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What do we want to convey in this paper (ML for asset management)?

Key points:

• FinTech is not FunTech.
• Interpretability: How does ML work in the specific context?
• Transparency: Where is the outperformance of ML from?
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Background - Markowitz mean-variance framework

The seminal Markowitz mean-variance portfolio optimization framework achieves an op-
timal risk-return trade-off when the input parameters (mean returns and covariance
matrix of returns) are known with certainty.

However, in practice, the vanilla mean-variance framework suffers from:
• parameter uncertainty
• model’s extreme sensitivity
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Background - Bayes-Stein model

Many alternatives have been proposed in the literature to address this issue. Among
them, strategies producing shrinkage estimators stand out because of their theoretical
and empirical appeal in mitigating parameter uncertainty and offering gains for portfolio
optimization.

The Bayes-Stein model of Jorion (JFQA, 1986) represents one of the first such attempts.
It combines James-Stein theory and the empirical Bayes framework for portfolio opti-
mization, and enjoys popularity in the literature as:
• a go-to model for parameter estimation
• or a benchmark for alternative estimation methods
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Background - Bayes-Stein model

µ̂BS = (1− gBS ) µ̂S + gBSµG1, (1)

where µ̂S represents the vector of sample mean returns, µG is the target estimator that
refers to the mean return of the global minimum variance portfolio (GMV), and 1 denotes
an N × 1 vector of ones. The term gBS ∈ [0, 1], is the shrinkage factor, and is given by:

gBS =
N + 2

(N + 2) + T (µ̂S − µG1)′ Σ−1 (µ̂S − µG1)
, (2)

where N > 2 is the number of assets. As the covariance matrix Σ of asset returns is
unknown in practice, it is replaced with Σ̂S = T−1

T−N−2S , where S is the sample covariance
matrix.
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Some findings about Bayes-Stein

Table 1: Mean Square Forecast Error of the Mean Return Estimators

Asset Sampe Mean (×104) Bayes-Stein Shrinkage Mean(×104)

Consumer Nondurables 16.86 16.91
Consumer Durables 55.92 55.86
Manufacturing 24.50 24.49
Energy 37.65 37.66
HiTec 44.75 44.72
Telcom 25.10 25.07
Shops 24.03 24.04
Health 21.19 21.22
Utilities 15.52 15.47
Other 26.94 26.93

Sum 292.46 292.37

Key points: Overall VS. individual components.
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Some findings about Bayes-Stein

Figure 1: Shrinkage Factor for 10 Industry Portfolios

Key points: without considering the difference between individual assets.
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Some findings about Bayes-Stein

Table 2: Condition Numbers for Inverse Covariance Matrix Estimates

Dataset
S−1 Σ̂

−1
BS

Mean SD Mean SD

Ind10 114.90 21.20 115.00 21.20
FF21 891.44 95.95 891.53 95.98
FF23 3442.20 761.34 3441.30 760.81
FF24 3469.70 766.16 3469.10 765.81
FF25 969.47 110.37 969.78 110.52
FF100BM 3018.5 840.70 3019.00 840.90
FF100OP 2815.10 1040.40 2815.80 1040.80
FF100INV 2985.00 940.08 2985.60 940.38

Key points: without considering the inverse covariance matrix.
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Our motivation stems from:

• poor performance of Bayes-Stein: it can not defeat the the equally-weighted portfolio
allocation rule (1/N) (DeMiguel, Garlappi and Uppal, 2009).

• several drawbacks shown above.
• no studies dive into it.
• some attempts have been made to improve the Black-Litterman model and move

beyond the original version (Chen and Lim, 2020).
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Objective

Address the shortcomings of the traditional Bayes-Stein model and develop a general-
ized counterpart that possesses desirable properties and performs well out of sample via
the novel implementation of well-tailored machine learning techniques (e.g., super-
vised and unsupervised learning).
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Overview

Table 3: Comparison of the Classical and Generalized Bayes-Stein Framework

Model Traits Bayes-Stein Mdoel Generalized
Bayes-Stein Framework

Sample Mean µ̂S , simple average
of historical asset returns

µ̂F , expected returns predicted
by various time-series predictors

via the TW-ENet approach

Grand Mean µG , mean return of GMV,
depends on µ̂S

µGF , mean return of GMV
depends on µ̂F

Shrinkage Factor same across all assets
same across assets of the same

subgroup generated by
clustering ensemble

Mean Estimator µ̂BS , low accuracy µ̂GBS , relatively high accuracy

Inverse Covariance Matrix Σ̂
−1
BS , simple-based

Σ̂
−1
GBS , a sparse shrinkage
estimator produced by

the GA-ENet

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization 14 / 39



Motivation Contribution Methodology Data Empirical results Conclusion

We contribute:

• We are the first to deconstruct the Bayes-Stein portfolio-optimization framework
and offer ways to move beyond the original version.

• We upgrade the sample mean-based model components by exploiting the pre-
dictability of asset returns, contributing to the literature on asset return fore-
casting.

• We are the first to involve clustering ensemble in portfolio optimization for cap-
turing feature differences between assets.

• We provide a novel shrinkage estimator (sparse) for the inverse covariance matrix,
contributing to the literature on the estimation of the covariance matrix of asset
returns.
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Enhanced Time-series Return Forecasting via TW-ENet

We modify the conventional Elastic Net framework to allow for time-dependent weights—
an approach we term time-dependent weighted Elastic Net (TW-ENet). Formally, the
TW-ENEt estimation problem can be represented as follows:

argmin
β0,...,βD∈R

 1
2T

T

∑
t=1

wt

(
rt − β0 −

D

∑
d=1

βdxd ,t−1

)2

+ τ

(
ρ

D

∑
d=1

|βd |+
1
2
(1− ρ)

D

∑
d=1

β2
d

) ,

(3)
where ρ represents a compromise between ridge (ρ = 0) and LASSO (ρ = 1), τ con-

trols the overall penalty strength, and wt = tδ represents the time-dependent exponential
weight controlled by a positive hyperparameter δ. Setting δ to zero recovers a conven-
tional Elastic Net.
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Enhanced Time-series Return Forecasting via TW-ENet

Step I - estimation in the training sample: For L weight parameter candidates, denoted by δ1, . . . , δL, we apply
TW-ENet to the training sample. Further, for each candidate, we set ρ = 0.5 and use the corrected Akaike
information criterion (AICc) to choose the optimal L1 penalizing parameter τ∗:

τ∗ = argmin
τ1,...,τM

[NS ∗ log(RSS/NS ) + 2 ∗ df ∗NS/(NS − df )] , (4)

where RSS and df represent the residual sum of squares and degrees of freedom, respectively. τ1, . . . , τM denotes
the set of τ.
Step II - weight parameter tuning in the validation sample: We pick out the optimal weight parameter δ∗ by
minimizing the weighted square prediction error:

δ∗ = argmin
δ1,...,δL

∑T
t=T/2+1 w

T/2
t−T/2

(
rt − β0 − ∑D

d=1 βdxd ,t−1

)2

∑T
t=T/2+1 w

T/2
t−T/2

 . (5)

Step III - estimation in the total sample and forecasting: We apply δ∗ and TW-ENet on the total sample. As
a result, we can forecast the expected asset return at the time T + 1.

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization 18 / 39



Motivation Contribution Methodology Data Empirical results Conclusion

Enhanced Time-series Return Forecasting via TW-ENet

Figure 2: Graphical Representation of the Time-series Return Forecasting
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Improved Calibration of the Shrinkage Factor gBS

The classical Bayes-Stein assigns the same shrinkage factor to all assets in the portfolio
regardless of the differences of features between assets.

Inspiration:
Mynbayeva, Lamb and Zhao (EJOR, 2022): when applying shrinkage estimators to ho-
mogeneous asset subsets with indistinguishable mean returns or variance, we can create
more robust portfolios than the vanilla Markowitz optimization and outperform the 1/N
rule.
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Improved calibration of the shrinkage factor gBS

Figure 3: Grouped Bayes-Stein Shrinkage Approach
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Improved Calibration of the Shrinkage Factor gBS

Algorithm: double selective clustering combination algorithm
Input: B base clusterings of N assets, quality score threshold sthr
Output: final clustering λ∗

1 for b = 1 to B do
2 calculate the quality score CHb

3 “first filtering”: build the quality set Squality = {b | CHb ≥ sthr , 1 ≤ b ≤ B}, with a base clusterings
4 for q ∈ Squality do
5 calculate the average normalized mutual information m(q) for the base clustering λ(q)

6 for q ∈ Squality do
7 compute the weight w (q) of the base clustering λ(q)

8 “second filtering”: build the combination set Scombination =
{
q | w (q) ≥ 1

a , 1 ≤ q ≤ a
}

9 for i = 1 to N do
10 obtain the final label λi of asset i by weighted voting with the combination set Scombination

11 return final clustering λ∗
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Improved Calibration of the Shrinkage Factor gBS

The Calinski-Harabasz score, denoted by CH, is given as follows:

CH =
∑K

k=1 nk ∥ck − c∥2

∑K
k=1 ∑nk

i=1 ∥x i ,k − ck∥2 · N −K

K − 1
, (6)

where K is the number of clusters of a base clustering, N is the total number of assets,
c is the global centroid of all assets, nk and ck are the number of assets and centroid in
the kth cluster, respectively, and x i ,k represents the ith asset in the kth cluster.

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization 23 / 39



Motivation Contribution Methodology Data Empirical results Conclusion

Improved Calibration of the Shrinkage Factor gBS

Denoting two label factor vectors by λ(p) and λ(q), their normalized mutual information Φ(NMI)
(

λ(p),λ(q)
)

is
determined by

Φ(NMI)
(

λ(p),λ(q)
)
=

∑k(p)

h=1 ∑k(q)

f=1 nh,f log

(
N ·nh,f
n
(p)
h n

(q)
f

)
√(

∑k(p)
h=1 n

(p)
h log

n
(p)
h
N

)(
∑k(q)

f=1 n
(q)
f log

n
(q)
f
N

) , (7)

where n
(p)
h and n

(q)
f represent the number of assets in the cluster Ch of λ(p) and cluster Cf of λ(q), respectively.

nh,f denotes the number of assets appearing in the cluster Ch and Cf simultaneously. N is the number of all
assets.
Thus, the average normalized mutual information m(q) of the base clustering λ(q) can be computed by

m(q) =
1

a− 1

a

∑
p=1,p ̸=q

ΦNMI
(

λ(p),λ(q)
)
, q = 1, . . . , a. (8)
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Improved Estimation of the Inverse Covariance Matrix Σ̂
−1
BS

In the light of Stevens(JF, 1998), the first row of the inverse covariance matrix Σ−1 is
closely linked to a multivariate regression function that regresses the return of the first
asset on those of all other assets:

R1,t = a1 +
N

∑
n=2

β1nRn,t + ϵ1,t , t = 1, . . . ,T . (9)

The inverse covariance matrix Σ−1 is determined by:

1
σ2

ϵ1
− β12

σ2
ϵ1

· · · − β1N
σ2

ϵ1
− β21

σ2
ϵ2

1
σ2

ϵ2
· · · − β2N

σ2
ϵ2

· · · ·
· · · ·
· · · ·

− βN1
σ2

ϵN

− βN2
σ2

ϵN

· · · 1
σ2

ϵN


. (10)
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Improved Estimation of the Inverse Covariance Matrix Σ̂
−1
BS

Hedging:
The optimal weights of a vanilla mean-variance portfolio are calculated by 1

λ Σ−1µ, so

the holdings of the first asset hinge on 1
λσ2

ϵ1

(
µ1 − ∑N

n=2 β1nµn

)
. Hence, the ith row of

the inverse covariance matrix implies the hedging relationship of the ith asset with the
remaining assets.

Sparse hedging:
Goto and Xu (JFQA, 2015) demonstrate that constraining the number of assets for
hedging can make it more reliable and stable.
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Improved Estimation of the Inverse Covariance Matrix Σ̂
−1
BS

Herein we propose the graphical adaptive Elastic Net algorithm for the sparse inverse
covariance matrix estimation.

Θ̂G = argmaxΘ

(
log |Θ| − trace(SΘ)− ϕ1

N

∑
i=1

N

∑
j=1;j ̸=i

ωij |θij | − ϕ2

N

∑
i=1

N

∑
j=1;j ̸=i

θ2
ij

)
, (11)

where ϕ1 and ϕ2 denotes the non-negative L1 penalizing parameter (LASSO) and L2 pe-
nalizing parameter (ridge), respectively. ωij represents the non-negative weighting factor
(adaptive lasso) for θij . ωij is determined by

∣∣−βi ,j/σ2
ϵi

∣∣−ψ with ψ > 0, where −βi ,j/σ2
ϵi

is obtained by the corresponding ordinary least squares (OLS) hedging regression.
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Generalized Bayes-Stein Framework

Figure 4: Graphical Representation of the Generalized Bayes-Stein Framework
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We consider a dozen different datasets of monthly value-weighted stock returns over 1-
month T-bills. These datasets are comparable to those utilized in previous studies such
as DeMiguel, Garlappi and Uppal (2009, RFS).

Table 4: Data Description

Data N Time Abbreviation

10 industry portfolios 10 1963.06-2021.12 Ind10
20 size and book-to-market portfolios

and the US equity MKT 21 1963.06-2021.12 FF21

20 size and book-to-market portfolios
and the MKT, SMB, and HML portfolios 23 1963.06-2021.12 FF23

20 size and book-to-market portfolios
and the MKT, SMB, HML, and UMD portfolios 24 1963.06-2021.12 FF24

25 size and book-to-market portfolios 25 1963.06-2021.12 FF25
100 size and book-to-market portfolios 100 1963.06-2021.12 FF100BM

100 size and operating profitability portfolios 100 1963.07-2021.12 FF100OP
100 size and investment portfolios 100 1963.07-2021.12 FF100INV
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To better understand how our enhancements are generating these gains, we decompose
our model into two sub-models, each with some features purposefully disabled, so
that we can assess their individual effectiveness.

In particular, model 1 includes the TW-ENet approach whereas model 2 does not. This
implies that in model 1, we can only modify the sample mean component (µ̂S) of the
classical Bayes-Stein model from a return forecasting perspective, whereas in model 2,
we can only utilize our methodologies for the shrinkage factor calibration and the inverse
covariance matrix estimation.
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This paper sets out to improve the classical Bayes-Stein portfolio optimization model by
leveraging machine learning. We identify limitations of the original model and develop
specialized machine learning methods to address them. Our comprehensive generalized
Bayes-Stein framework integrates these innovations and offers several advantages:
• Some of the core model components of the original Bayes-Stein model (the sample

means vector and the grand mean) benefit from better expected asset return
estimations, obtained through the use of our the time-dependent weighted Elastic
Net (TW-ENet) approach.

• Our framework enhances the shrinkage factor measurement by employing a four-
stage Bayes-Stein shrinkage method that utilizes a clustering ensemble ap-
proach.

• Our framework extends the traditional Bayes-Stein model by incorporating a shrink-
age estimator of the inverse covariance matrix obtained through a graphical
adaptive Elastic Net (GA-ENet) approach.
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These enhancements translate into significant out-of-sample portfolio gains over
the 1/N portfolio. But more broadly, they offer a new angle for portfolio optimization.
Rather than directly implementing off-the-shelf machine learning models, we meticulously
adjust them to align with the nuances of the generalized Bayes-Stein model.

This approach may offer valuable insights for both scholars and practitioners who seek
to integrate machine learning into investment decision-making processes.
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Thanks!

Feel free to ask any questions.
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