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Outliers in HDLSS data

@ High-throughput data are more likely to have abnormal observations.
@ Challenges in developing methodology

e Hard to distinguish outliers from non-outliers as d increases.

o Distance measure when n < d.

o Significance test.
@ There are only a few existing methodologies.

o Rely on n-asymptotic test.

e Use a high-dimensional covariance estimator.

e Tend to have larger false positives.
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Outlier detection for HDLSS data

When N <« d

e PCout (PCO) by Filzmoser et al. (2008): Kurtosis based approach on the PC
scores.

o CoMedian (COM) by Sajesh and Srinivasan (2012): Based on robust
estimates of mean and covariance matrix.

e MDP by Ro et al. (2015): Only diagonal elements of covariance matrix are
considered.

@ DSO by Ahn et al. (2020): Sequential elimination based on LOO distance.
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Outlier detection for HDLSS data

When N <« d

e PCout (PCO) by Filzmoser et al. (2008): Kurtosis based approach on the PC
scores.

o CoMedian (COM) by Sajesh and Srinivasan (2012): Based on robust
estimates of mean and covariance matrix.

e MDP by Ro et al. (2015): Only diagonal elements of covariance matrix are
considered.

@ DSO by Ahn et al. (2020): Sequential elimination based on LOO distance.

All rely on large sample approximation in testing respective abnormality measures.
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Outliers in HDLSS data

o x; 4 N(0,%), where i =1,...,90, ¥ = 0.8/ and 1 < 1,/ < 2000.

o x? g N(10u;,X), where j=1,...,10 and u; . Unif(V1.,4).

O Non-outlier
*  Outlier
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The Proposed Method

Two Stage Procedure

1. Identify “surely” non-outliers and candidate outliers.

o New outlyingness measure for HDLSS
e Sure screening property

2. New nonparametric test for candidate outliers.

o Individual outliers are tested against the surely non-outliers.
o Random rotation to generate null distribution.
o HDLSS asymptotic power
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Measure of Outlyingness

@ X =[x1,...,xn]", where x € RY.
@ Let x be the ith row of X and X_; be a row-wise sub-matrix of X without x;.

o Let P_; be the projection matrix onto the row space of X_; and X_; be the
mean of X_;.

@ We use Distance to Hyperplane (DH):

Dx_;(xi) = [|(lg — P—i)(xi — %X_)||2-
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Stage |: Screening Candidate Outliers (1/4)
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Stage |: Screening Candidate Outliers (2/4)

Choose “inliers” based on median pairwise distance.

M, = {4,5,6/7}
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Stage I: Screening Candidate Outliers (3/4)

Candidate outliers based on DH to “inliers”
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Stage |: Screening Candidate Outliers (4/4)

“Candidate outliers” vs. "Surely non-outliers”.
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Stage Il: Testing Outliers

For each x; € X7,
@ Test whether x; is too far from AXj.
@ Test statistic: DH distance

Do(xi) = ||(la — Po)(xi — Xo)||2.

@ Q: How to obtain a null distribution?

Jeongyoun Ahn (KAIST) 11 /45



|
Stage Il: Testing Outliers

For each x; € X7,
@ Test whether x; is too far from AXj.
@ Test statistic: DH distance

Do(x;) = [[(fg — Po)(xi — %o)|2-

@ Q: How to obtain a null distribution?
@ Random Rotations
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Background: Multivariate Normal

From Dempster (1969)
e X: an N x d data matrix from Ny (0, X).
@ QR decomposition:
X = XoXr
@ Xg is uniformly distributed in a Stiefel manifold V, ,, r =rank of X.
@ Xg is a sufficient statistic for X.

@ Xgq are Xg are independent.
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Background: Rotation for Multivariate Normal

From Langsgrud (2005)
e Generate X from V, .

@ Obtain new data conditioning on the sufficient statistic for X
X* = XoXr

@ X* is a randomly rotated version of X.
o X* ~ Ny(0,X).
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Left-spherical Distribution

Definition

Let X be an N x d random matrix according to a probability distribution Pp. If
RX is identically distributed as X, for all R € Oy, then Py is called a
left-spherical distribution, denoted as Py € LSy 4.

o Matrix normal, matrix t and a scale-mixture of those are included.

o Rows must be uncorrelated.
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Random Rotations

t(X) : a given statistic
R : uniformly on Oy

Rotation Distribution

o For left-spherical X, t(RX) is identically distributed as t(X)
o Conditioning on X, the distribution function of t(RX) as

Fux(zlX) = /O 1{t(RX) < z}[dR],

where 1(-) denotes an indicator function.

(1)
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Subspace Rotations for Nontrivial Mean

o X — E(X) ~ LSN)d.

e Or, X ~ Py € LSy 4(M), where E(X) = MB and M is a known N x mq full
rank matrix.

@ Orthogonal transformations:

On = {LN = MM™ + MJ_RM]—_, R e ON*IT)[)}

Let X ~ Py € LSy ¢(M) and Ly ~ Unif(Qp), where X and Ly are independent.
Then LyX and Ly are independent, and LyX and X are identically distributed.
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Subspace Rotation Tests

@ Hy: X~ Py € LSN7d(M).

o Under Hy, t(X) < t(LyX), where Ly ~ Unif(Qp).
o Estimate F;(z) using the SR distribution

Fux(2]X) = / 1{t(LnX) < 2} [dLn], )

On

where [dLy] = (dLy)/ Vol(Op,).

The conditional distribution in (2) is an unbiased estimator of the true distribution
function F(z) = Pr(t(X) < z) in the sense that Ex{Fx(z|X)} = F:(z).
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Subspace Rotation Tests

Let co(X) be the critical value based on the SR distribution.

Psr(X) = H{t(X) = ca(X)}. 3)

If the test statistic t(-) is continuous, then the p-value of the SR test is uniformly
distributed over (0, 1), and the SR test is a size-« test.
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Hypothesis Testing via Random Rotations

Permutations vs Rotations
@ It considered as a continuous extension of the permutation tests.

@ Random rotations perturb the geometric configuration of the data while
preserving its location and volume.

Original Data Random Permutation SR1 SR2
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Application: Test of Independence

Multivariate normal with two sets of variables
o [X, Y]~ Npiq(0,%)

@ Partitioned covariance

@ Consider a hypothesis
Ho:% =0

@ g(X,Y): a test statistic, such as LRT
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Application: Test of Independence

The null distribution g(X, Y) under Hy can be simulated via rotating data
repeatedly.

(] g(Rl)<7 RQY), where Rl, R2 ~ On

e g(RX,Y)or g(X,RY), where R ~ O,
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Stage II: Sequential SR Tests on Candidate Outliers (1/8)
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Stage II: Sequential SR Tests on Candidate Outliers (2/8)
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Stage II: Sequential SR Tests on Candidate Outliers (3/8)
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Stage II: Sequential SR Tests on Candidate Outliers (4/8)
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Stage II: Sequential SR Tests on Candidate Outliers (5/8)
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Stage II: Sequential SR Tests on Candidate Outliers (6/8)

Ln,l Y1
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Stage II: Sequential SR Tests on Candidate Outliers (7/8)

L,1Yy 28
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Stage II: Sequential SR Tests on Candidate Outliers (8/8)
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Asymptotics for HDLSS Data

T

X = (x1,...,%g)" and x° = (x{,...,x3)" represent non-outliers and outliers,

respectively.

The fourth moments of the entries of the data vectors are uniformly bounded.
d LS E(x) — E(x)}2 — p2 as d — o0

d= 13" Var(x) — 02 as d —

d 13 Var(x®) — 72 as d — oo

For both x and x°, there exists a permutation of entries such that the
sequence of the variables are p-mixing for functions that are dominated by
quadratics.

The p-mixing in (e) is a mild condition to achieve the law of large numbers for
sequence of correlated random variables.
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HDLSS geometric representation

@ X1, Xp,X3 i N(0g4, l4) and x4~N(414, l;), where d = 5000.
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HDLSS geometric representation

@ X1, Xp,X3 i N(0g4, l4) and x4~N(414, l;), where d = 5000.
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Asymptotic Sure Screening Probability

Theorem 4

Let 7 be the set of true outliers. Under the conditions, we have
lim Pr(7 Cc X)) =1,
d—oo

if u2 +72>02and np > ny + 1.
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Sure Screening of Non-outliers
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Asymptotic Power of SR Tests for Outlier Detection

Suppose that p? + 72 > 02, and let ¥,(Y) is the p-value such that
Je(Y) = E, [1{t(Y) < t(L,Y)}Y].
Then, as d tends to infinity,

1 under Hy

9(Y) £
«(Y) {0 under H,
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Asymptotic Power of SR Tests for Outlier Detection

2
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Illustration of the asymptotic geometry of HDLSS data and three randomly
rotated data sets when ng =2 and n; = 1.
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Simulation Study

@ Normal, t, Gaussian Copula with exponential marginal

e d =1000, N =50,100 and n; = 0,4, 15.

o k=500, n =0.25 and o = 0.05.

@ We consider three choices of covariance matrices as follows.

o Auto-Regressive (AR): £ = {0.8/~"1}, ,, where 1 < I,/ < d.

o Compound Symmetry (CS): X = .7y + .3Jg,q.

o Geometric Decaying (GD): £ = A", where [ is generated from Unif(Vag,q)
and A is a diagonal matrix with geometrically decaying eigenvalues.
Specifically,

d(.9'"7t —.9")

)\/:W, lzl,,d
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Simulation Study

Location, N=100, MN Location, N=100, MT Location, N=100, GM
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Simulation Study

Location, N=100, MN

Location, N=100, MT Location, N=100, GM
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Simulation Study (No outlier)

N=50 N=100
AR cs GD AR cs GD
SR 0.44 (0.10) 248 (0.27) 0.50 (0.10) | 0.54 (0.12) 2.74 (0.30) 0.84 (0.15)
DSO  1.48(0.15) 1.72 (0.25) 1.66 (0.14) | 1.62 (0.16) 1.70 (0.19)  2.40 (0.31)
MN | PCO 484 (0.42) 466 (0.35) 4380 (0.37) | 7.94 (0.53) 7.40(0.47) 8.14 (0.47)
MDP 330 (0.25) 18.96 (0.43) 5.40(0.39) | 5.76 (0.39) 34.06 (0.78) 7.78 (0.42)
COM  1.00 (0.00) 7.62(0.38) 1.26(0.07) | 1.00 (0.00) 14.52 (0.49) 1.12 (0.05)
SR 0.54 (0.11) 0.44 (0.11) 0.54 (0.12) | 0.44 (0.08) 0.52 (0.12) 0.44 (0.11)
DSO 170 (0.21) 1.64 (0.17) 1.60 (0.14) | 2.20 (0.24)  2.36 (0.29)  2.58 (0.34)
MT | PCO 536 (0.35) 5090 (0.42) 5.70 (0.41) | 10.58 (0.61) 9.70 (0.57)  10.02 (0.50)
MDP 168 (0.28) 1.32(0.22) 1.72(0.28) | 2.18 (0.27) 1.68 (0.24)  2.08 (0.30)
COM 6.06(0.31) 6.80(0.39) 6.40(0.33) | 556 (0.37) 598 (0.32) 554 (0.31)
SR 0.68 (0.12) 3.36 (0.30) 0.78 (0.13) | 0.88 (0.14) 522 (0.38) 1.30 (0.17)
DSO 140 (0.16) 1.96 (0.22) 1.88(0.22) | 1.88(0.23) 2.70 (0.41) 2.14 (0.22)
GM | PCO  4.98(0.38) 5.12(0.38) 562 (0.39) | 7.34(0.42) 7.94 (0.44)  8.06 (0.46)
MDP 526 (0.39) 20.30 (0.33) 6.64 (0.48) | 8.78 (0.47) 36.04 (0.86) 9.98 (0.54)
COM 1.00(0.00) 858 (0.33) 1.60(0.11) | 1.00 (0.00) 16.62 (0.47) 1.60 (0.12)
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Qutliers in Human Face Image Data

ORL face image data
@ The ORL data consist of 400 images: 10 images of 40 individuals.

@ An image consists of 112 x 92 pixels, d = 10304, with 0-255 grey levels per
pixel.

o Created data with 10 images of one person plus 3 images of different people
(N =13).

SR DSO PCO COM
TPR 0917 0.308 0.700 0.850
FPR 0.033 0.008 0.153 0.138
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Outliers in Human Face Image Data



Conclusions

In this work,
@ We developed an effective high dimensional outlier detection method.

@ The proposed method controls type | error rate with the finite dimension and
sample size.

@ Also, the power of the proposed testing procedure converges to 1 as the
dimension increases.

@ Simulated and read data examples support our theoretical findings.
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Future Directions

@ Further look at the distribution assumption.

@ Abnormality detection in different domains such as functional data and
non-Euclidean data.
@ Application of rotation test to other statistical problems.
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Thank you for your attention!
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