} d s}\right),
$$

where $\theta_{k+1}=T-u_{k}$.

Doubly stochastic Poisson processes

Time-change argument (Meyer 1971)

- General statement
- N maybe be identified with a time-changed standard Poisson process
- Given the filtration $\mathcal{G}=\left(\mathcal{F}_{A_{t}}\right)_{t \geq 0}$, there exists a \mathcal{G}-adapted Poisson process C of unit rate such that

$$
N_{t}=C_{A_{t}}
$$

where $A_{t}=\int_{0}^{t} \lambda_{s} d s$

- Doubly stochastic Poisson processes
- No arrival time τ_{ℓ} may affect the dynamics of the intensity λ
- $N_{t}=C_{A_{t}}$ holds in distribution for a standard Poisson process C independent of A

$$
\begin{align*}
\mathbf{P}\left(C_{A_{T}} \geq k\right) & =\mathbf{E}\left(\varphi_{k}\left(A_{T}\right)\right)(\lambda=1 \text { for } C) \\
& =\frac{1}{k!} \mathbf{E}\left(A_{T}^{k} e^{-\beta_{k} A_{T}}\right)\left(\beta_{k}=\frac{u_{k}}{A_{T}} \sim \operatorname{Beta}(k, 1)\right) \\
& =\frac{1}{(k-1)!} \mathbf{E}(\underbrace{\frac{1}{k} A_{T}^{k} \mathbf{E}\left(\left.\frac{1}{k} e^{-\beta_{k} A_{T}} \right\rvert\, A_{T}\right)}_{=\gamma\left(k, A_{T}\right)}) \\
& =\frac{1}{(k-1)!} \mathbf{E}\left((k-1)!\left(1-e^{-A_{T}} \sum_{\ell=0}^{k-1} \frac{A_{T}^{\ell}}{\ell!}\right)\right) \\
& =1-\sum_{\ell=0}^{k-1} \frac{\mathbf{E}\left(A_{T}^{\ell} e^{-A_{T}}\right)}{\ell!} \tag{Return}\\
& =\mathbf{P}\left(N_{T} \geq k\right) \quad \text { Return }
\end{align*}
$$

Appendix: AsYmptotic optimality

The $T / k \rightarrow 0$ asymptotics

Assumption

There exists a function $f(x)>0$ with $\frac{1}{f(x)} \log k(x) \rightarrow 0$ as $x \rightarrow \infty$ such that

$$
\liminf _{x \rightarrow \infty} \frac{1}{f(x)} \log \varepsilon(x) \geq-1
$$

which is consistent with large deviations theory for rare events.

Assumption

The function $f(x)$ defined above satisfies

$$
\limsup _{x \rightarrow \infty} \frac{1}{f(x)} \log \mathbf{P}(\mathscr{A}(x)) \leq-2
$$

where the event $\mathscr{A}(x)$ is given by $\mathscr{A}(x)=\{\varphi(x) \geq M(x)\}$ with

$$
M(x) \triangleq e^{-f(x)} \prod_{\ell=1}^{k(x)} \frac{k(x)}{e \cdot \ell} \approx \frac{e^{-f(x)}}{\sqrt{2 \pi k(x)}}<1 \quad \text { (Stirling's approx.) }
$$

Appendix: AsYmptotic optimality (cont.)

The $T / k \rightarrow 0$ asymptotics (cont.)

Theorem (Asymptotic optimality condition)

The cTS estimator $\varphi(x)$ is an asymptotically optimal estimator of $\varepsilon(x)$, if $\mathrm{P}(\mathscr{A}(x)) \downarrow 0$ as $x \rightarrow \infty$ holds.

Corollary (Approximate cTS with asymptotic optimality)

Define $\widetilde{\varphi}(x) \triangleq \min \{\varphi(x), M(x)\}$ and let $\widetilde{\varepsilon}(x) \triangleq \mathbf{E}(\widetilde{\varphi}(x))$. Then, the following statements are true:
(i) $\widetilde{\varphi}(x)$ is an asymptotically optimal estimator of $\widetilde{\varepsilon}(x)$.
(ii) We have $0<\widetilde{\varepsilon}(x) \leq \varepsilon(x)$ for all x.
(iii) We have $|\widetilde{\varepsilon}(x)-\varepsilon(x)| \leq(1-M(x)) \cdot \mathbf{P}(\mathscr{A}(x))$ for all x.

Example \#1: Tall probability estimation (cont.)

- The systematic factor x^{0} evolves with some $\kappa_{0}>0$ and $y_{0}>0$ by satisfying

$$
d x_{t}^{0}=\kappa_{0}\left(y_{0}-x_{t}^{0}\right) d t+d J_{t}
$$

by driving the innovation of systematic factor dynamics

- $J_{t}=\sum_{j=1}^{n} \delta_{0 j} N_{t}^{j}$ captures the indirect feedback mechanism by driving the innovation of systematic factor dynamics
- $\delta_{0 j} \geq 0$ addresses the instant contribution of individual j 's infection to the systematic risk factor
- The idiosyncratic factor process x^{i} follows

$$
d x_{t}^{i}=\kappa_{i}\left(y_{i}-x_{t}^{i}\right) d t+\sum_{j=1}^{n} \delta_{i j} d N_{t}^{j}
$$

- The vector $\delta_{i}=\left(\delta_{i 1}, \ldots, \delta_{i n}\right) \geq 0$ represents i 's sensitivity to events in the system for $i=1, \ldots, n$

Example \#1: Tail probability estimation (cont.)

- The construction of this model involves processes $h^{i \ell}$ which specify the conditional rate of arrival of the ℓ th event at the i th component
- Letting $\mathcal{S}_{\ell}=\left\{i: N_{\tau_{\ell-1}}^{i}=0\right\}$ denote the components that "survive" by time $\tau_{\ell-1}$,

$$
h_{t}^{\ell}=\sum_{i \in \mathcal{S}_{t}} h_{t}^{i \ell}
$$

specifies the inter-arrival intensity of N which defines θ_{ℓ} under \mathbf{P}

- The distribution of the component that generates the ℓ th event is

$$
\begin{aligned}
\mathbf{P}\left(\tau_{\ell}=\xi_{i} \mid \mathcal{F}_{\tau_{\ell^{-}}}\right) & =\mathbf{P}^{\star}\left(\tau_{\ell}=\xi_{i} \mid \mathcal{F}_{\tau_{\ell^{-}}}\right) \\
& =\frac{\lambda_{\tau_{\ell^{-}}}^{i}}{\lambda_{\tau_{\ell^{-}}}}=\frac{h_{\theta_{\ell}}^{i \ell}}{h_{\theta_{\ell}}^{\ell}} \quad 1 \leq i \leq n
\end{aligned}
$$

Example \#2: Systemic Credit Loss

Default Clustering in a Stochastic Network

- Suppose that there are $m=100$ defaultable entities in the system
- A policymaker should be concerned about failure of an abnormally large fraction of the total population in the system
- A bottom-up formulation
- Consider a systematic risk factor $x^{0} \geq 0$ and a set of idiosyncratic factor processes $\left\{x^{i}\right\}_{i=1}^{m}$ so that each default indicator process N^{i} admits

$$
\lambda^{i}=\left(\omega_{i} x^{0}+x^{i}\right)\left(1-N^{i}\right)
$$

as its intensity

- Here, $\omega_{i}>0$ is the systematic factor loading of the $i^{\text {th }}$ name in the system

Example \#2: Systemic Credit Loss (cont.)

- We assume that η^{0} is the strong solution of the SDE given by

$$
d x_{t}^{0}=\kappa_{0}\left(\theta_{0}-x_{t}^{0}\right) d t+\sigma_{0} \sqrt{x_{t}^{0}} d W_{t}^{0}
$$

- We further assume that η^{i} is governed by the SDE under the statistical probability measure \mathbf{P}

$$
d x_{t}^{i}=\kappa_{i}\left(\theta_{i}-x_{t}^{i}\right) d t+\sigma_{i} \sqrt{x_{t}^{i}} d W_{t}^{i}+\sum_{j=1}^{m} \delta_{i j} d N_{t}^{j},
$$

- $\left(W^{0}, W^{1}, \ldots, W^{m}\right)$ is a vector of mutually independent Brownian motions
- The Feller conditions are respected to ensure $x^{0}>0$ and $x^{i}>0$ almost surely
- $\left(\delta_{i 1}, \ldots, \delta_{i m}\right)$ represents name i 's sensitivity to defaults in the system
- The jump sensitivity are constructed by drawing each $\delta_{i j}$ from $[0,1 / \mathrm{m}]$ uniformly

Example \#3: Defaultable Security Pricing (cont.)

■ The default-free bond price with unit face value: $V_{0}(T)=\mathbf{E}\left(e^{-\int_{0}^{T} r_{s} d s}\right)$
■ The defaultable bond price with unit face value:

$$
\begin{aligned}
V_{\lambda}(T) & =\mathbf{E}\left(e^{-\int_{0}^{T} r_{s} d s} 1_{\{\tau>T\}}+R_{\tau} e^{-\int_{0}^{\tau} r_{s} d s} 1_{\{\tau \leq T\}}\right) \\
& =\underbrace{\mathbf{E}\left(e^{-\int_{0}^{T} r_{s} d s}\right)}_{=V_{0}(T)}-\mathbf{E}(\underbrace{\left(e^{-\int_{0}^{T} r_{s} d s}-R_{\tau} e^{-\int_{0}^{\tau} r_{s} d s}\right)}_{:=X_{T}(\tau)} 1_{\{\tau \leq T\}}) \\
& =V_{0}(T)-\mathbf{E}\left(X_{T}\left(u_{1}\right) \varphi_{1}(T)\right)
\end{aligned}
$$

- The credit spread is given by

$$
\begin{aligned}
s(T) & =-\frac{\log V_{\lambda}(T)}{T}+\frac{\log V_{0}(T)}{T} \\
& =-\frac{1}{T} \log \left(1-\frac{\mathbf{E}\left(X_{T}(\tau) \cdot 1_{\{\tau \leq T\}}\right)}{V_{0}(T)}\right)=-\frac{1}{T} \log \left(1-\frac{\mathbf{E}^{\star}\left(X_{T}\left(u_{1}\right) \cdot \varphi_{1}(T)\right)}{V_{0}(T)}\right)
\end{aligned}
$$

Example \#3: Defaultable Security Pricing (cont.)

Theorem (Plain Monte Carlo)

The pMC estimator of $\mathrm{E}\left(X_{T}(\tau) 1_{\{\tau>T\}}\right)$ has unbounded relative error as $T \downarrow 0$.

Theorem (Conditional Tail Sampling)

The tail-sampling estimator of $\mathbf{E}^{\star}\left(X_{T}\left(u_{1}\right) \varphi_{1}(T)\right)$ has bounded relative error as $T \downarrow 0$.

- The short-horizon limit of the credit spread is given by

$$
\lim _{T \downarrow 0} s(T)=\left(1-R_{0}\right) \lambda_{0}
$$

which is also known as the credit triangle formula

Example \#4: Maximum drawdown (cont.)

■ We adopt a Markov regime-switching model to model the dynamics of the stochastic claim intensity process λ

- We presume that there are two claim regimes in that the state process $s_{t} \in\{0,1\}$ for $t \geq 0$ follows the continuous-time Markov chain with $s_{0}=0$
- The time-t intensity process takes the form of $\lambda_{t} \triangleq \lambda_{s_{t}} \in\left\{\lambda_{0}, \lambda_{1}\right\}$, where the time until the next regime-shift from state i to j is exponentially distributed with rate $v_{i j}>0$ for $i \neq j$
- For numerical analysis, we specify the baseline parameter set as

$$
\left(\lambda_{0}, \lambda_{1}\right)=(1.5,3.0), T=5.0, R_{0}=25, \alpha=3.0,\left(v_{01}, v_{10}\right)=(0.5,1.0)
$$

and $\left\{\pi_{1}, \pi_{2}, \ldots\right\}$ are uniformly drawn from [0.5, 1.5] independently
■ Notice that the Markov regime-switching intensity process λ and the claim-counting process N satisfy a doubly stochastic property

- Due to its deterministic nature of the reserve process between two consecutive claim times with $\alpha>0$, it is sufficient to check the running maximum of R_{t} and D_{t} for $t \in[0, T]$ just before each claim arrival time

