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Introduction to Markov Process

A discrete-time Markov process {Xt}t∈N is characterized by the
following ingredients:

1 A σ-compact metric state space X with Borel σ-algebra B[X ].

2 Transition kernel given by {g(x , 1, ·)}x∈X .

For every x ∈ X , g(x , 1, ·) is a probability measure on (X ,B[X ]).
We define higher-order transition probabilities inductively by

1 For every x ∈ X , A ∈ B[X ] and every n ≥ 1,
g(x , n + 1,A) =

∫
X g(y , n,A)g(x , 1,dy).

Definition

A stationary distribution π(·) is a probability measure on (X ,B[X ])
such that π(A) =

∫
X g(x , 1,A)π(dx) for all A ∈ B[X ].
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Concepts in Markov Processes

The transition kernel g can be viewed as a function from
X × N× B[X ] to [0, 1].

Definition

A transition kernel {g(x , 1, ·)}x∈X with stationary distribution π is
reversible if

∫
A g(x , 1,B)π(dx) =

∫
B g(x , 1,A)π(dx) for every

A,B ∈ B[X ].

Definition

Given a transition kernel {g(x , 1, ·)}x∈X , its lazy transition kernel
{gL(x , 1, ·)}x∈X is

gL(x , 1, ·) =
1

2
g(x , 1, ·) +

1

2
δx(·),

where δx(·) is the point mass at x .
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Mixing Times for Markov Processes

Let {g(x , 1, ·)}x∈X be a transition kernel with stationary
distribution π.

Definition

For ε > 0, the mixing time with respect to ε is

tm(ε) = min{t ∈ N : sup
x∈X
‖ g(x , t, ·)− π(·) ‖≤ ε}.

The lazy mixing time with respect to ε is

tL(ε) = min{t ∈ N : sup
x∈X
‖ gL(x , t, ·)− π(·) ‖≤ ε}.

The average mixing time with respect to ε is

ta(ε) = min{t ∈ N : sup
x∈X
‖ g(x , t, ·) + g(x , t + 1, ·)

2
− π(·) ‖≤ ε}.
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Hitting Times for Markov Processes

The maximal hitting time measures the time it takes for a Markov
process to get into “big” sets.

Definition

Let 0 < α ≤ 1. The maximum hitting time with respect to α is

tH(α) = sup{Ex(τA) : x ∈ X ,A ∈ B[X ] such that π(A) ≥ α}

where τA = min{t ∈ N : Xt ∈ A}.

Alternatively, one can consider the large hitting time with respect
to α is τg (α)

min{t ∈ N : inf{Px(τA ≤ t) : x ∈ X ,A ∈ B[X ] ∧ π(A) ≥ α} > 0.9}
(1)

For every 0 < α ≤ 1, we have 0.1τg (α) ≤ tH(α) ≤ 2τg (α).
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Mixing Times and Hitting Times

We are often interested in mixing times but they are hard to
compute directly. Hitting times are easier to compute.

Theorem (Y.Peres and P.Sousi; R.Oliveira)

Let 0 < α < 1
2 . Then there exist universal constants cα, c

′
α so that

for every finite reversible Markov process

c ′αtH(α) ≤ tL ≤ cαtH(α).

Theorem (Y.Peres and P.Sousi)

For every 0 < ε ≤ 1
4 . There exist universal constants cε and c ′ε so

that for every finite reversible Markov process

c ′εtL(ε) ≤ ta(ε) ≤ cεtL(ε).
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Strong Feller Condition

Definition

A transition kernel {g(x , 1, ·)}x∈X satisfies the Strong Feller
condition if for every x ∈ X and every ε > 0 there exists δ > 0
such that

(∀y ∈ X )(|y − x | < δ =⇒ (‖ g(x , 1, ·)− g(y , 1, ·) ‖< ε))

Let C be the collection of discrete-time reversible transition kernels
with compact metric state space satisfying the Strong Feller
condition.
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Main Results on Compact Spaces

We have asymptotical equivalence between lazy mixing times and
hitting times.

Theorem (R.Anderson, H.Duanmu and A.Smith)

Let 0 < α < 1
2 . Then there exist universal constants

0 < aα, a
′
α <∞ such that, for every {g(x , 1, ·)} ∈ C, we have

a′αtH(α) ≤ tL ≤ aαtH(α).

We have asymptotical equivalence between lazy mixing times and
average mixing times.

Theorem (R.Anderson, H.Duanmu and A.Smith)

For 0 < ε ≤ 1
4 , Then there exist universal constants

0 < dε, d
′
ε <∞ such that for every {g(x , 1, ·)} ∈ C

d ′εtL(ε) ≤ ta(ε) ≤ dεtL(ε).
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Nonstandard real line
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1 Transfer Principle:
R |= φ(x1, ..., xn)⇔ ∗R |= ∗φ(∗x1, ....,

∗xn).

2 κ-Saturation Principle: Let F be a family of internal sets
with cardinality less than κ. If any finite intersection of
elements in F is nonempty, then the total intersection of F is
non-empty.

A subset of ∗R is internal if it can be described using logic
formulas. We can define extension ∗ for any space, not just for R.
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Infinite and infinitesimal numbers

Lemma

There is a k ∈ ∗R>0 such that k ≥ n for all n ∈ N.

Proof.

For n ∈ N, let An = {k ∈ ∗R>0 : k > n}. Note that every An is
internal and An ⊃ An+1. By saturation,

⋂
n∈N An is non-empty.

Definition

x ∈ ∗R is infinite if |x | > n for all n ∈ N.

x ∈ ∗R is infinitesimal if 1
x is infinite.

x , y ∈ ∗R are infinitely close, written x ≈ y ,
if |x − y | is infinitesimal.

These notions can be generalized to arbitrary metric spaces.
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Standard Part Map

Definition

An element x ∈ ∗X is near-standard if there is an element y ∈ X
such that ∗d(x , y) ≈ 0. The point y is called the standard part of
x and is denoted by st(x).

Example

Every finite element in ∗R has standard part. Infinite elements in
∗R do not have standard part. Infinitesimals do not have standard
part in ∗(0, 1).

A set A ⊂ X is usually closely connected to
st−1(A) = {x ∈ ∗X |(∃y ∈ A)(x ≈ y)}.
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Hyperfinite Probability Space

Definition

A set A is hyperfinite if and only if there exists an internal
bijection between A and {0, 1, ...,N − 1} for some N ∈ ∗N. This N
is unique and is called the internal cardinality of A.

A hyperfinite probability space is a triple (Ω, I (Ω),P) such that

1 Ω is a hyperfinite set.

2 I (Ω) is the collection of all hyperfinite subsets of Ω.

3 P : I (Ω)→ ∗[0, 1] such that P(∅) = 0, P(Ω) = 1 and P is
hyperfinitely additive.

Theorem (Peter A.Loeb)

Given a hyperfinite probability space (Ω, I (Ω),P), we can extend it
to a standard countably additive probability space (Ω, I (Ω),P).

(Ω, I (Ω),P) is called the Loeb space of (Ω, I (Ω),P).
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Hyperfinite Representation of Borel Probability Space

Theorem (Robert Anderson)

Let (X ,B[X ], µ) be a Borel probability space. Then there is a
hyperfinite probability space (SX , I (SX ),P) with SX ⊂ ∗X such
that

P(st−1(E ) ∩ SX ) = µ(E )

for all E ∈ B[X ]. (SX , I (SX ),P) is called the hyperfinite
representation of (X ,B[X ], µ).

Example

Let T = { 1
N ,

2
N , . . . , 1} for some N ∈ ∗N \ N. Let P({ω}) = 1

N for
every ω ∈ T . Then the hyperfinite probability space (T , I (T ),P)
is a hyperfinite representation of the Lebesgue measure on [0, 1].
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Hyperfinite Markov chain

The hyperfinite time line T = {0, 1, 2, . . . ,K} for some infinite
number K . The hyperfinite Markov chain with hyerfinite time line
T is characterized by 3 ingredients:

1 A hyperfinite set S ⊂ ∗X .

2 An initial internal probability measure on S .

3 An internal ”one-step” transition probability {Gi (j)}i ,j∈S such
that

∑
j∈S Gi (j) = 1.

Definition

A distribution Π on state space (S , I (S)) is said to be a
*stationary distribution if, for any A ∈ I (S), we have
Π(A) =

∑
s∈S Π(s)Gs(A) where Gs(A) =

∑
j∈A Gs(j).
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Three Main Steps
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1 Construct a hyperfinite Markov chain {X ′t} which is closely
related to {Xt}.

2 Mixing times, hitting times and average mixing times of {X ′t}
are asymptotically equivalent.

3 Mixing times, hitting times and average mixing times of {Xt}
are asymptotically equivalent.
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Construction of {X ′t}t∈T from {Xt}t≥0
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1 Cut ∗X (extension of the state space) into hyperfinitely pieces
of infinitesimal radius.

2 Pick a point from each piece in order to form the hyperfinite
state space SX for {X ′t}t∈T .

3 The one-step transition probability for {X ′t}t∈T is

G (si , sj) =

∫
B(i)

∗g(x ,1,∗B(j))∗π(dx)
∗π(B(i)) for si , sj ∈ SX .
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Relationship with the standard chain

The internal transition kernel {G (s, ·)}s∈SX is closely related to the
standard transition kernel {g(x , 1, ·)}x∈X . Let π′({s}) = ∗π(B(s))
for every s ∈ SX .

1 For every A ∈ B[X ], every s ∈ S and every t ∈ N, we have

G
(t)
s (st−1(A) ∩ SX ) = g(st(s), t,A).

2 π′ is a *stationary distribution of {G (s, ·)}s∈SX .

3 The transition kernel {G (s, ·)}s∈SX is *reversible with respect
to π′.

4 The standard lazy mixing time tL(ε) is no greater than the
hyperfinite lazy mixing time TL(ε).

5 The standard large hitting time τg (α) is no less than the
hyperfinite large hitting time Tg (α).

6 The standard average mixing time ta(ε) is no greater than the
hyperfinite average mixing time Ta(ε).
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Proof of Main Result for Compact Case

Theorem

Let 0 < α < 1
2 . Then there exist universal constants

0 < aα, a
′
α <∞ such that, for every {g(x , 1, ·)} ∈ C, we have

a′αtH(α) ≤ tL ≤ aαtH(α).

Proof.

By elementary standard argument, there exists 0 < a′α <∞ such
that a′αtH(α) ≤ tL.
By the transfer principle, there exists 0 < eα <∞ such that
TL ≤ eαTg (α).
Note that tL ≤ TL ≤ eαTg (α) ≤ eατg (α).
As 0.1τg (α) ≤ tH(α) ≤ 2τg (α), we have tL ≤ aαtH(α), where
aα = 20eα.
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Trace Chain

Let {g(x , 1, ·)}x∈X be a transition kernel of a Markov chain with
stationary distribution π. Let K ∈ B[X ] have measure π(K ) > 0.
Fix x ∈ K and let {Xt}t∈N be a Markov process with transition
kernel g and starting point X0 = x . Define a sequence of random
variables {ηt}t∈N by writing

η0 = min{t ≥ 0 : Xt ∈ K}

and recursively setting

ηt+1 = min{t > ηt : Xt ∈ K}.

We define the trace of {Xt}t∈N on K to be the Markov chain with
transition kernel

g (K)(x , t,A) = Px(Xηt ∈ A).
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Properties of the Trace Chain

Theorem

Let g be a transition kernel with stationary distribution π satisfying
the Strong Feller condition. Let K ∈ B[X ] be a set with π(K ) > 0.
Then the trace g (K) also satisfies the Strong Feller condition.

Let t
(K)
m , τ

(K)
g denote the mixing times and large hitting times of

the trace chain, respectively. Let K[X ] be the collection of
compact subsets of X .

Theorem

Let g be a transition kernel of a Markov process on a σ-compact
state space X with stationary distribution π. Let 0 < α < 1

2 . Then
we have

tm ≤ 2 sup
K∈K[X ]

t
(K)
m and τg (α) ≥ sup

K∈K[X ]
τ
(K)
g (α).
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Extension to σ-Compact Spaces
Let M denote the collection of discrete time reversible transition
kernels with a stationary distribution on a σ-compact metric state
space satisfying the Strong Feller condition.

Theorem (R.Anderson, H.Duanmu and A.Smith)

Let 0 < α < 1
2 . Then there exist universal constants

0 < aα, a
′
α <∞ such that, for every {g(x , 1, ·)}x∈X ∈M, we have

a′αtH(α) ≤ tL ≤ aαtH(α).

Proof.

There exists an universal constant 0 < a′α <∞ such that
a′αtH ≤ tL. There exists an universal constant 0 < cα <∞

tL ≤ 2 sup
K∈K[X ]

t
(K)
m ≤ 2cα sup

K∈K[X ]
τ
(K)
g (α) ≤ 2cατg (α) ≤ 20cαtH(α).
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Skeleton Chain

Definition

Let {g(x , 1, ·)}x∈X be the transition kernel of a Markov process.
For every k ∈ N, the k-skeleton chain, denoted by g (k) the
transition kernel

g (k)(x , t,A) = g(x , kt,A)

for every x ∈ X , t ∈ N and A ∈ B[X ].

Let gL denote the lazy transition kernel of g , and let g
(k)
L denote

the k-skeleton chain of the lazy transition kernel gL.
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Almost Strong Feller Property

Very few Markov chains in statistical computation satisfies the
Strong Feller Condition. We introduce the following property.

Definition ((C ,R)-Almost Strong Feller)

For C ,R ∈ N, a transition kernel g is (C ,R)-almost strong Feller if
there exists transition kernels G1,G2 so that the following is
satisfied

1 G1 is reversible and satisfies the Strong Feller Property.

2 For some 0 ≤ p ≤ 1
CRtL

, there exists k ≤ RtL such that

g
(k)
L = (1− p)G1 + pG2.

We use E(C ,R) to denote the collection of all (C ,R)-almost strong
Feller transition kernels on a σ-compact metric state space X .
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Almost Strong Feller Result

We establish asymptotical equivalence between mixing times and
hitting times for almost strong Feller chains.

Theorem (R.Anderson, H.Duanmu and A.Smith)

There exists an universal constant C0 such that, for every
0 < α < 1

2 , there exist universal constants dα, d
′
α so that for all

C > C0, all R ≥ 1 and all g ∈ E(C ,R), we have

dαtL ≤ k`
(k)
H (α) ≤ d ′αRtL

where `
(k)
H (α) denote the maximum hitting time of the transition

kernel g
(k)
L .

The mixing time of the lazy chain is asymptotically equivalent to
the maximum lazy hitting time of the k-skeleton chain.
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Metropolis-Hasting Chain

Fix a distribution π with continuous density ρ supported on Rd .
Also fix a reversible kernel {q(x , 1, ·)}x∈Rd on Rd with stationary
measure ν. For every x ∈ Rd , assume that q(x , 1, ·) has continuous
density qx . We define the acceptance function by the formula

β(x , y) = min{1, ρ(y)qy (x)

ρ(x)qx(y)
}.

Finally, define g to be the kernel given by the formula

g(x , 1,A) =

∫
y∈A

qx(y)β(x , y)dy+δ(x ,A)

∫
Rd

qx(y)(1−β(x , y))dy .

Note that g would be reversible with respect to the stationary
distribution π.
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Mixing Times and Hitting Times for MH Chain

Lemma

Let E be the collection of Metropolis-Hasting Chains with finite
mixing time, and for which qx(y) is uniformly continuous jointly in
x , y. Then, for all 0 < α < 1

2 and 0 < C <∞, there exists a
universal constant Rα,C so that all {g(x , 1, ·)}x∈X ∈ E are
(C ,R)-almost strong Feller with constant R ≤ Rα,C .

Theorem

Let E be the collection of Metropolis-Hasting Chains with finite
mixing time, and for which qx(y) is jointly continuous in x , y.
Then, for all 0 < α < 1

2 , there exist constants 0 < cα, c
′
α <∞ so

that for all {g(x , 1, ·)}x∈X ∈ E ,

cαtL ≤ k`
(k)
H (α) ≤ c ′αtL.
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Conclusion

In this talk, we establish the asymptotical equivalence between lazy
mixing times and hitting times for large classes of Markov
processes.

1 tL ∼ tH(α) for finite reversible Markov processes.

2 By nonstandard analysis, tL ∼ tH(α) for reversible Markov
processes on compact state space satisfying the Strong feller
condition.

3 By trace chain, tL ∼ tH(α) for reversible Markov processes on
σ-compact state space satisfying the Strong feller condition.

4 tL ∼ tH(α) for reversible Markov processes on σ-compact
state space satisfying the almost Strong feller condition.

5 Application for MH-algorithm.
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