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Statistical guarantees.

Constraints (e.g. market signals).

Optimization algorithms.
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Portfolio Optimization “101"

@ Suppose that R is a random vector of returns and w are portfolio
weights.

Blanchet (Stanford) 3 /24



Portfolio Optimization “101"

@ Suppose that R is a random vector of returns and w are portfolio
weights.

@ Mean-variance portfolio selection can be expressed as:
- T 2 T
min EP*[<W R—zx) | — AEp: (W R)
wll=1

= min Varp, (WTR—zx)—AEp* (WTR>.

wTl=1

Blanchet (Stanford) 3 /24



Portfolio Optimization “101"

@ Suppose that R is a random vector of returns and w are portfolio
weights.

@ Mean-variance portfolio selection can be expressed as:

min EP*[<WTR - 04)2] — AEp. (WTR)

wll=1

= min Varp, (WTR—zx)—AEp* (WTR>.

wTl=1

@ The notation Ep, (-) means using the probability model P..
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Generalization

@ Suppose that X is a random vector with distribution P, we want to
solve

min Ep, [L(X,0)].

PcO®
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Generalization

@ Suppose that X is a random vector with distribution P, we want to
solve

min Ep, [L(X,0)].

PcO®

@ Important special case: affine decision rules
L(X,0)=1 (GTX> .

@ Affine decision rules includes portfolio selection + generalized linear
models.

@ Problem: Don’t have access to P....
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Distributionally Robust Optimization

@ Choose a proxy model, Py (e.g. P, = empirical measure).
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Distributionally Robust Optimization

Choose a proxy model, Py (e.g. P, = empirical measure).

@ Choose a distributional uncertainty region around Us (Pp).
@ Solve
i Ep (L(X,0)).
" i £ (00
e Say, Us (Py) = {P:D(P,Py) <6}, how to choose D?

What does this mean? What's the intuition?

@ What about 6 = size of uncertainty?
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Distributionally Robust Optimization (DRO)

@ Solve

i Ep (/(X,0)).
iR sy B 1X,0)
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Distributionally Robust Optimization (DRO)

Solve

i Ep (/(X,0)).
iR sy B 1X,0)

How to compute 6 optimally?
Structure of the worst case distribution?
Is there a Nash equilibrium?

How does this relate to stats theory etc?

How does this approach work in portfolio optimization?
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Quick Answers + References

e D (P, Py) using optimal transport: General duality - applicable even
to control problems (B. & Murthy (2019) -
https://pubsonline.informs.org/doi/10.1287 /moor.2018.0936 ).
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@ Choose J optimally using a projection criterion (RWPI) - recovers
high-dimensional stats prescriptions.

o Computing 0 efficiently: Optimal iteration complexity for affine
decision rules B., Murthy, Zhang (2021) https://pubsonline-informs-
org.stanford.idm.oclc.org/doi/abs/10.1287 /moor.2021.1178

@ Structure of the worst case distribution - also in B, Murthy, Zhang
(2021).
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Quick Answers + References

o Is there a Nash equilibrium? B., Murthy, Si (2021)
https://academic.oup.com/biomet/advance-
article/doi/10.1093 /biomet/asac001,/6537610

CLT for decisions (under convexity) also in B., Murthy, Si (2021)
Portfolio optimization: B., Chen, Zhou (2021)
https://pubsonline.informs.org/doi/abs/10.1287 /mnsc.2021.4155

Martingale constraints: Zhou, B., Glynn -
https://arxiv.org/abs/2106.07191

@ Other market constraints (implied volatility) - also in B., Murthy,
Zhang (2021)
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Tutorials 4+ Surveys

@ Kuhn, Esfahani, Nguyen, Shafieezadeh-Abadeh:
https://pubsonline.informs.org/doi/10.1287 /educ.2019.0198
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What Is the Wasserstein Distance /OT Cost?

e Formally, given ¢ (x,y) > 0 lower semicontinuous with ¢ (x, x) = 0,
D(P,Q) = min/c(x,y)r[(dx, dy)
m(dx,dy) = P (dx)

m(dx,dy) = Q(dy)
7 (dx,dy) > 0.
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e Formally, given ¢ (x,y) > 0 lower semicontinuous with ¢ (x, x) = 0,

D(P,Q) = min/c(x,y)r[(dx,dy)
s.t. /n(dx,dy) = P(dx)

/ﬂ(dx,dy) = Q(dy)
7 (dx,dy) > 0.

e Wasserstein distance = c(x,y) = ||[x — y|| .

e Consider type 2 Wasserstein distance c (x,y) = ||[x — }’||2 :
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Why Care about OT DRO?

@ A way to naturally deal with out-of-sample impact...
e Can interpret Us (P,) in Wasserstein DRO as perturbing:
X; — X; + A; such that
1 n
S e(Xi Xit+Aj) <6,
i=1

@ Wasserstein DRO estimator is best response when perturbing each
data point subject to an average budget 4.
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y Care about Wasserstein DRO?

e A way to provide statistical regularization

3 3 3
5 DRO Estimators DRO Estimators 5 DRO Estimators
N . ERM Estimators - ERM Estimators || - ERM Estimators
2 True Value 2 True Value 2 True Value
1 1 1
0 0 m 0
1 -1 1
2 2 2
3 3 3
2 10 1 2 3 2 a1 0 1 2 3 2 a0 1 2 34
(a) p=10.95 (b) p=0 (¢) p=—-0.95

FIGURE 3. Scatter plots of B3P (black circles) and 827 (red circles) for By = [1.0,0.0]"
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FIGURE 3. Scatter plots of B3P (black circles) and 827 (red circles) for By = [1.0,0.0]"

@ Linear regression with close to co-linear covariates (1000 experiments)
showing Empirical Risk Minimization (i.e. 6 = 0) vs DRO with
optimal choice of §.
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Key Duality Results

e B. & Murthy (2019) -

https://pubsonline.informs.org/doi/10.1287 /moor.2018.0936

Primal form:

Dual form:

Blanchet (Stanford)

inf  sup  Ep[/(X,0)]
0€0 p.p(pP)<s

| under mild conditions

inf inf A6 + Ep [maxf(z, 0) — Ac(z, X))
9e0 120
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Example 1

min  sup Ep[(Y—GTX)z]
O PDPP)<S

o((r,y), (@ y)) = llx=xN2+ co |y —y'I

11
—t—=1
q p

minE, [(v— 077" +5"2)]],
9 n
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Example 2

min{ sup  OTCovp(X)0: 011 =1, min E,[07X] zz}

P:D(P,P)<5 P:D(P.P)<6

11
e, x) = e =xllg, —+—=1
q p

2
min [1 [0TCov, (X)0 + 5%||9||1,]

S.t.0T1 =1, 0TE, [X] > 1+ 5716,
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Comments

@ Include side information: For example
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Comments

@ Include side information: For example
c (X X)) = (Xi = X)) T A (X = X)),

where A; is calibrated to market data.

@ A; is inversely proportional to implied volatility (more volatility —>
cheaper transport —> adversary focus on risky asset) - B., Murthy,
Zhang (2021).

@ Worst case adversarial distribution.

@ Insight on choosing & (without time-consuming cross validation).
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Choosing Size of Uncertainty

DRO: min max E, [f(X, 6)]
0€0 P:DP.P,) <5

Blanchet (Stanford)

From concentration inequalities:
select ¢ large enoughs.t.

D.P.,P) < 6
with high probability:
8> Cn=

=>need 29 x more samples
to reduce error by 1/2
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Choosing Size of Uncertainty Optimally

e B., Kang, Murthy (2019): https://doi.org/10.1017/jpr.2019.49

DRO: min  max  Ep[£(X,0)] Compatible uncertainty in decisions:
06 P:DP.P,) < 6
As(P,) = {0 € ©: gis optimal for

some P € %yP,)}

Question:

What is the smallest § s.t.atrue
optimal solution 6: liesin A;(P,)?

Note:
0. € A;(P,) <> projection € U 4P,)

= 5> PP, ,0.)

ns

Blanchet (Stanford)




Optimal Choice of Uncertainty

e B., Kang, Murthy (2019): https://doi.org/10.1017/jpr.2019.49
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Optimal Choice of Uncertainty

e B., Kang, Murthy (2019): https://doi.org/10.1017/jpr.2019.49
e Optimal choice of J: ) /n where x is (say 95%) quantile of the
distribution a certain (sometimes chi-squared).

DRO: min max E, [f(X, 9)]
0€0 P:D(P.P,) < &

n’

nx PP, 0. = p*(H,0:) }
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Linear Regression Example and Sqrt-Lasso

Minimizing least squares: E[(Y —0]X)X] =0 )(2
g d (n———)—a Then @(,0) ~ —dz,
h(X, 6:) 4(1 + 1104113
_ O(logd
For the example with unit error variance and 6= M = &
n n
and cov(X) =10, p=2,
€013
p&,0) = ——7—
4(1 + 16113
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What About Central Limit Theorem for DRO Estimator?

o Choose 6 = x/n for c (x,y) = ||lx — y|1%:
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What About Central Limit Theorem for DRO Estimator?

o Choose 6 = x/n for c (x,y) = ||lx — y|1%:

@ The transportation distance is then O (1/n1/2) and thus Lagrange
multiplier O (n1/2).
@ Thus: A=A/n'/2, A = Anl/2 ifd=x/n

. Ax A A a2
mn mfx{ 12t Ep, max{/ (X+ ,,1/2'9) TR HAHP}}

~ min{Ep, I (X,0) +n /2y 2EL/2 | DLl (X, 0)|17)
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What About Central Limit Theorem for DRO Estimator?

o Choose 6 = x/n for c (x,y) = ||lx — y|1%:

@ The transportation distance is then O (1/n1/2) and thus Lagrange
multiplier O (n1/2).
@ Thus: A=A/n'/2, A = Anl/2 ifd=x/n

. A A
maln mj}x{ 1)/62 + Ep, max{/ (X—}— n1/2,9) 172 HAH }}

~ mein{Epn (X, 0)+ n*1/2171/2E,},,{2 [| D! (X'G)Hq}

@ So, Agpt (X;) is aligned (in I,) to Dyl (X,0) &
180t (Xi)ll, = [[Dx! (X, 0)]]4 /(24).
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@ So, we get that
X; — Xi 4 Dope (Xi) /n*/2.

1
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@ So, we get that
Xi — Xi + Dope (Xi) /02,

@ From the form
mein {Epnl (X,0)+ n~1/2y (9)}
it is not difficult to see that if H is the Hessian at 8, then
PRO — gERM _ ,=1/214-17,, (9,) + o (n—1/2) ’
where 05f-M s the case § = 0 and

v (0) = n*"2EE (1D (X.0)]3) -
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@ So, we get that
X' — Xi + Dopt (Xi) /012,

1

@ From the form
mein {Epnl (X,0)+ n~1/2y (9)}
it is not difficult to see that if H is the Hessian at 8, then
PRO — gERM _ ,=1/214-17,, (9,) + o (n—1/2) ’
where 05f-M s the case § = 0 and

v (0) = 12BN (1D (X, 0)]2) .

erl’)RO

@ This reduces the asymptotic normality of to that of the

(standard) §ERM.
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Conclusions

e Optimal Transport DRO -> gradient norm regularization.
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Conclusions

Optimal Transport DRO -> gradient norm regularization.
Recovers many estimators (exactly).
Can use market aware regularization.

Intuitive worst case adversarial structure -+ CLTs.

Many references to key questions: algorithms, optimal regularization,
Nash equilibrium...
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