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Goals

Distributional robust decisions (portfolio choice).

Statistical guarantees.

Constraints (e.g. market signals).

Optimization algorithms.
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Portfolio Optimization “101”

Suppose that R is a random vector of returns and w are portfolio
weights.

Mean-variance portfolio selection can be expressed as:

min
wT 1=1,α

EP∗ [
(
wTR − α

)2
]− λEP ∗

(
wTR

)
= min

wT 1=1
VarP∗

(
wTR − α

)
− λEP ∗

(
wTR

)
.

The notation EP∗ (·) means using the probability model P∗.

Blanchet (Stanford) 3 / 24



Portfolio Optimization “101”

Suppose that R is a random vector of returns and w are portfolio
weights.

Mean-variance portfolio selection can be expressed as:

min
wT 1=1,α

EP∗ [
(
wTR − α

)2
]− λEP ∗

(
wTR

)
= min

wT 1=1
VarP∗

(
wTR − α

)
− λEP ∗

(
wTR

)
.

The notation EP∗ (·) means using the probability model P∗.

Blanchet (Stanford) 3 / 24



Portfolio Optimization “101”

Suppose that R is a random vector of returns and w are portfolio
weights.

Mean-variance portfolio selection can be expressed as:

min
wT 1=1,α

EP∗ [
(
wTR − α

)2
]− λEP ∗

(
wTR

)
= min

wT 1=1
VarP∗

(
wTR − α

)
− λEP ∗

(
wTR

)
.

The notation EP∗ (·) means using the probability model P∗.

Blanchet (Stanford) 3 / 24



Generalization

Suppose that X is a random vector with distribution P∗ we want to
solve

min
θ∈Θ

EP∗ [L (X , θ)] .

Important special case: affi ne decision rules

L (X , θ) = l
(

θTX
)
.

Affi ne decision rules includes portfolio selection + generalized linear
models.

Problem: Don’t have access to P∗...
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Distributionally Robust Optimization

Choose a proxy model, P0 (e.g. Pn = empirical measure).

Choose a distributional uncertainty region around Uδ (P0).

Solve
min

θ
max

P∈Uδ(P0)
EP (L (X , θ)) .

Say, Uδ (P0) = {P : D (P,P0) ≤ δ}, how to choose D?
What does this mean? What’s the intuition?

What about δ = size of uncertainty?
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Distributionally Robust Optimization (DRO)

Solve
min

θ
max

P∈Uδ(P0)
EP (l (X , θ)) .

How to compute θ optimally?

Structure of the worst case distribution?

Is there a Nash equilibrium?

How does this relate to stats theory etc?

How does this approach work in portfolio optimization?
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Quick Answers + References

D (P,P0) using optimal transport: General duality - applicable even
to control problems (B. & Murthy (2019) -
https://pubsonline.informs.org/doi/10.1287/moor.2018.0936 ).

Meaning: Recovers exactly (sqrt-Lasso + many other classical ML
estimators): B., Murthy & Kang (2019) - “Robust Wasserstein Profile
Inference (RWPI)"-https://doi.org/10.1017/jpr.2019.49

Choose δ optimally using a projection criterion (RWPI) - recovers
high-dimensional stats prescriptions.

Computing θ effi ciently: Optimal iteration complexity for affi ne
decision rules B., Murthy, Zhang (2021) https://pubsonline-informs-
org.stanford.idm.oclc.org/doi/abs/10.1287/moor.2021.1178

Structure of the worst case distribution - also in B, Murthy, Zhang
(2021).
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Quick Answers + References

Is there a Nash equilibrium? B., Murthy, Si (2021)
https://academic.oup.com/biomet/advance-
article/doi/10.1093/biomet/asac001/6537610

CLT for decisions (under convexity) also in B., Murthy, Si (2021)

Portfolio optimization: B., Chen, Zhou (2021)
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4155

Martingale constraints: Zhou, B., Glynn -
https://arxiv.org/abs/2106.07191

Other market constraints (implied volatility) - also in B., Murthy,
Zhang (2021)

Blanchet (Stanford) 8 / 24



Quick Answers + References

Is there a Nash equilibrium? B., Murthy, Si (2021)
https://academic.oup.com/biomet/advance-
article/doi/10.1093/biomet/asac001/6537610

CLT for decisions (under convexity) also in B., Murthy, Si (2021)

Portfolio optimization: B., Chen, Zhou (2021)
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4155

Martingale constraints: Zhou, B., Glynn -
https://arxiv.org/abs/2106.07191

Other market constraints (implied volatility) - also in B., Murthy,
Zhang (2021)

Blanchet (Stanford) 8 / 24



Quick Answers + References

Is there a Nash equilibrium? B., Murthy, Si (2021)
https://academic.oup.com/biomet/advance-
article/doi/10.1093/biomet/asac001/6537610

CLT for decisions (under convexity) also in B., Murthy, Si (2021)

Portfolio optimization: B., Chen, Zhou (2021)
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4155

Martingale constraints: Zhou, B., Glynn -
https://arxiv.org/abs/2106.07191

Other market constraints (implied volatility) - also in B., Murthy,
Zhang (2021)

Blanchet (Stanford) 8 / 24



Quick Answers + References

Is there a Nash equilibrium? B., Murthy, Si (2021)
https://academic.oup.com/biomet/advance-
article/doi/10.1093/biomet/asac001/6537610

CLT for decisions (under convexity) also in B., Murthy, Si (2021)

Portfolio optimization: B., Chen, Zhou (2021)
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4155

Martingale constraints: Zhou, B., Glynn -
https://arxiv.org/abs/2106.07191

Other market constraints (implied volatility) - also in B., Murthy,
Zhang (2021)

Blanchet (Stanford) 8 / 24



Quick Answers + References

Is there a Nash equilibrium? B., Murthy, Si (2021)
https://academic.oup.com/biomet/advance-
article/doi/10.1093/biomet/asac001/6537610

CLT for decisions (under convexity) also in B., Murthy, Si (2021)

Portfolio optimization: B., Chen, Zhou (2021)
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2021.4155

Martingale constraints: Zhou, B., Glynn -
https://arxiv.org/abs/2106.07191

Other market constraints (implied volatility) - also in B., Murthy,
Zhang (2021)

Blanchet (Stanford) 8 / 24



Tutorials + Surveys

Kuhn, Esfahani, Nguyen, Shafieezadeh-Abadeh:
https://pubsonline.informs.org/doi/10.1287/educ.2019.0198

Rahimian and Mehrotra (2019):
https://arxiv.org/abs/1908.05659.
B., Murthy, Nguyen (2022) -
https://pubsonline.informs.org/doi/abs/10.1287/educ.2021.02337191
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Related Literature

General RO & Divergence-DRO: Dupuis, James & Peterson ’00;
Hansen & Sargent ’01, ’08; Nilim & El Ghaoui ’02, ’03; Iyengar ’05;
A. Ben-Tal, L. El Ghaoui, & A. Nemirovski ’09; Bertsimas & Sim ’04;
Bertsimas, Brown, Caramanis ’13; Lim & Shanthikumar ’04; Lam ’13,
’17; Csiszár & Breuer ’13; Jiang & Guan ’12; Hu & Hong ’13; Wang,
Glynn & Ye ’14; Bayrakskan & Love ’15; Duchi, Glynn & Namkoong
’16; Bandi and Bertsimas ’15; Bertsimas, Gupta & Kallus ’13.

Wasserstein/OT-DRO & Moments: Scarf ’58; Shapiro ’15; Delage
& Ye ’10; Hampel ’73; Huber ’81; Pflug & Wozabal ’07; Delage & Ye
’10; Mehrotra & Zhang ’14; Esfahani & Kuhn ’15; Blanchet &
Murthy ’16; Gao & Kleywegt ’16; Duchi & Namkoong ’17.
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What Is the Wasserstein Distance /OT Cost?

Formally, given c (x , y) ≥ 0 lower semicontinuous with c (x , x) = 0,

D (P,Q) = min
∫
c (x , y)π (dx , dy)

s.t.
∫

π (dx , dy) = P (dx)∫
π (dx , dy) = Q (dy)

π (dx , dy) ≥ 0.

Wasserstein distance = c (x , y) = ‖x − y‖ .
Consider type 2 Wasserstein distance c (x , y) = ‖x − y‖2 .
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Why Care about OT DRO?

A way to naturally deal with out-of-sample impact...

Can interpret Uδ (Pn) in Wasserstein DRO as perturbing:
Xi → Xi + ∆i such that

1
n

n

∑
i=1
c (Xi ,Xi + ∆i ) ≤ δ.

Wasserstein DRO estimator is best response when perturbing each
data point subject to an average budget δ.
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Why Care about Wasserstein DRO?

A way to provide statistical regularization

Linear regression with close to co-linear covariates (1000 experiments)
showing Empirical Risk Minimization (i.e. δ = 0) vs DRO with
optimal choice of δ.
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Key Duality Results

B. & Murthy (2019) -
https://pubsonline.informs.org/doi/10.1287/moor.2018.0936
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Example 1
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Example 2
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Comments

Include side information: For example

c
(
Xi ,X ′i

)
=
(
Xi − X ′i

)T Ai (Xi − X ′i ) ,
where Ai is calibrated to market data.

Ai is inversely proportional to implied volatility (more volatility —>
cheaper transport —> adversary focus on risky asset) - B., Murthy,
Zhang (2021).

Worst case adversarial distribution.

Insight on choosing δ (without time-consuming cross validation).
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Choosing Size of Uncertainty
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Choosing Size of Uncertainty Optimally

B., Kang, Murthy (2019): https://doi.org/10.1017/jpr.2019.49
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Optimal Choice of Uncertainty

B., Kang, Murthy (2019): https://doi.org/10.1017/jpr.2019.49

Optimal choice of δ: χ/n where χ is (say 95%) quantile of the
distribution a certain (sometimes chi-squared).
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Linear Regression Example and Sqrt-Lasso
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What About Central Limit Theorem for DRO Estimator?

Choose δ = χ/n for c (x , y) = ‖x − y‖2p :

The transportation distance is then O
(
1/n1/2) and thus Lagrange

multiplier O
(
n1/2).

Thus: ∆ = ∆̄/n1/2, λ = λ̄n1/2 if δ = χ/n

min
θ
max

λ

{
λ̄χ

n1/2 + EPn max∆

{
l
(
X +

∆̄
n1/2 , θ

)
− λ̄

n1/2

∥∥∆̄
∥∥2
p

}}
≈ min

θ
{EPn l (X , θ) + n−1/2η1/2E 1/2

Pn ‖Dx l (X , θ)‖
2
q}
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Insights

So, we get that
X ∗i → Xi + ∆opt (Xi ) /n1/2.

From the form

min
θ

{
EPn l (X , θ) + n

−1/2v (θ)
}

it is not diffi cult to see that if H is the Hessian at θ∗ then

θDROn = θERMn − n−1/2H−1∇v (θ∗) + o
(
n−1/2

)
,

where θERMn is the case δ = 0 and

v (θ) = η1/2E 1/2
P∗

(
‖Dx l (X , θ)‖2q

)
.

This reduces the asymptotic normality of θDROn to that of the
(standard) θERMn .
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Conclusions

Optimal Transport DRO -> gradient norm regularization.

Recovers many estimators (exactly).

Can use market aware regularization.

Intuitive worst case adversarial structure + CLTs.

Many references to key questions: algorithms, optimal regularization,
Nash equilibrium...
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