Motivation	Contribution 0000	Methodology 00000000000	Data 00	Empirical results 00000	Conclusion

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization

Dimitrios Gounopoulos¹ Emmanouil Platanakis¹ Gerry Tsoukalas² Haoran Wu¹

¹University of Bath - School of Management

²University of Pennsylvania - The Wharton School & Boston University & Luohan Academy

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization

Key points:

- FinTech is not FunTech.
- Interpretability: How does ML work in the specific context?
- Transparency: Where is the outperformance of ML from?

イロト イポト イヨト イヨト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	000000000000			0000

1 Motivation

3 Methodology

4 Data

6 Conclusion

æ –

(a)

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
•0000000	0000	000000000000	00	00000	0000

1 Motivation

3 Methodology

4 Data

6 Empirical results

6 Conclusion

э.

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000					
Background -	Markowitz mean	-variance framework	t in the second s		

The seminal Markowitz mean-variance portfolio optimization framework achieves an optimal risk-return trade-off when the input parameters (mean returns and covariance matrix of returns) are known with certainty.

However, in practice, the vanilla mean-variance framework suffers from:

- parameter uncertainty
- model's extreme sensitivity

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00●00000	0000	000000000000	00	00000	
Background - I	Bayes-Stein mode	el			

Many alternatives have been proposed in the literature to address this issue. Among them, strategies producing shrinkage estimators stand out because of their theoretical and empirical appeal in mitigating parameter uncertainty and offering gains for portfolio optimization.

The Bayes-Stein model of Jorion (JFQA, 1986) represents one of the first such attempts. It combines James-Stein theory and the empirical Bayes framework for portfolio optimization, and enjoys popularity **in the literature** as:

- a go-to model for parameter estimation
- or a benchmark for alternative estimation methods

ヘロト 人間ト イヨト イヨト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
000●0000	0000	೦೦೦೦೦೦೦೦೦೦೦೦	00	00000	
Background -	Bayes-Stein mod	el			

$$\hat{\mu}_{BS} = (1 - g_{BS}) \hat{\mu}_S + g_{BS} \mu_G 1,$$
 (1)

where $\hat{\mu}_S$ represents the vector of sample mean returns, μ_G is the target estimator that refers to the mean return of the global minimum variance portfolio (GMV), and 1 denotes an $N \times 1$ vector of ones. The term $g_{BS} \in [0, 1]$, is the shrinkage factor, and is given by:

$$g_{BS} = \frac{N+2}{(N+2) + T \left(\hat{\mu}_{S} - \mu_{G} 1\right)' \Sigma^{-1} \left(\hat{\mu}_{S} - \mu_{G} 1\right)},$$
(2)

where N > 2 is the number of assets. As the covariance matrix Σ of asset returns is unknown in practice, it is replaced with $\hat{\Sigma}_{S} = \frac{T-1}{T-N-2}S$, where S is the sample covariance matrix.

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000●000	0000	೦೦೦೦೦೦೦೦೦೦೦೦	00	00000	0000
Some findings	about Bayes-S	tein			

Table 1: Mean Square Forecast Error of the Mean Return Estimators

Asset	Sampe Mean ($ imes 10^4$)	Bayes-Stein Shrinkage Mean($ imes 10^4$)
Consumer Nondurables	16.86	16.91
Consumer Durables	55.92	55.86
Manufacturing	24.50	24.49
Energy	37.65	37.66
HiTec	44.75	44.72
Telcom	25.10	25.07
Shops	24.03	24.04
Health	21.19	21.22
Utilities	15.52	15.47
Other	26.94	26.93
Sum	292.46	292.37

Key points: Overall VS. individual components.

• • • • • • • • • • • • • • •

Figure 1: Shrinkage Factor for 10 Industry Portfolios

Key points: without considering the difference between individual assets.

< E

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
ooooooooo	0000	000000000000	00	00000	
Some findings	about Bayes-Ste	in			

Table 2: Condition Numbers for Inverse Covariance Matrix Estimates

	S^{-1}		Σ̂,	-1 BS
Dataset	Mean	SD	Mean	SD
Ind10	114.90	21.20	115.00	21.20
FF21	891.44	95.95	891.53	95.98
FF23	3442.20	761.34	3441.30	760.81
FF24	3469.70	766.16	3469.10	765.81
FF25	969.47	110.37	969.78	110.52
FF100BM	3018.5	840.70	3019.00	840.90
FF100OP	2815.10	1040.40	2815.80	1040.80
FF100INV	2985.00	940.08	2985.60	940.38

Key points: without considering the inverse covariance matrix.

3

(日)

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000					

Our motivation stems from:

- poor performance of Bayes-Stein: it can not defeat the the equally-weighted portfolio allocation rule (1/N) (DeMiguel, Garlappi and Uppal, 2009).
- several drawbacks shown above.
- no studies dive into it.
- some attempts have been made to improve the Black-Litterman model and move beyond the original version (Chen and Lim, 2020).

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	•000	000000000000	00	00000	0000

1 Motivation

3 Methodology

4 Data

6 Conclusion

э.

(日) (四) (三) (三)

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0●00	೦೦೦೦೦೦೦೦೦೦೦೦	00	00000	0000
Objective					

Address the **shortcomings** of the traditional Bayes-Stein model and develop a **generalized** counterpart that possesses desirable properties and performs well out of sample via the novel implementation of **well-tailored machine learning** techniques (e.g., supervised and unsupervised learning).

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	00●0	೦೦೦೦೦೦೦೦೦೦೦೦	00	00000	
Overview					

Table 3: Comparison of the Classical and Generalized Bayes-Stein Framework

Model Traits	Bayes-Stein Mdoel	Generalized Bayes-Stein Framework
Sample Mean	$\hat{\mu}_S$, simple average of historical asset returns	$\hat{\mu}_F$, expected returns predicted by various time-series predictors via the TW-ENet approach
Grand Mean	μ_G , mean return of GMV, depends on $\hat{\mu}_S$	μ_{GF} , mean return of GMV depends on $\hat{\mu}_F$
Shrinkage Factor	same across all assets	same across assets of the same subgroup generated by clustering ensemble
Mean Estimator	$\hat{\mu}_{BS}$, low accuracy	$\hat{\mu}_{GBS}$, relatively high accuracy
Inverse Covariance Matrix	$\hat{\Sigma}_{BS}^{-1}$, simple-based	$\hat{\Sigma}_{GBS}^{-1}$, a sparse shrinkage estimator produced by the GA-ENet
		4 日 2 4 月 1 4 月 2 4 月 1

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization

Motivation 00000000	Contribution	Methodology 000000000000	Data 00	Empirical results	Conclusion

We contribute:

- We are the first to deconstruct the Bayes-Stein portfolio-optimization framework and offer ways to move beyond the original version.
- We upgrade the sample mean-based model components by exploiting the **pre-dictability of asset returns**, contributing to the literature on asset return fore-casting.
- We are the first to involve **clustering ensemble** in portfolio optimization for capturing feature **differences** between assets.
- We provide a novel shrinkage estimator (**sparse**) for the **inverse covariance matrix**, contributing to the literature on the estimation of the covariance matrix of asset returns.

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	••••••	00	00000	0000

1 Motivation

2 Contribution

3 Methodology

4 Data

6 Empirical results

6 Conclusion

ъ

We modify the conventional Elastic Net framework to allow for time-dependent weights an approach we term time-dependent weighted Elastic Net (TW-ENet). Formally, the TW-ENEt estimation problem can be represented as follows:

$$\underset{\beta_{0},\dots,\beta_{D}\in\mathbb{R}}{\arg\min}\left[\frac{1}{2T}\sum_{t=1}^{T}w_{t}\left(r_{t}-\beta_{0}-\sum_{d=1}^{D}\beta_{d}x_{d,t-1}\right)^{2}+\tau\left(\rho\sum_{d=1}^{D}|\beta_{d}|+\frac{1}{2}(1-\rho)\sum_{d=1}^{D}\beta_{d}^{2}\right)\right],\tag{3}$$

where ρ represents a compromise between ridge ($\rho = 0$) and LASSO ($\rho = 1$), τ controls the overall penalty strength, and $w_t = t^{\delta}$ represents the time-dependent exponential weight controlled by a positive hyperparameter δ . Setting δ to zero recovers a conventional Elastic Net.

イロト イポト イヨト イヨト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0000	oo●ooooooooo	00	00000	
Enhanced Time	e-series Return Fo	precasting via TW-E	ENet		

Step I - estimation in the training sample: For *L* weight parameter candidates, denoted by $\delta_1, \ldots, \delta_L$, we apply TW-ENet to the training sample. Further, for each candidate, we set $\rho = 0.5$ and use the corrected Akaike information criterion (AICc) to choose the optimal L1 penalizing parameter τ_* :

$$\tau_* = \arg\min_{\tau_1, \dots, \tau_M} \left[N_S * \log(RSS/N_S) + 2 * df * N_S/(N_S - df) \right],$$
(4)

where RSS and df represent the residual sum of squares and degrees of freedom, respectively. τ_1, \ldots, τ_M denotes the set of τ .

Step II - weight parameter tuning in the validation sample: We pick out the optimal weight parameter δ_* by minimizing the weighted square prediction error:

$$\delta_{*} = \arg\min_{\delta_{1},\dots,\delta_{L}} \left[\frac{\sum_{t=T/2+1}^{T} w_{t-T/2}^{T/2} \left(r_{t} - \beta_{0} - \sum_{d=1}^{D} \beta_{d} x_{d,t-1} \right)^{2}}{\sum_{t=T/2+1}^{T} w_{t-T/2}^{T/2}} \right].$$
(5)

Step III - estimation in the total sample and forecasting: We apply δ_* and TW-ENet on the total sample. As a result, we can forecast the expected asset return at the time T + 1.

Figure 2: Graphical Representation of the Time-series Return Forecasting

ъ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0000	೦೦೦೦⊕೦೦೦೦೦೦೦	00		0000
Improved Calib	ration of the Shr	inkage Factor <i>g_{BS}</i>			

The classical Bayes-Stein assigns the **same** shrinkage factor to all assets in the portfolio regardless of the differences of features between assets.

Inspiration:

Mynbayeva, Lamb and Zhao (EJOR, 2022): when applying shrinkage estimators to homogeneous asset subsets with indistinguishable mean returns or variance, we can create more robust portfolios than the vanilla Markowitz optimization and outperform the 1/N rule.

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0000	00000●0000000	00		0000
Improved calib	ration of the shri	nkage factor g _{BS}			

Figure 3: Grouped Bayes-Stein Shrinkage Approach

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0000	000000●000000	00	00000	0000
Improved Ca	libration of the	Shrinkage Factor g	RS		

Algorithm: double selective clustering combination algorithm

Input: *B* base clusterings of *N* assets, quality score threshold s_{thr} **Output:** final clustering λ^*

- 1 for b = 1 to B do
- 2 calculate the quality score CH_b
- 3 "first filtering": build the quality set $S_{quality} = \{b \mid CH_b \ge s_{thr}, 1 \le b \le B\}$, with *a* base clusterings 4 for $q \in S_{quality}$ do
- 5 calculate the average normalized mutual information $m^{(q)}$ for the base clustering $\lambda^{(q)}$
- 6 for $q \in \mathcal{S}_{quality}$ do

7 compute the weight $w^{(q)}$ of the base clustering $\lambda^{(q)}$

8 "second filtering": build the combination set $\mathcal{S}_{combination} = \left\{ q \mid w^{(q)} \geq rac{1}{a}, 1 \leq q \leq a
ight\}$

9 for i = 1 to N do

10 bbtain the final label λ_i of asset *i* by weighted voting with the combination set $S_{combination}$

11 **return** final clustering λ^*

э.

Motivation 00000000	Contribution 0000	Methodology 0000000€00000	Data 00	Empirical results	Conclusion
Improved Calib	oration of the Shi	inkage Factor g _{BS}			

The Calinski-Harabasz score, denoted by CH, is given as follows:

$$CH = \frac{\sum_{k=1}^{K} n_k \|c_k - c\|^2}{\sum_{k=1}^{K} \sum_{i=1}^{n_k} \|\mathbf{x}_{i,k} - c_k\|^2} \cdot \frac{N - K}{K - 1},$$
(6)

where K is the number of clusters of a base clustering, N is the total number of assets, c is the global centroid of all assets, n_k and c_k are the number of assets and centroid in the kth cluster, respectively, and $\mathbf{x}_{i,k}$ represents the *i*th asset in the kth cluster.

Motivation 00000000	Contribution 0000	Methodology ००००००००●००००	Data 00	Empirical results	Conclusion
Improved Calib	ration of the	Shrinkage Factor <i>g_F</i>	35		

Denoting two label factor vectors by $\lambda^{(p)}$ and $\lambda^{(q)}$, their normalized mutual information $\Phi^{(\text{NMI})}\left(\lambda^{(p)}, \lambda^{(q)}\right)$ is determined by

$$\Phi^{(\text{NMI})}\left(\lambda^{(p)},\lambda^{(q)}\right) = \frac{\sum_{h=1}^{k^{(p)}} \sum_{f=1}^{k^{(q)}} n_{h,f} \log\left(\frac{N \cdot n_{h,f}}{n_{h}^{(p)} n_{f}^{(q)}}\right)}{\sqrt{\left(\sum_{h=1}^{k^{(p)}} n_{h}^{(p)} \log\frac{n_{h}^{(p)}}{N}\right) \left(\sum_{f=1}^{k^{(q)}} n_{f}^{(q)} \log\frac{n_{f}^{(q)}}{N}\right)}},$$
(7)

where $n_h^{(p)}$ and $n_f^{(q)}$ represent the number of assets in the cluster C_h of $\lambda^{(p)}$ and cluster C_f of $\lambda^{(q)}$, respectively. $n_{h,f}$ denotes the number of assets appearing in the cluster C_h and C_f simultaneously. N is the number of all assets.

Thus, the average normalized mutual information $m^{(q)}$ of the base clustering $\lambda^{(q)}$ can be computed by

$$m^{(q)} = \frac{1}{a-1} \sum_{p=1, p \neq q}^{a} \Phi^{\text{NMI}} \left(\lambda^{(p)}, \lambda^{(q)} \right), \quad q = 1, \dots, a.$$
(8)

In the light of Stevens(JF, 1998), the first row of the inverse covariance matrix Σ^{-1} is closely linked to a multivariate regression function that regresses the return of the first asset on those of all other assets:

$$R_{1,t} = a_1 + \sum_{n=2}^{N} \beta_{1n} R_{n,t} + \epsilon_{1,t}, \quad t = 1, \dots, T.$$
 (9)

The inverse covariance matrix Σ^{-1} is determined by:

(10)

イロト イポト イヨト イヨト

Hedging:

The optimal weights of a vanilla mean-variance portfolio are calculated by $\frac{1}{\lambda}\Sigma^{-1}\mu$, so the holdings of the first asset hinge on $\frac{1}{\lambda\sigma_{c_1}^2}\left(\mu_1-\sum_{n=2}^N\beta_{1n}\mu_n\right)$. Hence, the *i*th row of the inverse covariance matrix implies the hedging relationship of the *i*th asset with the remaining assets.

Sparse hedging:

Goto and Xu (JFQA, 2015) demonstrate that constraining the number of assets for hedging can make it more reliable and stable.

Herein we propose the graphical adaptive Elastic Net algorithm for the sparse inverse covariance matrix estimation.

$$\hat{\boldsymbol{\Theta}}_{\boldsymbol{G}} = \operatorname{argmax}_{\boldsymbol{\Theta}} \left(\log |\boldsymbol{\Theta}| - \operatorname{trace}(\boldsymbol{S}\boldsymbol{\Theta}) - \phi_1 \sum_{i=1}^{N} \sum_{j=1; j \neq i}^{N} \omega_{ij} |\theta_{ij}| - \phi_2 \sum_{i=1}^{N} \sum_{j=1; j \neq i}^{N} \theta_{ij}^2 \right), \quad (11)$$

where ϕ_1 and ϕ_2 denotes the non-negative L1 penalizing parameter (LASSO) and L2 penalizing parameter (ridge), respectively. ω_{ij} represents the non-negative weighting factor (adaptive lasso) for θ_{ij} . ω_{ij} is determined by $|-\beta_{i,j}/\sigma_{\epsilon_i}^2|^{-\psi}$ with $\psi > 0$, where $-\beta_{i,j}/\sigma_{\epsilon_i}^2$ is obtained by the corresponding ordinary least squares (OLS) hedging regression.

Figure 4: Graphical Representation of the Generalized Bayes-Stein Framework

э.

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	00000000000	•0	00000	0000

1 Motivation

3 Methodology

4 Data

6 Conclusion

э.

イロト イロト イヨト イヨト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
			00		

We consider a dozen different datasets of monthly value-weighted stock returns over 1month T-bills. These datasets are comparable to those utilized in previous studies such as DeMiguel, Garlappi and Uppal (2009, RFS).

Data Ν Time Abbreviation 10 industry portfolios 10 1963.06-2021 12 Ind10 20 size and book-to-market portfolios 21 1963.06-2021.12 **FF21** and the US equity MKT 20 size and book-to-market portfolios 23 FF23 1963.06-2021.12 and the MKT, SMB, and HML portfolios 20 size and book-to-market portfolios FF24 24 1963 06-2021 12 and the MKT, SMB, HML, and UMD portfolios 25 size and book-to-market portfolios 25 1963 06-2021 12 FF25 100 size and book-to-market portfolios FF100BM 100 1963.06-2021.12 100 size and operating profitability portfolios 100 1963.07-2021.12 **FF100OP** 100 size and investment portfolios 100 1963 07-2021 12 FF100INV

Table 4: Data Description

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	000000000000	00	0000	0000

1 Motivation

3 Methodology

4 Data

6 Conclusion

Ξ.

(日) (四) (三) (三)

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	000000000000	00	0000	0000

			Panel A: SF	As and CE	Rs without TC	s for a 20-yea	r expanding est	imation v	vindow			
			SRs						CERs			
Dataset	$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		$\lambda = 1$		$\lambda = 3$		$\lambda = 5$	
	GBS	1/N	GBS	1/N	GBS	1/N	GBS	1/N	GBS	1/N	GBS	1/N
Ind10	0.6719	0.6356	0.6789	0.6356	0.6753	0.6356	0.0883 (*)	0.0756	0.0667	0.0580	0.0455	0.0403
FF21	0.6205 (*)	0.5226	0.6224 (*)	0.5226	0.6270 (*)	0.5226	0.0902 (*)	0.0760	0.0620 (*)	0.0455	0.0354 (**)	0.0150
FF23	0.6467 (**)	0.5050	0.6448 (**)	0.5050	0.6392 (**)	0.5050	0.0904 (**)	0.0688	0.0645 (**)	0.0425	0.0387 (**)	0.0161
FF24	0.6510 (**)	0.5155	0.6603 (**)	0.5155	0.6727 (**)	0.5155	0.0886 (**)	0.0676	0.0658 (**)	0.0438	0.0446 (**)	0.0200
FF25	0.7122 (***)	0.5497	0.7112 (***)	0.5497	0.7121 (***)	0.5497	0.1066 (***)	0.0783	0.0773 (***)	0.0500	0.0492 (***)	0.0217
FF100BM	0.7317 (***)	0.3816	0.7229 (***)	0.3816	0.7178 (***)	0.3816	0.1185 (***)	0.0518	0.0824 (***)	0.0206	0.0473 (***)	-0.0105
FF100OP	0.6797	0.5635	0.6772 (***)	0.5635	0.6722 (***)	0.5635	0.1104 (***)	0.0829	0.0743 (***)	0.0526	0.0383 (**)	0.0223
FF100INV	0.7401 (***)	0.5470	0.7378 (***)	0.5470	0.7359 (***)	0.5470	0.1172 (***)	0.0796	0.0842 (***)	0.0497	0.0515 (***)	0.0198

Panel B: SRs and CERs without TCs for a 40-year expanding estimation window

		SRs						CERs					
Dataset	$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		
	GBS	1/N											
Ind10	0.7866	0.7518	0.7892	0.7518	0.7911	0.7518	0.1104 (**)	0.0915	0.0863	0.0736	0.0626	0.0558	
FF21	0.6882	0.6238	0.6985	0.6238	0.7167	0.6238	0.1025	0.0965	0.0750	0.0638	0.0501	0.0311	
FF23	0.7300	0.6049	0.7417	0.6049	0.7441	0.6049	0.1084	0.0882	0.0818	0.0594	0.0547	0.0307	
FF24	0.6862	0.6124	0.6848	0.6124	0.7006	0.6124	0.0994	0.0854	0.0717	0.0597	0.0480	0.0339	
FF25	0.8089 (***)	0.6322	0.8176 (***)	0.6322	0.8274 (***)	0.6322	0.127 (***)	0.0955	0.097 (***)	0.0647	0.0683 (***)	0.0340	
FF100BM	0.8779 (***)	0.5169	0.8593 (***)	0.5169	0.8575 (***)	0.5169	0.1529 (***)	0.0783	0.1108 (***)	0.0443	0.0721 (***)	0.0104	
FF100OP	0.7550 (**)	0.6552	0.7562 (**)	0.6552	0.7539 (**)	0.6552	0.1226 (**)	0.1016	0.0885 (**)	0.0693	0.0540 (**)	0.0370	
FF100INV	0.8022 (**)	0.6508	0.7977 (**)	0.6508	0.7949 (**)	0.6508	0.1265 (**)	0.1001	0.0942 (**)	0.0683	0.0624 (**)	0.0366	

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ●

Motivat 000000	t ion DOO	Cont	ribution	1	Met 000	hodology 0000000000	0	Data 00		Empiri 00●00	cal resu	lts	Conclusion	ĺ
				Panel A:	SRs and	CERs with TCs	s for a 20-ye	ear expanding est	imation w	indow				
				SRs						CER	s			
	Dataset	$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		
		GBS	1/N	GBS	1/N	GBS	1/N	GBS	1/N	GBS	1/N	GBS	1/N	
	Ind10	0.6664	0.6356	0.6604	0.6356	0.6548	0.6356	0.0892 (*)	0.0756	0.0648	0.058	0.0424	0.0403	
	FF21	0.6453 (**)	0.5226	0.6544 (**)	0.5226	0.6525 (**)	0.5226	0.0956 (**)	0.076	0.0677 (**)	0.0455	0.0392 (**)	0.015	
	FF23	0.6529 (**)	0.5050	0.6490 (**)	0.5050	0.6421 (**)	0.5050	0.0928 (**)	0.0688	0.0656 (**)	0.0425	0.0388 (**)	0.0161	
	FF24	0.6375 (*)	0.5155	0.6504 (**)	0.5155	0.6626 (**)	0.5155	0.0875 (**)	0.0676	0.0646 (**)	0.0438	0.0430 (**)	0.0200	
	FF25	0.7067 (***)	0.5497	0.7027 (***)	0.5497	0.7049 (***)	0.5497	0.1078 (***)	0.0783	0.0765 (***)	0.0500	0.0475 (***)	0.0217	

Panel I	' 3: SRs and	CERs with TCs	for a 40-v	ear expanding esti	mation w	indow
0.7240 (***) 0.5470	0.7259 (***)	0.5470	0.1138 (***)	0.0796	0.0816
0.6644 (**)	0.5635	0.6612(**)	0.5635	0.1075 (***)	0.0829	0.0719

0.3816

0.1152 (***)

0.0518

0.0793 (***)

0.0719(**)

0.0816 (***)

0.0206

0.0526

0.0497

0.0453 (***)

0.0362 (**)

0.0498 (***)

-0.0105

0.0224

0.0198

		SRs						CERs					
Dataset	$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		
	GBS	1/N											
Ind10	0.7613	0.7518	0.7531	0.7518	0.7524	0.7518	0.1091 (*)	0.0915	0.0819	0.0736	0.0565	0.0558	
FF21	0.7102	0.6238	0.7274	0.6238	0.7413	0.6238	0.1088	0.0965	0.0808	0.0638	0.0537	0.0311	
FF23	0.7476 (*)	0.6049	0.7580 (*)	0.6049	0.7612 (*)	0.6049	0.1138 (*)	0.0882	0.0856 (*)	0.0594	0.0573 (*)	0.0307	
FF24	0.6834	0.6124	0.6855	0.6124	0.7025	0.6124	0.1007	0.0854	0.0724	0.0597	0.0481	0.0339	
FF25	0.7802 (***)	0.6322	0.7871 (***)	0.6322	0.8004 (***)	0.6322	0.1253 (***)	0.0955	0.0930 (***)	0.0647	0.0633 (***)	0.0340	
FF100BM	0.8529 (***)	0.5169	0.8567 (***)	0.5169	0.8569 (***)	0.5169	0.1493 (***)	0.0783	0.1105 (***)	0.0443	0.0720 (***)	0.0104	
FF100OP	0.7387 (*)	0.6552	0.7435 (*)	0.6552	0.7470 (*)	0.6552	0.1206 (**)	0.1016	0.0864 (*)	0.0693	0.0526 (*)	0.0370	
FF100INV	0.8028 (**)	0.6508	0.8025 (**)	0.6508	0.809 (***)	0.6508	0.1252 (**)	0.1001	0.0945 (**)	0.0683	0.0650 (***)	0.0366	

(日) (四) (三) (三) æ.

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization

FF100BM

FF100OP

FF100INV

0.7096 (***)

0.6614(**)

0.7242 (***)

0.3816

0.5635

0.5470

0.7057(***)

0.6644(**)

0.3816

0.7065 (***)

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0000	೦೦೦೦೦೦೦೦೦೦೦೦	00	०००●०	

To better understand how our enhancements are generating these gains, we **decompose our model into two sub-models**, each with some features purposefully disabled, so that we can assess their individual effectiveness.

In particular, **model 1** includes the TW-ENet approach whereas **model 2** does not. This implies that in model 1, we can only modify the sample mean component $(\hat{\mu}_S)$ of the classical Bayes-Stein model from a return forecasting perspective, whereas in model 2, we can only utilize our methodologies for the shrinkage factor calibration and the inverse covariance matrix estimation.

tion 000	Cont 0000	ributior	1	Met 000	hodology 0000000000	þ	Data 00		Empirio 0000●	al resul	ts	Concl 0000
					Panel A: SRs a	nd CERs of	GBS-model 1					
			SRs						CERs			
Dataset	$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		$\lambda = 1$		$\lambda = 3$		$\lambda = 5$	
	GBS-model 1	1/N	GBS-model 1	1/N	GBS-model 1	1/N	GBS-model 1	1/N	GBS-model 1	1/N	GBS-model 1	1/N
Ind10	0.6693	0.6356	0.6456	0.6356	0.6295	0.6356	0.0890 (*)	0.0756	0.0608	0.0580	0.0396	0.0403
FF21	0.6288 (*)	0.5226	0.6196	0.5226	0.6170	0.5226	0.0899	0.0760	0.0600	0.0455	0.0377 (*)	0.0150
FF23	0.5870	0.5050	0.5642	0.5050	0.5493	0.5050	0.0794	0.0688	0.0501	0.0425	0.0293	0.0161
FF24	0.5997	0.5155	0.6578 (*)	0.5155	0.6346	0.5155	0.0784	0.0676	0.0607	0.0438	0.0402 (*)	0.0200
FF25	0.6789 (***)	0.5497	0.693 (***)	0.5497	0.6952 (**)	0.5497	0.1005 (***)	0.0783	0.0723 (**)	0.0500	0.0483 (**)	0.0217
FF100BM	0.7183 (***)	0.3816	0.7311 (***)	0.3816	0.7299 (***)	0.3816	0.1161 (***)	0.0518	0.0827 (***)	0.0206	0.0526 (***)	-0.0105
FF100OP	0.6593 (**)	0.5635	0.6952 (***)	0.5635	0.6699 (**)	0.5635	0.1061 (***)	0.0829	0.0754 (***)	0.0526	0.0439 (**)	0.0224
FF100INV	0.7418 (***)	0.5470	0.7388 (***)	0.5470	0.7414 (***)	0.5470	0.1156 (***)	0.0796	0.0825 (***)	0.0497	0.0549 (***)	0.0198
					Panel B: SRs ar	nd CERs of	GBS-model 2					
			SRs						CERs			
Dataset	$\lambda = 1$		$\lambda = 3$		$\lambda = 5$		$\lambda = 1$		$\lambda = 3$		$\lambda = 5$	
	GBS-model 2	1/N	GBS-model 2	1/N	GBS-model 2	1/N	GBS-model 2	1/N	GBS-model 2	1/N	GBS-model 2	1/N
Ind10	0.6362	0.6356	0.6385	0.6356	0.6474	0.6356	0.0790	0.0756	0.0598	0.058	0.0417	0.0403
FF21	0.5823 (*)	0.5226	0.5867 (**)	0.5226	0.5883 (***)	0.5226	0.0917 (**)	0.0760	0.0571 (**)	0.0455	0.0244 (**)	0.015
FF23	0.5721 (**)	0.5050	0.5804 (***)	0.5050	0.5825 (***)	0.5050	0.0900 (***)	0.0688	0.0560 (**)	0.0425	0.0232	0.0161
FF24	0.5942 (**)	0.5155	0.5937 (***)	0.5155	0.5928 (***)	0.5155	0.0943 (***)	0.0676	0.0585 (**)	0.0438	0.0254	0.0200
FF25	0.5900	0.5497	0.5904	0.5497	0.5903 (*)	0.5497	0.0932 (**)	0.0783	0.0578	0.0500	0.0252	0.0217
FF100BM	0.5768 (***)	0.3816	0.5766 (***)	0.3816	0.5748 (***)	0.3816	0.0882 (***)	0.0518	0.0552 (***)	0.0206	0.0225 (***)	-0.0105
FF100OP	0.5039	0.5635	0.5288	0.5635	0.5401	0.5635	0.0752	0.0829	0.0466	0.0526	0.0167	0.0224
FF100INV	0.5744	0.5470	0.5875 (**)	0.5470	0.5925 (***)	0.5470	0.0867 (**)	0.0796	0.0570 (**)	0.0497	0.0266 (**)	0.0198

а.

・ロト ・御 ト ・ヨト ・ヨト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	000000000000	00	00000	0000

1 Motivation

3 Methodology

4 Data

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization

ъ

(a)

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
					0000

This paper sets out to improve the classical Bayes-Stein portfolio optimization model by leveraging machine learning. We identify limitations of the original model and develop specialized machine learning methods to address them. Our comprehensive generalized Bayes-Stein framework integrates these innovations and offers several advantages:

- Some of the core model components of the original Bayes-Stein model (the sample means vector and the grand mean) benefit from **better expected asset return estimations**, obtained through the use of our the time-dependent weighted Elastic Net (TW-ENet) approach.
- Our framework enhances the shrinkage factor measurement by employing a fourstage Bayes-Stein shrinkage method that utilizes a clustering ensemble approach.
- Our framework extends the traditional Bayes-Stein model by incorporating a shrinkage estimator of the inverse covariance matrix obtained through a graphical adaptive Elastic Net (GA-ENet) approach.

э

ヘロト ヘロト ヘヨト ヘヨト

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
00000000	0000	000000000000	00	00000	00●0

These enhancements translate into significant out-of-sample portfolio gains over the 1/N portfolio. But more broadly, they offer a new angle for portfolio optimization. Rather than directly implementing off-the-shelf machine learning models, we meticulously adjust them to align with the nuances of the generalized Bayes-Stein model.

This approach may offer valuable insights for both scholars and practitioners who seek to integrate machine learning into investment decision-making processes.

Motivation	Contribution	Methodology	Data	Empirical results	Conclusion
0000000	0000	000000000000	00	00000	0000

. Thanks!

Feel free to ask any questions.

When Bayes-Stein Meets Machine Learning: A Generalized Approach for Portfolio Optimization

(日) (同) (日) (日)