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Outliers in HDLSS data

High-throughput data are more likely to have abnormal observations.

Challenges in developing methodology

Hard to distinguish outliers from non-outliers as d increases.
Distance measure when n� d .
Significance test.

There are only a few existing methodologies.

Rely on n-asymptotic test.
Use a high-dimensional covariance estimator.
Tend to have larger false positives.
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Outlier detection for HDLSS data

When N � d

PCout (PCO) by Filzmoser et al. (2008): Kurtosis based approach on the PC
scores.

CoMedian (COM) by Sajesh and Srinivasan (2012): Based on robust
estimates of mean and covariance matrix.

MDP by Ro et al. (2015): Only diagonal elements of covariance matrix are
considered.

DSO by Ahn et al. (2020): Sequential elimination based on LOO distance.

All rely on large sample approximation in testing respective abnormality measures.
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Outliers in HDLSS data

xi
iid∼ N(0,Σ), where i = 1, . . . , 90, Σ = 0.8|l−l

′| and 1 ≤ l , l ′ ≤ 2000.

xoj
iid∼ N(10uj ,Σ), where j = 1, . . . , 10 and uj

iid∼ Unif(V1,d).
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The Proposed Method

Two Stage Procedure

1. Identify “surely” non-outliers and candidate outliers.

New outlyingness measure for HDLSS
Sure screening property

2. New nonparametric test for candidate outliers.

Individual outliers are tested against the surely non-outliers.
Random rotation to generate null distribution.
HDLSS asymptotic power
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Measure of Outlyingness

X = [x1, . . . , xN ]T , where x ∈ Rd .
Let xT

i be the ith row of X and X−i be a row-wise sub-matrix of X without xi .
Let P−i be the projection matrix onto the row space of X−i and x̄−i be the
mean of X−i .
We use Distance to Hyperplane (DH):

DX−i (xi ) = ‖(Id − P−i )(xi − x̄−i )‖2.
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Stage I: Screening Candidate Outliers (1/4)
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Stage I: Screening Candidate Outliers (2/4)

Choose “inliers” based on median pairwise distance.
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Stage I: Screening Candidate Outliers (3/4)

Candidate outliers based on DH to “inliers”
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Stage I: Screening Candidate Outliers (4/4)

“Candidate outliers” vs. ”Surely non-outliers”.
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Stage II: Testing Outliers

For each xi ∈ X1,

Test whether xi is too far from X0.

Test statistic: DH distance

D0(xi ) = ‖(Id − P0)(xi − x̄0)‖2.

Q: How to obtain a null distribution?

Random Rotations
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Background: Multivariate Normal

From Dempster (1969)

X : an N × d data matrix from Nd(0,Σ).

QR decomposition:
X = XQXR

XQ is uniformly distributed in a Stiefel manifold Vn,r , r =rank of X .

XR is a sufficient statistic for Σ.

XQ are XR are independent.
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Background: Rotation for Multivariate Normal

From Langsgrud (2005)

Generate X ∗Q from Vn,r .
Obtain new data conditioning on the sufficient statistic for Σ

X ∗ = X ∗QXR

X ∗ is a randomly rotated version of X .

X ∗ ∼ Nd(0,Σ).
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Left-spherical Distribution

Definition

Let X be an N × d random matrix according to a probability distribution PN . If
RX is identically distributed as X, for all R ∈ ON , then PN is called a
left-spherical distribution, denoted as PN ∈ LSN,d .

Note:

Matrix normal, matrix t and a scale-mixture of those are included.

Rows must be uncorrelated.
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Random Rotations

t(X) : a given statistic
R : uniformly on ON

Rotation Distribution

For left-spherical X, t(RX) is identically distributed as t(X)

Conditioning on X, the distribution function of t(RX) as

Ft|X(z |X ) =

∫
ON

1{t(RX ) ≤ z}[dR], (1)

where 1(·) denotes an indicator function.
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Subspace Rotations for Nontrivial Mean

X− E(X) ∼ LSN,d .

Or, X ∼ PN ∈ LSN,d(M), where E(X) = MB and M is a known N ×m0 full
rank matrix.

Orthogonal transformations:

QN = {LN = MMT + M⊥RM
T

⊥,R ∈ ON−m0}

Theorem 1

Let X ∼ PN ∈ LSN,d(M) and LN ∼ Unif (QN), where X and LN are independent.
Then LNX and LN are independent, and LNX and X are identically distributed.
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Subspace Rotation Tests

H0 : X ∼ PN ∈ LSN,d(M).

Under H0, t(X)
d
= t(LNX), where LN ∼ Unif(QN).

Estimate Ft(z) using the SR distribution

Ft|X(z |X ) =

∫
QN

1 {t(LNX ) ≤ z} [dLN ], (2)

where [dLN ] = (dLN)/Vol(Om).

Theorem 2

The conditional distribution in (2) is an unbiased estimator of the true distribution
function Ft(z) = Pr(t(X) ≤ z) in the sense that EX{Ft|X(z |X)} = Ft(z).
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Subspace Rotation Tests

Let cα(X ) be the critical value based on the SR distribution.

φSR(X ) = 1{t(X ) ≥ cα(X )}. (3)

Theorem 3

If the test statistic t(·) is continuous, then the p-value of the SR test is uniformly
distributed over (0, 1), and the SR test is a size-α test.
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Hypothesis Testing via Random Rotations

Permutations vs Rotations

It considered as a continuous extension of the permutation tests.

Random rotations perturb the geometric configuration of the data while
preserving its location and volume.
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Application: Test of Independence

Multivariate normal with two sets of variables

[X ,Y ] ∼ Np+q(0,Σ)

Partitioned covariance

Σ =

(
Σxx Σxy

Σyx Σyy

)
Consider a hypothesis

H0 : Σxy = 0

g(X ,Y ): a test statistic, such as LRT
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Application: Test of Independence

The null distribution g(X ,Y ) under H0 can be simulated via rotating data
repeatedly.

g(R1X ,R2Y ), where R1,R2 ∼ On

g(RX ,Y ) or g(X ,RY ), where R ∼ On
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Stage II: Sequential SR Tests on Candidate Outliers (1/8)
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Stage II: Sequential SR Tests on Candidate Outliers (2/8)
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Stage II: Sequential SR Tests on Candidate Outliers (3/8)

Jeongyoun Ahn (KAIST) 24 / 45



Stage II: Sequential SR Tests on Candidate Outliers (4/8)
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Stage II: Sequential SR Tests on Candidate Outliers (5/8)
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Stage II: Sequential SR Tests on Candidate Outliers (6/8)
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Stage II: Sequential SR Tests on Candidate Outliers (7/8)
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Stage II: Sequential SR Tests on Candidate Outliers (8/8)
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Asymptotics for HDLSS Data

x = (x1, . . . , xd)T and xo = (xo1 , . . . , x
o
d )T represent non-outliers and outliers,

respectively.

Assumptions

(a) The fourth moments of the entries of the data vectors are uniformly bounded.

(b) d−1
∑d{E(xl)− E(xol )}2 −→ µ2 as d →∞

(c) d−1
∑d Var(xl) −→ σ2 as d →∞

(d) d−1
∑d Var(xol ) −→ τ 2 as d →∞

(e) For both x and xo , there exists a permutation of entries such that the
sequence of the variables are ρ-mixing for functions that are dominated by
quadratics.

The ρ-mixing in (e) is a mild condition to achieve the law of large numbers for
sequence of correlated random variables.
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HDLSS geometric representation

x1, x2, x3
iid∼ N(0d , Id) and x4∼N(41d , Id), where d = 5000.
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HDLSS geometric representation
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Asymptotic Sure Screening Probability

Theorem 4

Let J be the set of true outliers. Under the conditions, we have

lim
d→∞

Pr (J ⊂ X1) = 1,

if µ2 + τ 2 > σ2 and n0 > n1 + 1.
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Sure Screening of Non-outliers

(N = 100)
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Asymptotic Power of SR Tests for Outlier Detection

Theorem 5

Suppose that µ2 + τ 2 > σ2, and let ϑt(Y) is the p-value such that

ϑt(Y) = ELn [1{t(Y) ≤ t(LnY)}|Y].

Then, as d tends to infinity,

ϑt(Y)
p−→

{
1 under H0

0 under Ha
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Asymptotic Power of SR Tests for Outlier Detection

Illustration of the asymptotic geometry of HDLSS data and three randomly
rotated data sets when n0 = 2 and n1 = 1.
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Simulation Study

Normal, t, Gaussian Copula with exponential marginal

d = 1000, N = 50, 100 and n1 = 0, 4, 15.

κ = 500, η = 0.25 and α = 0.05.

We consider three choices of covariance matrices as follows.

Auto-Regressive (AR): Σ = {0.8|l−l′|}l,l′ , where 1 ≤ l , l ′ ≤ d .
Compound Symmetry (CS): Σ = .7Id + .3Jd,d .
Geometric Decaying (GD): Σ = ΓΛΓT, where Γ is generated from Unif(Vd,d)
and Λ is a diagonal matrix with geometrically decaying eigenvalues.
Specifically,

λl =
d(.9l−1 − .9l)

1− .9d
, l = 1, . . . , d .
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Simulation Study
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Simulation Study
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Simulation Study (No outlier)

N=50 N=100
AR CS GD AR CS GD

MN

SR 0.44 (0.10) 2.48 (0.27) 0.50 (0.10) 0.54 (0.12) 2.74 (0.30) 0.84 (0.15)
DSO 1.48 (0.15) 1.72 (0.25) 1.66 (0.14) 1.62 (0.16) 1.70 (0.19) 2.40 (0.31)
PCO 4.84 (0.42) 4.66 (0.35) 4.80 (0.37) 7.94 (0.53) 7.40 (0.47) 8.14 (0.47)
MDP 3.30 (0.25) 18.96 (0.43) 5.40 (0.39) 5.76 (0.39) 34.06 (0.78) 7.78 (0.42)
COM 1.00 (0.00) 7.62 (0.38) 1.26 (0.07) 1.00 (0.00) 14.52 (0.49) 1.12 (0.05)

MT

SR 0.54 (0.11) 0.44 (0.11) 0.54 (0.12) 0.44 (0.08) 0.52 (0.12) 0.44 (0.11)
DSO 1.70 (0.21) 1.64 (0.17) 1.60 (0.14) 2.20 (0.24) 2.36 (0.29) 2.58 (0.34)
PCO 5.36 (0.35) 5.90 (0.42) 5.70 (0.41) 10.58 (0.61) 9.70 (0.57) 10.02 (0.50)
MDP 1.68 (0.28) 1.32 (0.22) 1.72 (0.28) 2.18 (0.27) 1.68 (0.24) 2.08 (0.30)
COM 6.06 (0.31) 6.80 (0.39) 6.40 (0.33) 5.56 (0.37) 5.98 (0.32) 5.54 (0.31)

GM

SR 0.68 (0.12) 3.36 (0.30) 0.78 (0.13) 0.88 (0.14) 5.22 (0.38) 1.30 (0.17)
DSO 1.40 (0.16) 1.96 (0.22) 1.88 (0.22) 1.88 (0.23) 2.70 (0.41) 2.14 (0.22)
PCO 4.98 (0.38) 5.12 (0.38) 5.62 (0.39) 7.34 (0.42) 7.94 (0.44) 8.06 (0.46)
MDP 5.26 (0.39) 20.30 (0.33) 6.64 (0.48) 8.78 (0.47) 36.04 (0.86) 9.98 (0.54)
COM 1.00 (0.00) 8.58 (0.33) 1.60 (0.11) 1.00 (0.00) 16.62 (0.47) 1.60 (0.12)
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Outliers in Human Face Image Data

ORL face image data

The ORL data consist of 400 images: 10 images of 40 individuals.

An image consists of 112× 92 pixels, d = 10304, with 0-255 grey levels per
pixel.

Created data with 10 images of one person plus 3 images of different people
(N = 13).

SR DSO PCO COM
TPR 0.917 0.308 0.700 0.850
FPR 0.033 0.008 0.153 0.138
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Outliers in Human Face Image Data
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Conclusions

In this work,

We developed an effective high dimensional outlier detection method.

The proposed method controls type I error rate with the finite dimension and
sample size.

Also, the power of the proposed testing procedure converges to 1 as the
dimension increases.

Simulated and read data examples support our theoretical findings.
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Future Directions

Further look at the distribution assumption.

Abnormality detection in different domains such as functional data and
non-Euclidean data.

Application of rotation test to other statistical problems.
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Thank you for your attention!
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