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Abstract

Two-point time-series data, characterized by baseline and follow-up observations, are fre-
quently encountered in health research. We study a novel two-point time-series structure
without a control group, which is driven by an observational routine clinical dataset collected
to monitor key risk markers of type-2 diabetes (T2D) and cardiovascular disease (CVD). We
propose a resampling approach called ‘I-Rand’ for independently sampling one of the two
time points for each individual and making inference on the estimated causal effects based on
matching methods. The proposed method is illustrated with data from a service-based dietary
intervention to promote a low-carbohydrate diet (LCD), designed to impact risk of T2D and
CVD. Baseline data contain a pre-intervention health record of study participants, and health
data after LCD intervention are recorded at the follow-up visit, providing a two-point time-
series pattern without a parallel control group. Using this approach we find that obesity is a
significant risk factor of T2D and CVD, and an LCD approach can significantly mitigate the
risks of T2D and CVD. We provide code that implements our method.
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1 Introduction

Cardiovascular disease (CVD), including stroke and coronary heart diseases, has become the most

common non-communicable disease in the United States, and is also a severe problem globally

(Roth et al., 2018; Unwin et al., 2020). Type-2 diabetes (T2D) doubles the risk of CVD, which

is the principal cause of death in T2D patients (Morrish et al., 2001). CVD and T2D produce an

immense economic burden on health care systems globally. Targeted intervention for individuals

at increased risk of CVD and T2D plays a crucial role in reducing the global burden of these

diseases (Jan et al., 2018). Consequently, the identification of dietary and lifestyle risk factors for

T2D and CVD has become a health priority (Benjamin et al., 2018). Since obesity is a substantial

contributor to T2D, and consequently to the risk of CVD (Scheen and Van Gaal, 2014), lowering

obesity through diet control may help to alleviate the T2D and CVD epidemics.

In this work, we pursue two scientific goals. First, we seek to determine whether or not

obesity is a significant risk factor for T2D and CVD. Second we ask if a low-carbohydrate diet

(LCD) improves on standard care for T2D and CVD risk in patients with prediabetes or diabetes.

We use causal inference tools, including the potential outcome model and mediation analysis,

to quantify the impact of obesity and diet on T2D and CVD risk. To explore the link between

obesity and T2D, we ask: what would the effect on T2D be if an individual were to change from

a normal weight to an obese weight? Motivated by the impact of T2D in CVD risk, we seek

to understand the role of T2D in mediating the effect of obesity on CVD risk. This mediation

analysis is relevant to an individual with limited control over his or her T2D status and who wishes

to identify factors that can be controlled. We perform mediation analysis to identify obesity as

a significant risk factor for T2D and CVD and to disentangle cause-and-effect relationships in

individuals with both conditions. Building on these questions, we are also interested in quantifying

the effects of an LCD, which restricts the consumption of carbohydrates relative to the average

diet (Bazzano et al., 2014), on both T2D and CVD risk. Several systematic reviews and meta-

analyses of randomized control trials suggest beneficial effects of LCD in T2D and CVD (Meng

et al., 2017; Gjuladin-Hellon et al., 2019; van Zuuren et al., 2018). However, the impact of LCD

in a primary care setting with observational data and its cause-and-effect inferences has not been

thoroughly evaluated (Unwin et al., 2020; Lean et al., 2018). As we discuss in detail later in this
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article, our results indicate that obesity is a significant risk factor for T2D and CVD, and that LCD

can significantly lower the risks of T2D and CVD risk.

We explore our scientific questions by analyzing clinical data from patients who visited a

health clinic in the UK on two occasions. These patients began a low-carbohydrate diet at the

first visit, and standard measurements of their health were taken at both visits. Data on these

patients naturally comprise a panel dataset with two time points. In this two-point time-series

dataset, there is no control group, which poses a challenge for causal inference. We propose

a novel approach to dealing with this challenge, “I-Rand,” which estimates average treatment

effect and its significance on a collection of sub-samples of our dataset. Each subsample contains

exactly one of the two observations corresponding to each individual. The average treatment

effect within each subsample relies on propensity score matching, and statistical significance is

estimated with a permutation test. Such subsampling has been used previously by Hahn (2012)

in the analysis of spatial point patterns. We benchmark I-Rand against two alternative estimation

methods. The I-Rand algorithm meets the Stable Unit Treatment Value Assumption (SUTVA) of

“no-interference” for valid causal inference, unlike the pooled approach (Beck and Katz, 1995;

Wilson and Butler, 2007). On the other hand, I-Rand permits a nonparametric estimation of

treatment effect and hence is robust to the model specification as compared with difference-in-

differences method (Angrist and Pischke, 2008; Bertrand et al., 2004). Moreover, I-Rand enables

us to draw inference on the significance of the estimated average treatment effect. We demonstrate

through simulations that the I-Rand algorithm reduces error in estimates of the treatment effect

compared to the pooled approach and difference-in-differences.

The article is organized as follows. Section 2 introduces basic concepts from the potential

outcomes model and matching methods, and propose the new I-Rand algorithm that we use to

analyze the two-point time-series data. Section 3 compares the proposed I-Rand with benchmark

methods such as the pooled approach and the difference-in-differences. Section 4 explains the use

of I-Rand to understand the role of the LCD in reducing the risks of T2D and CVD risk. Section

5 investigates the relationship between obesity, T2D, and CVD risk. We discuss the limitations of

our methods and indicate directions for future research in Section 6.
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2 Motivation, Dataset, and Methodology

2.1 A motivating example

Cause-and-effect questions arise naturally in the context of nutrition or health, making causal

analysis especially relevant. Consider the counterfactual question, If an individual changes from a

regular diet to an LCD, would he / she be less likely to develop T2D? We can attempt to estimate

the effect of diet on T2D from observational data. Any cause-and-effect inferences from observa-

tional data rely on restrictive assumptions and a specification of the underlying causal structure.

In particular, we make the following assumptions. First, the treatment is a binary variable that

indicates whether or not an individual follows an LCD. Second, body mass index (BMI) is a sur-

rogate for obesity and mediates the effect of LCD on T2D (Lavie et al., 2009). Gender is a binary

variable and age is an ordinal variable. Finally, the medical outcome T2D is an ordinal variable

indicating status at time of reporting: non-diabetics, pre-diabetics, and diabetics. T2D categories

rely on glycated haemoglobin (HbA1c) value. We also note that the BMI, age and gender vari-

ables reflect only the case demographics, i.e., the BMI, age and gender distributions among the

tested individuals, and not the general demographics. We assume the coarse-grained causal graph

in Figure 1, and motivate it by thinking of the following data-generating process: (1) LCD af-

fects both BMI and the risk of T2D based on established knowledge of causal effects in nutrition

studies (Bazzano et al., 2014; Halton et al., 2008; de Koning et al., 2011); (2) Gender and age

affect BMI and the risk of T2D, but not the treatment LCD; (3) Conditional on the status of LCD,

BMI, gender and age, T2D status is sampled as the medical outcome; (4) There are no hidden

confounders (i.e., causal sufficiency). We discuss the role of unobserved variables in Section 6.

We use arrows from one variable to another in the causal graph in Figure 1 (and all other causal

graphs) to indicate causal relationships. Under these assumptions, we can estimate the effect of

LCD on T2D by adjusting for the confounders using the model of potential outcomes.

We will analyze the effect of LCD on the likelihood of developing T2D using Figure 1 after

describing the structure of our dataset and reviewing causal inference basics.
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Figure 1: Assumed coarse-grained causal graph for the relationship between LCD, BMI, and the
outcome T2D.

2.2 Data

Our work is based on routine clinical data concerning 256 patients collected between 2013 and

2019 at the Norwood General Practice Surgery in the north of England (Unwin et al., 2020). As

background, Norwood serves a stable population of approximately 9,800 patients, and an eight-

fold increase in T2D cases was recorded over the last three decades.

Each patient visited the Norwood General Practice Surgery twice. The average time between

visits was 23 months with a standard deviation of 17 months. Advice to start an LCD was offered

to each patient at the first of the two visits.1 Measurements of standard indicators such as age,

gender, weight, HbA1c, lipid profiles, and blood pressure were taken at both visits. Since CVD

includes a range of clinical conditions such as stroke, coronary heart disease, heart failure, and

atrial fibrillation (Anderson et al., 1991), several different risk factors are recorded for CVD during

individuals’ visits. We study four risk factors that indicate CVD risk. These are systolic blood

pressure, serum cholesterol level, high-density lipoprotein, and a widely used measure of CVD

risk called the Reynolds risk score, which is designed to predict the risk of a future heart attack,

stroke, or other major heart disease. The Reynolds risk score is a linear combination of different

risk factors such as age, blood pressure, cholesterol levels and smoking habits (Ridker et al.,

1Conventional one-to-one general practice consultations were used for LCD advice session, supplemented by
group consultation, to help patients better understand the scientific principles and consequences of LCD; including
how glucose and insulin levels change in response to different foods (Unwin et al., 2020). The role of group sessions
was to reinforce diet and lifestyle change. LCD intervention encourages a reduction in the intake of sugary and starchy
foods, for example, sugary breakfast cereals and rice, by replacing them with, for example, green leafy vegetables,
eggs, meat and fish, with sensitivity of each individual’s socio-cultural dietary restrictions and preferences.
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2007)2. A complete list of variables along with definitions and summary statistics is in Appendix

C.

2.3 Model of potential outcomes

We use concepts and notations from the Neyman (or Neyman-Rubin) model of potential outcomes

(Neyman, 1990; Rubin, 1974). The treatment assignment for individual i is denoted by Ti, where

Ti = 0 and Ti = 1 represent control and treatment. Let Yi be the observed outcome and Xi be

the observed confounders. For example, Xi represents gender and age in the motivating example.

The causal effect for individual i is defined as the difference between the outcome if i receives the

treatment, Yi(1), and the outcome if i receives the control, Yi(0). Since, in practice, an individ-

ual cannot be both treated and untreated, we work with two populations: a group of individuals

exposed to the treatment and a group of individuals exposed to the control. It is important to dis-

tinguish between the observed outcome Yi and the counterfactual outcomes Yi(1) and Yi(0). The

latter are hypothetical and may never be observed simultaneously; however, they allow a precise

characterization of questions of interest. For example, the causal effect for individual i can be

written as the difference in potential outcomes:

τ(Xi) = E[Yi(1)|Xi]− E[Yi(0)|Xi].

Since the outcome surface τ(X) depends on confounders, we focus on the “average treatment

effect” (ATE), EX [τ(X)], which is defined as the average causal effect for all individuals including

both treatment and control.

Matching methods attempt to eliminate bias in estimating the treatment effect from obser-

vational data by balancing observed confounders across treatment and control groups; see, e.g.,

Rubin and Thomas (1996); Imbens (2004). These works identify two assumptions on data that are

required in order to apply matching methods in an observational study.

• The strong ignorable treatment assignment condition (Rosenbaum and Rubin, 1983), which

implies there is no hidden bias.

– Treatment assignment is independent of the potential outcomes given the confounders
2Some of the variables used in calculating the Reynolds risk score are missing from data. We make the simple

choice of excluding them from the formula.
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Algorithm 1 Review of the propensity score matching algorithm
1: Define a distance measure for determining whether or not an individual is a good match for

another. For example, let the distance measure Dij = |ei − ej|, which is based on propensity
score ei(Xi) = P (Ti = 1|Xi). We estimate ei by logistic regression for the case studies in
Sections 5 and 4.

2: Given the distance measure, implement a matching method. For example, we apply matching
with replacement and select a set of comparison units using the nearest-neighbor method in
our case studies. Then we calculate ATE by

1

n

∑
i

(
Yi −

1

|Ji|
∑
j∈Ji

Yj

)
,

where n is the sample size, Ji is the set of individuals that belong to a different group (i.e.,
treatment or control group) than the individual i and are matched to i, and | · | denotes the
number of elements in the set.

3: Assess the quality of the matched samples and iterate with steps 1 and 2 until samples are
well matched. Output ATE.

– There is a non-zero probability of receiving treatment for all values of X: 0 < P(T =

1|X) < 1.

Weaker versions of the ignorability assumption exist; see, e.g., Imbens (2004).

• The stable unit treatment value assumption (SUTVA; Rubin (1980)), which states that the

outcomes of one individual are not affected by treatment assignment of any other individ-

uals. That paper identifies two consequences of the SUTVA assumption, which we rely on

later in this paper.

– No-interference: The outcome for individual i cannot depend on which treatment is

given to individual i′ 6= i. (Rubin (1980) attributes this to Cox (1958).)

– No-multiple-versions-of-treatment: There can be only one version of any treatment,

as multiple versions might give rise to different outcomes. (Rubin (1980) attributes

this to Neyman (1935).)

“Version” refers to detailed information that is ignored as we coarsen a refined indicator to be

used as a (typically binary) treatment. The assumptions mentioned above are complementary to

the assumptions that determine causal models such as the one shown in Figure 1. To determine
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if treatment T is ignorable relative to outcome Y , conditional on a set of matching variables,

we require only that matching variables block all the back-door paths between T and Y , and

that no matching variable is a descendent of T (Pearl, 2009). For example, LCD in Figure 9 is

ignorable since matching the confounders (i.e., gender and age) blocks all the back-door paths

and the confounders are not descendants of LCD. The algorithm for propensity score matching is

summarized in Algorithm 1. Detailed discussions of each step are deferred to Appendix A.

2.4 I-Rand algorithm

Two-point time-series datasets that are structurally similar to the nutrition dataset introduced in

Section 2.2 arise frequently in medical and health studies. A dataset of this type consists of a

baseline observation at time t = 0 and a follow-up observation at t = 1, where all individuals

receive a treatment between the two time points. How do we apply matching methods to estimate

the causal effect of a treatment that was taken between the two time points from a dataset of this

type? To address this question, we look at what happens when we attempt to estimate causal effect

by applying two standard approaches, pooling and difference-in-differences.

Pooling combines the baseline and the follow-up observations into a single dataset (Beck and

Katz, 1995; Wilson and Butler, 2007). This approach treats the measurements from individual i

at t = 0 (before taking the treatment) and t = 1 (after observing the outcome of the treatment) as

distinct data points. This amounts to using observations at t = 0 as a control group. Difference-

in-differences (Angrist and Pischke, 2008; Bertrand et al., 2004), on the other hand, makes use of

longitudinal data from both treatment and control groups to obtain an appropriate counterfactual

to estimate causal effects. This approach compares the changes in outcomes over time between a

population that takes a specific intervention or treatment (the treatment group) and a population

that does not (the control group).

Consider the motivating example in Section 2.1, where every individual embarks on the LCD

treatment at time 0. At time 1, we look at at how the outcome T2D is affected by the LCD between

times 0 and 1, under numerous assumptions. Suppose we try to estimate the average treatment

effect of the LCD by matching propensity scores on a dataset obtained by pooling observations at

times 0 and 1. Since, for every i, the treatment Ti,t determines the treatment Ti,1−t the outcome

for individual i at time t depends on the treatment of individual i at time 1− t. In other words, the
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pooled approach violates the no-interference assumption, and propensity score matching is not

supported (Beck and Katz, 1995; Wilson and Butler, 2007). As we illustrate with simulation in

Section 3.1.1, the no-interference violation can lead to sub-par performance of causal estimates

based on pooling. In this application, the interference is a nuisance. On the other hand, applying

difference-in-differences to the motivating example would require us to make an assumption about

what what would happen to individuals not treated between times 0 and 1. We explore this in

Section 3.1.2.

The issues outlined above prompted us to develop I-Rand, a novel approach to estimating

causal effects from two-point time-series data. As we show in simulation, I-Rand can reduce

estimation error introduced by violations of the SUTVA assumption incurred by pooling data.

There is some conceptional overlap between I-Rand and the synthetic control method (Abadie and

Gardeazabal, 2003; Abadie et al., 2010), which provides a systematic way to choose comparison

units (i.e., “synthetic control”) as a weighted average of all potential comparison units that best

resembles the characteristics of the unit of interest (i.e., treatment unit). In I-Rand, both the

control and treatments units are chosen from the data to form a “synthetic subsample” from which

the causal effect is estimated using propensity score matching (i.e., the one control unit with the

closest propensity score to the treatment unit of interest).

I-Rand samples one of the two visits for each patient, calculates the ATE on this selected sub-

sample, and shuffles the treatment of the subsample to estimate the significance of the treatment.

The estimation relies on the matching method described in Section 2.3 and applies a permutation

test to the statistics estimated from the matching methods on the subsamples to infer the signif-

icance. Under the null hypothesis, the empirical ATEs are identically distributed. Formally, we

construct a subsample in which each patient appears exactly once, either at t = 0 or t = 1 with

the same probability, and then calculate the ATE from this sample. Then we construct additional

(M − 1) subsamples, where each additional subsample should be drawn to have as few common

observations with existing subsamples as possible. For example, one can apply the Latin hyper-

cube sampling (McKay et al., 2000) to draw the subsamples. We calculate the ATEs from the

constructed (M − 1) subsamples and take the average ATE:

1

M

M∑
m=1

ATE(m), (1)
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Algorithm 2 I-Rand algorithm

1: Input: 2n × p data matrix where each row is attributes of an individual i ∈ {1, . . . , n} at
time point ∈ {0, 1}, and p is the number of variables including the treatment, confounder, and
outcome.

2: for m = 1 to M do
3: Sample a binary vector of length n, where the index is the individual’s ID and the value is

the time point (sampling without replacement). Select the corresponding subsample m;
4: Calculate ATE(m) by the matching method;
5: for s = 1 to S do
6: Shuffle the vector of treatment;
7: Calculate ATE(m,s) for the shuffle s of the treatment from subsample m;
8: end for
9: Calculate p-val(m) = 1

S

∑S
s=1 1ATE(m,s)>(resp. <)ATE(m) . That is, the p-value for the one-tailed

test for the null hypothesis of no treatment effect.
10: end for
11: Output: The mean of ATEs = 1

M

∑M
m=1 ATE(m); The mean of the p-values:

1
M

∑M
m=1 p-val(m).

which m indicates the mth generated subsamples. Then the i-Randomization estimator in Equa-

tion (1) gives the overall estimated ATE. To assess the significance of the treatment, we add an-

other layer of randomization by permuting the treatments in the subsample. That is, given a sub-

sample m with corresponding estimand ATE(m), we shuffle the treatment vector of this subsample

without changing the confounders or the outcome. We then estimate an average treatment effect

ATE(m,s) for this shuffled treatment, where the superscript (m, s) indicates that we have selected

the subsample m and the shuffle s. We repeat the experiment S times (for a fixed subsample

m), and obtain the distribution of average treatment effects., i.e., (ATE(m,s))s∈{1,...,S}. Then we

calculate a p-value as the fraction of permuted average treatment effects that exceed the estimand

ATE(m). The additional complexity of I-Rand is justified by the benefits that it brings relative to

the pooled approach and difference-in-differences. I-Rand overcomes the SUTVA violation that

is inherent in the pooled approach, and it creates a synthetic control group, which is absent in

difference-in-differences. The I-Rand algorithm is summarized in Algorithm 2.

We note that the permutation test in I-Rand is valid only if the rearranged data are exchange-

able under the null hypothesis (Edgington and Onghena, 2007). In our two-sample test for the

nutrition dataset, the exchangeability condition holds since the distributions of the two groups

of data are the same under the null hypotheses that there is no treatment effect. The subsam-
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pling technique in I-Rand is similar to the one studied by Hahn (2012) in the analysis of spatial

point patterns. The difference, however, is that the normalization of test statistics (i.e., ATE) is

unnecessary in I-Rand since the matching method has balanced the designs.

3 Comparison of I-Rand with Alternative Methods

We use simulation to compare errors in an I-Rand-based estimation of a treatment effect with

errors from the pooled approach and difference-in-differences. We look at causal effect estimation

under two types of treatment assignments inspired by our data and the questions considered in

this article. First, we study the “LCD-like treatment”, as in the motivating example in Section 2.1,

where T = 0 at t = 0 and T = 1 at t = 1 for all individuals. The LCD-like treatment respects the

two-point time series structure since the assignment of T depends on time.

Next, we consider a study from Section 5.1: does obesity cause T2D? Here, treatment is a

binary indicator based on the body-mass index (BMI), where obesity is indicated by BMI > 30.

To avoid excess notation, we use the acronym “BMI” to indicate both the body mass index and the

binary treatment derived from it. In this study, there is a control group consisting of individuals

with BMI < 30. This treatment does not align with time, and we call treatments of this type “BMI-

like.” 3 Here, it is natural to pool the data at the two time points, with a control group of non-obese

individuals and a treatment group of obese individuals. To apply difference-in-differences, we

split the data into two subsets. The first subset consists of individuals who are non-obese at time

0. The control group in the subset is individuals who are non-obese at time 1, while the treatment

group consists of individuals who are obese at time 1. For this subset, the treatment, obesity, has a

significant effect on T2D if change in T2D is significantly different in the treatment group than in

the control group. The second subset consists of individuals who are obese at time 1. The control

group in the subset is individuals who are obese at time 1, while the treatment group consists of

individuals who are non-obese at time 1. Again, the treatment, obesity, causes T2D if the change

in T2D is significantly different from zero in the treatment group than in the control group. As

usual, the numerous assumptions on which our results rely include causal completeness. We note

3Practical considerations concerning the potential outcomes framework require that a treatment be a binary in-
dicator, and that forces us to discard detailed information that may be contained by the continuous indicator BMI
(VanderWeele and Hernan, 2013).
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Table 1: Overview of comparison of I-Rand with alternative methods given two-point time-series
with novel structures

Respect time structure Ignore time structure
(LCD-like treatment) (BMI-like treatment)

Pooled approach vs. I-Rand Section 3.1.1 Section 3.2.1
Difference-in-differences vs. I-Rand Section 3.1.2 Section 3.2.2

that, while it may be unintuitive, it is certainly possible that the effect of increased obesity on

T2D could turn out to be negative. An overview of the comparison of I-Rand with two benchmark

methods is given in Table 1.

All our simulations consider a panel dataset with two time points where outcomes are specified

by the structural equation:

Yi,t = α + f(Ti,t) + g(Xi,t) + εYi,t, (2)

where the confounder vector Xi,t, such as age or gender, takes continuous or categorical values.

The noise term εYi,t is assumed to be i.i.d. for any i and t, and has zero mean and bounded variance.

The treatment Ti,t is specified differently in different examples that we consider below.

3.1 Time-aligned (LCD-like) treatment

To complete the specification of the data generating process (2), we set the treatment variable as

follows:

Ti,t = 1t=1, ∀i ∈ {1, . . . , n} and t ∈ {0, 1}, (3)

where the treatment Ti,t for individual i at time t is binary and depends only on time. For example,

Ti,t in the nutrition data of Section 2.2 indicates whether individual i follows an LCD at time t.

The outcome Yi,t is analogous to the HbA1c measure in the nutrition data of Section 2.2. The

parameter α ∈ R, and f(·) and g(·) are unknown functions that satisfy the condition ET [f(T )] =

EX [g(X)] = 0 to ensure identifiability of model (2). Assuming the confounder satisfies the back-

door criterion (Pearl, 2009), we can interpret f(·) as the causal mechanism of T affecting Y (Zhao

and Hastie, 2019).
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3.1.1 Comparison to the pooled approach

We now compare I-Rand to the pooled approach (Beck and Katz, 1995; Wilson and Butler,

2007) under the treatment assignment specified by (3). The pooled approach breaches the “no-

interference” assumption as Ti,t determines Ti,t′ , where t 6= t′ ∈ {0, 1}. This breach is manifest

in the propensity score, i.e., the probability of treatment given confounders ei,t(Xi,t) = P (Ti,t =

1|Xi,t), which is equal to 1/2 for any i ∈ {1, . . . , n} and t ∈ {0, 1}. Thus, each pair of distinct

observations has the same probability of being matched, which violates the “no-interference” as-

sumption of the SUTVA in Section 2.3. We refer readers to Appendix A for an overview of the

propensity score matching.

We consider a numerical example that illustrates the consequence of breaching the “no-interference”

assumption on the pooled data. We consider a correlated structure of confounders that simulates

the age and gender in the nutrition data of Section 2.2, where

Xi,0 = εXi , εXi ∼ N(0, 1),

Xi,1 = ρXi,0 +
√

1− ρ2ξXi + aXt, ξXi ∼ N(0, 1).
(4)

with ρ the correlation between the confounder at t = 0 and at t = 1, and aX a drift term. We set

ρ = 1 and aX = 0 in this simulation. It is the case when the confounder used is unchanged with

the passage of time, i.e., fixed attributes like gender or ethnicity. The outcome Yi,t is generated by

letting f(·) and g(·) in (2) be linear functions:

f(T ) = Tδ, g(X) = Xβ. (5)

α in (2) is set to 0, and β = −1 and δ = 1 in (5). The noise variable εYi,t in (2) is independently

drawn from N(0, σ2). Under the pooled approach, we estimate the treatment effect based on the

propensity score matching in Algorithm 1. Under I-Rand, we estimate the treatment effect by

averaging over the estimates using 100 subsamples using Algorithm 2. Figure 2 reports the mean

squared errors (MSEs) for δ with varied sample sizes and noise levels. In our example, I-Rand

outperforms the pooled approach, whose ATE estimate has inflated error due to the breach of

“no-interference” assumption.
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Figure 2: The MSE for the estimate of treatment effect when varying the sample size and noise
level σ. Left plot: the MSE surface for the I-Rand; Right plot: MSE(pooled)−MSE(I-Rand).

3.1.2 Comparison to difference-in-differences

The standard set up of difference-in-differences (Angrist and Pischke, 2008; Bertrand et al., 2004)

is one where outcomes are observed for two groups for two time periods. One of the groups is

exposed to a treatment in the second period but not in the first period. The second group is not

exposed to the treatment during either period. In the case where the same units within a group are

observed in each time period, the average gain in the control group is substracted from the average

gain in the treatment group, which gives an estimate to the average treatment effect:

ATE ≡ EX [E[Yi(t = 1)− Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0, X]]

− EX [E[Yi(t = 1)− Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0, X]].
(6)

Difference-in-differences removes biases in second period comparisons between the treatment and

control group that could be the result from permanent differences between those groups, as well

as biases from comparisons over time in the treatment group that could be the result of trends. We

note that this standard difference-in-differences approach does not require the knowledge of the

functions f(·) or g(·) in (2). However, in our application with the LCD-like treatment design (3),

the treatment effect (6) cannot be estimated from data using the aforementioned standard approach

of difference-in-differences. The main reason is that LCD-like treatment design lacks the control

group {i|Ti(t = 1) = 0, Ti(t = 0) = 0}. We summarize this result in the following theorem.

Theorem 1. Under the two-point treatment design (3) and the structural equation (2), the treat-

ment effect (6) is not identifiable by difference-in-differences if there is no prior knowledge on the

parametric family of f(·) and g(·) in (2).
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The proof of Theorem 1 is in Appendix B. The theorem suggests that the difference-in-differences

is not applicable under the two-point treatment design (3). By contrast, the I-Rand in Algorithm

2 constructs a synthetic control group by randomly selecting one of the two points for each indi-

vidual, and it can identify and estimate the treatment effect (6) from data.

A remedy for applying difference-in-differences to the treatment design (3) is assuming a

parametric functional form of f(·) and g(·) in the structural equation (2). For example, one can

assume f(·) and g(·) to be linear functions (5). The treatment effect δ can be estimated by re-

gressing over the observational treatment group data {i|Ti(t = 1) = 1, Ti(t = 0) = 0} under the

design (3). Nonetheless, we demonstrate that even in a parametric structural equation, I-Rand can

outperform difference-in-differences. We simulate data using formulas (2) to (5). The outcome

Yij is calculated using (5) with α = 0, β = −1, and δ = 1, whereas the errors εYi,t are i.i.d drawn

from N(0, σ2). In (4), we set ρ = 0.99 and aX = 1/12, leading to similar values of the covariates

for each individual at the two time points as the nutrition data in Section 2.2, and a passage of

time equal to one month. We take the difference in the variables in both sides of the equation (2)

and obtains

DYi = DTiδ +DXiβ +DεYi , (7)

where the operator D denotes the difference in the variable between t = 1 and t = 0, i.e.,

DZi = Zi,t=1 − Zi,t=0 for any variable Z. In this example, the propensity score matching is

not applicable to difference-in-differences 4. We apply least squared regression to model (7) and

use the observational treatment group data {i|Ti(t = 1) = 1, Ti(t = 0) = 0} to estimate the

parameter δ. For I-Rand, we apply Algorithm 2 and obtain the treatment effect by averaging over

100 subsamples. Difference-in-difference estimates are obtained by least squared regression on

(7), as explained above.

Figure 3 reports the mean-squared errors to the true value δ = 1 (left panel), and the difference

in MSEs between i-Rand and DiD, when varying sample sizes and noise levels. From the plots,

we see that i-Rand has small MSEs and that MSEs for DiD are larger than MSEs for i-Rand.

While linear regression is subject to large estimation error because of the high correlation between

change in the treatment vector (DT ) and change in age (DX), the absence of a control group

4The difference-in-differences fails to meet the strong ignorable treatment assignment condition in Section 2.3.
Specifically, 0 < P (Treatment = 1|X) < 1, as P (DT = 1|X) = 1 and P (DT = 0|X) = 0. Hence we cannot
directly apply the propensity score matching in Section A to estimate the treatment effect.
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Table 2: Comparison of three approaches in the case of the LCD-like treatment in Section 3.1

Pooled approach Difference-in-differences I-Rand

SUTVA assumption Fail Hold Hold
Control group Yes No Yes

(DT = 0) makes the passage of time (increase in age) as likely to be responsible for the change

in outcome as the treatment itself. While the poor performance of difference-in-differences can

be traced to the lack of a control group, an estimation using regression does not always fail and

could still give good results when the treatment and confounders are uncorrelated. Our example

illustrates how regressions can fail to estimate a causal effect.

Figure 3: The MSE for the estimate of treatment effect when varying the sample size and noise
level σ. Left plot: the MSE surface for the I-Rand; Right plot: MSE(difference-in-differences)−
MSE(I-Rand).

We summarize in Table 2 the advantages of I-Rand compared to two benchmark approaches

for the LCD-like treatment.

3.2 Time misaligned (BMI-like) treatment

To complete the specification of the data generating process (2), we set the treatment variable as

follows:

Ti,t = h(Xi,t), ∀i ∈ {1, . . . , n} and t ∈ {0, 1}. (8)

Here the treatment Ti,t for individual i at time t is a binary function of the confounders Xi,t.

Our treatment is time misaligned because it ignores our two-point time-series structure, i.e.,

two observations for each patient with treatment administrated at t = 0 and observed at t = 1.
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It mimics the experiment in Section 2.2, where the treatment is a discrete version of BMI: Ti,t

is weight category (e.g., normal or overweight) of individual i at time t. In this experiment Ti,t

depends on the confounders such as LCD, age and gender.

3.2.1 Comparison to the pooled approach

Unlike the LCD-like assignment in Section 3.1.1, the pooled approach (Beck and Katz, 1995;

Wilson and Butler, 2007) meets the SUTVA assumption of “no-interference” under design (8).

Moreover, the pooled approach provides an estimate to ATE∗ in (14) by treating the observations

from an individual at t = 0, 1 as two distinct data points. We demonstrate through numerical

examples that the pooled approach is a comparable alternative to I-Rand in the BMI-like treatment

assignment (8).

Figure 4: The MSE for the estimate of treatment effect when varying the sample size and noise
level σ. Left plot: the MSE surface for the I-Rand; Right plot: MSE(pooled)−MSE(I-Rand).

We specify the confounderX = (X(1), X(2)), whereX(1) denotes an individual’s age andX(2)

indicates whether or not an individual has followed an LCD. Age, X(1), follows the confounder

generating process in (4) with correlation ρ = 0.99 and passage of time aX = 1/12 = one month.

(The parameter aX in (4) is analogous to the time trend in the nutrition data in section 2.2.)

The LCD-indicating confounder X(2) is set to X(2)
i,t = 1t=1. Treatment is assigned according to

Ti,t = 1εTi,t>0 where εTi,t = X
(2)
i,t + ξTi,t where ξTi,t ∼ N(0, 1). We consider the linear model (5) for

outcome Yi,t, where εYi,t ∼ N(0, σ2), and α = 0, β = (−1, 1), and δ = 1. The results are displayed

in Figure 4, where the MSE surface for I-Rand is shown with varying sample size and noise level

σ. Also displayed is the difference between the MSE of I-Rand and the pooled approach. I-Rand
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performs similarly to the pooled approach in our simulation, lending support to the assertion that

the approaches are comparable for the BMI-like treatment (8).

3.2.2 Comparison to difference-in-differences

In the time misaligned BMI-like treatment, difference-in-differences (Angrist and Pischke, 2008;

Bertrand et al., 2004) encounters the problem of having four different types of individuals; always-

treated ({i|Ti(t = 1) = 1, Ti(t = 0) = 1}), never-treated ({i|Ti(t = 1) = 0, Ti(t = 0) = 0}),

treated-to-untreated {i|Ti(t = 1) = 0, Ti(t = 0) = 1}, and untreated-to-treated {i|Ti(t = 1) =

1, Ti(t = 0) = 0}. To obtain an estimate of the treatment effect in this case, it is necessary to

compare the outcomes of the group of never-treated to untreated-to-treated or the outcomes of the

group of always-treated to treated-to-untreated. The idea is that the treatment state should be the

same in both groups at t = 0 and different at t = 1. We illustrate our ideas on the former; the

latter follows the same line of reasoning. Difference-in-differences gives an estimate of the causal

effect in (6), which is the same as the target effect ATE∗ in (14) only if

EX [E[Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0, X]]

= EX [E[Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0, X]]
(9)

or EX [E[Yi(t = 1)|Ti(t = 1) = 0, Ti(t = 0) = 0, X]]

= EX [E[Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0, X]].
(10)

However, both (9) and (10) are strict and likely to fail in practice. Take the nutrition data in Section

2.2 as an example. Condition (9) requires that the expected outcome at the baseline is the same

between two different groups: {i|Ti(t = 1) = 1, Ti(t = 0) = 0} and {i|Ti(t = 1) = 0, Ti(t =

0) = 0}. However, the unobserved confounders such as lifestyle and genetic information in the

two groups {i|Ti(t = 1) = 1, Ti(t = 0) = 0} and {i|Ti(t = 1) = 0, Ti(t = 0) = 0} are different

(otherwise the treatment at t = 1 should be the same in two groups), so that condition (9) is likely

to fail. Moreover, condition (10) requires the expected outcomes be the same at the two time

points, t = 0, 1, for the group {i|Ti(t = 1) = 0, Ti(t = 0) = 0}. However, since an individual

does not take an LCD at t = 0 and does take an LCD at t = 1, the confounder LCD assignment

differs between t = 0 and t = 1. Hence the condition (10) would fail for the nutrition data in

Section 2.2.
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Consequently,difference-in-differences (6) cannot be applied to the BMI-like treatment assign-

ment (8). An alternative approach to implementing difference-in-differences is directly applying

regression to a difference of parametric structural equation models. Specifically, we apply re-

gression to (7). We consider the simulation setup in Section 3.2.1 and find that the estimate of

the causal effect with difference-in-differences is unstable. The results are in Figure 5, where the

MSE surface for I-Rand is shown with varying sample size and noise level σ. Also shown is the

difference between the MSE of I-Rand and the MSE of the benchmark, difference-in-differences.

We notice in the small sample size regime, I-Rand outperforms difference-in-differences.

Figure 5: The MSE for the estimate of treatment effect when varying the sample size and noise
level σ. Left plot: the MSE surface for the I-Rand; Right plot: MSE(difference-in-differences)−
MSE(I-Rand).

To conclude this section, we stress that the first argument in favor of the application of I-

Rand is its verification of the SUTVA assumption in both the time-aligned and time-misaligned

treatments we considered. The estimation of the causal effect is data dependent, but we find that

I-Rand performs at least as well as the benchmark methods in the examples considered. Natu-

rally, I-Rand is also subject to some limitations. One of them is the dependence of the estimates

across subsamples inflate the variance estimate. This can be mitigated by minimizing overlaps in

subsamples.
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4 Case Study I: Can Diet Lower the Risk for T2D and CVD?

4.1 Treatment effect of LCD on T2D

We can now analyze the motivating example introduced in Section 2.1 and give an answer to the

counterfactual question: If an individual changes from a regular diet to an LCD diet, would he /

she be less likely to develop T2D? The LCD restricts consumption of carbohydrates relative to the

average diet (Bazzano et al., 2014). Several systematic reviews and meta-analyses of randomized

control trials suggest beneficial effects of LCD in T2D and CVD, including improving glycaemic

control, triglyceride and HDL cholesterol profiles (Meng et al., 2017; Gjuladin-Hellon et al., 2019;

van Zuuren et al., 2018). However, the impact of LCD in a “real world” primary care setting

with observational data and its cause-and-effect inferences has not been fully evaluated (Unwin

et al., 2020). The challenges of analyzing routine clinical data include the irregular treatment

assignments. For example, our analysis relies on the two-point time-series data without control

group described in Section 2.2, where all patients participated in the program are suggested to

change from their regular diets to LCD after their initial visit to the clinic. The irregular design of

treatments limit the applications of benchmark methods such as pooled approach and difference-

in-differences as discussed Section 3. In this section, we apply the proposed I-Rand algorithm to

analyze the real data described in Section 2.2.

The analysis using observation data utilizes the model of potential outcomes in Section 2.3.

According to the causal graph in Figure 1, LCD takes the role of a treatment that affects the

mediator BMI and outcome T2D. Gender and age affect BMI and T2D, but not the treatment

LCD. To quantify the expected change in T2D if BMI were changed, we need to calculate the

total causal effect of LCD on T2D, which can be characterized by the ATE:

E[τ1(Genderi,Agei)],

where the potential outcome τ1 (with “1” indexing that this is the first of a series of nutrition

questions) is defined as

τ1(Genderi,Agei) = E[T2Di(LCD = 1) | Genderi,Agei]− E[T2Di(LCD = 0) | Genderi,Agei].

We control for the confounders (i.e., gender and age) (Pearl, 2009) to estimate the ATE and as-

sess the significance by the proposed I-Rand algorithm. We implement I-Rand by drawing 500
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Table 3: Causal analysis for the effect of LCD on T2D and Reynolds risk score for CVD

LCD on T2D (E[τ1]) LCD on Reynolds risk score for CVD
Total effect (E[τ2]) Direct effect (E[τ3]) Indirect effect (E[τ4])

ATE -0.593 -0.015 -0.009 -0.005
p-value 0.001 0.024 0.107 0.003

subsamples and calculate the ATE of each subsample. Then, we perform the permutation test

for each subsample to evaluate the significance level of the ATE. The result provided in Table 3

indicates that LCD would significantly decrease in the risk of T2D, which is also supported by

the box plot of p-values in the first row of Figure 7, and the distributions of ATEs and p-values

in Appendix D.1, where the results show the consistency of the significant causal effects across

random subsamples. We make four remarks on the application of I-Rand and the experimental

results of this example.

First, there is no control group with individuals on a regular diet at two visits. This is because

all individuals were at risk of developing T2D or with T2D and thus suggested to begin the LCD

after their first visit. The application of the I-Rand algorithm in this example not only avoids a

violation of the SUTVA assumption, but more importantly, to artificially construct synthetic con-

trol group. The way that I-Rand constructs synthetic control group is different from the existing

synthetic control method (Abadie et al., 2010). In particular, existing synthetic control method

requires the available control individuals and constructs a synthetic control as a weighted average

of these available control individuals. However, I-Rand does not require that there exists available

control individuals. Instead, I-Rand constructs a synthetic control by subsampling one of the two

time points of each individual.

Second, we note that under the null hypothesis of no causal effect, the p-values follow a

uniform distribution on (0, 1) given sufficiently many subsamples. However, the box plot of p-

values in the first row of Figure 7, corresponding to the causal graph in Figure 1, shows p-values

are concentrated at the origin, which indicates a strong evidence for the alternative hypothesis. We

note that the hypothesis testing is performed for each subsample independently, but the p-values

are not independent across subsamples. This is because the subsamples are correlated although the

correlation is weak given each subsample is randomly chosen from the pool of 2256 subsamples.

If the concentration of the p-values is around 0, we can say with confidence that a small p-value is
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not a coincidence of the subsample, if most p-values are large, we conclude that the significance

of the treatment effect is questionable.

Third, for better appreciating the results in Table 3 we compare them with T2D risks from

routine care without LCD suggestion. Some idea of the results that one might expect from routine

care can be drawn from the data of control group in the DiRECT study (Lean et al., 2018), which

recently investigated a very low-calorie diet of less than 800 calories and subsequent drug-free

improvement in T2D, including T2D remission without anti-diabetic medication. At 12 months,

DiRECT study gives 46% of T2D remission, which is close the 45% rate given in Table 3 from

our dataset with LCD over an average of 23 months duration. As a comparison, DiRECT quotes

a remission rate at 24 months of just 2% for routine T2D care without dietary suggestion. This

result emphasizes how rare remission is in usual care and the potential value of LCD to lower the

T2D risk.

Finally, we note that our approach relies on individuals’ assertions of compliance to the LCD.

For several years an LCD has generally been accepted as one containing less than 130 grams

of carbohydrate per day (Accurso et al., 2008). However, it may not be realistic for individuals

to count grams of carbohydrate in a regular basis. Our dataset collected from Norwood general

practice surgery instead only give clear and simplified explanations of how sugar and carbohy-

drate affect glucose levels and how to recognize foods with high glycaemic loads (Unwin et al.,

2020). The promising result in Table 3 shows that this simple and practical approach to lowering

dietary carbohydrate leads to significant improvement in T2D without the need for precise daily

carbohydrate or calorie counting.

4.2 Mediation analysis for the effect of LCD on CVD

Motivated by the fact that T2D was crucial in explaining CVD risk (Benjamin et al., 2018), we

seek to understand the role of T2D as a mediator of the effect of dietary on CVD risk. This is

relevant from the perspective of clinical practice for an individual who is afflicted with both T2D

and CVD, since he / she may be able to control factors besides T2D that contribute to CVD risk.
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4.2.1 Causal graph of T2D as a mediator

We assume the causal graph in Figure 6. Note that the outcome CVD has many risk factors,

including systolic blood pressure, serum cholesterol level, high-density lipoprotein (which is in-

versely correlated with CVD risk); see, e.g., Ridker et al. (2007). We study these three well-

known risk factors as well as the Reynolds risk score. We motivate Figure 6 with the following

data-generating process: (1) Similar to Figure 1, choose the treatment LCD at random; Given a

selected LCD, sample an individual with a corresponding BMI level; Conditional on the choice

of LCD and BMI level, sample the T2D status as the medical outcome; (2) In addition to Figure

1: Conditional on the choice of LCD and T2D status, sample the medical outcome within a given

CVD risk factor. The details are as follows. First, the arrow LCD→ T2D encodes that the distri-

bution of T2D depends on LCD status. This dependence was quantified in Section 4.1. Second,

the arrow T2D→ CVD reflects the established knowledge in nutrition science that T2D influences

CVD risk (Benjamin et al., 2018; Martı́n-Timón et al., 2014). Finally, since our model assumes

causal sufficiency, the arrow LCD→ CVD represents dietary-specific influences on CVD risk. In

reality, there may be other mediators, such as socioeconomic status, culture occupation, and stress

level. In addition to the causal graph in Figure 11, we assume there are no hidden confounders.

Figure 6: Assumed coarse-grained causal graph for the relationship between LCD, BMI, T2D,
and the outcome CVD risk. Within this view, T2D acts as a mediator of the effect of LCD on
CVD risk.

Given these assumptions, we see that LCD causally influences CVD risk along two different

paths: a path LCD→ CVD, giving rise to a direct effect, and two paths LCD→ BMI→ T2D→

CVD and LCD→ T2D→ CVD, which are mediated by T2D and give rise to an indirect effect.

Note that the direct effect of LCD on CVD risk is likely mediated by additional variables that are
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subsumed in LCD→ CVD. We discuss this point further in Section 6. In mediation analysis, the

goal is to quantify direct and indirect effects. We start with the total effect and then formulate the

direct and indirect effects by allowing the treatment to propagate along one path while controlling

the other path.

4.2.2 Total effect of LCD on CVD

Given the causal assumptions in the previous section, the first measure of interest is the total causal

effect of LCD on CVD, i.e., the answer to the following question:

“What would be the effect on CVD if an individual changes from regular diet to

LCD?”

We formulate the answer using the ATE:

E[τ2(Genderi,Agei)],

where the potential outcome τ2 is defined as

τ2(Genderi,Agei) = E[CVDi(LCD = 1)|Genderi,Agei]− E[CVDi(LCD = 0)|Genderi,Agei].

Using the I-Rand algorithm, we report the results for the effect of LCD on the Reynolds risk score

as measure of CVD risk. The total effect and the p-value are given in Table 3. Figure 7 summarizes

the effects of LCD on all four measures of CVD risk. The LCD significantly lowered the Reynolds

risk score (RRS), systolic blood pressure (SBP) and serum total cholesterol (TBC) but it did not

have a statistically significant effect on good cholesterol (HDL). The promising result on the

improvement of Reynolds risk score, systolic blood pressure and serum total cholesterol suggests

that it may be a reasonable approach, particularly if an individual hopes to avoid medication, to

offer LCD with appropriate clinical monitoring.

4.2.3 Direct effect of LCD on CVD

We now study the natural direct effect (Pearl, 2001) of LCD on CVD risk in the context of the

following hypothetical question:

“For an individual of non-LCD taker, how would LCD affect the risk of CVD?”
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Figure 7: Mean ATE bar plot (left) and p-values box plot (right) for LCD as the treatment. Each
row corresponds to a causal diagram:“Outcome | Treatment; Confounders”. For example, “SBP |
LCD; Gender, Age” represents the causal diagram with the systolic blood pressure as the outcome,
and gender and age as the confounders, and the LCD as the treatment.

We are asking what would happen if the treatment, LCD, were to change, but that change did

not affect the distribution of the mediator, T2D. In that case, the change in treatment would be

propagated only along the direct path LCD → CVD in Figure 6. We argue that the analysis in

this situation should control for gender, age, and T2D, and a look at Figure 6 give an explanation

(Pearl, 2009). To disable all but the direct path, we need to stratify by T2D. This closes the indirect

path LCD→ T2D→ CVD. But in so doing, it opens two paths LCD→ T2D← (Gender, Age)

→ CVD, and LCD→ BMI→ T2D← (Gender, Age)→ CVD. If we control for (Gender, Age) as

well, we close these two paths, and therefore any correlation remaining must be due to the direct

path LCD → CVD. We refer readers to Pearl (2009) for an introduction to mediation analysis

based on causal diagram.

To quantify the expected change in CVD if LCD status were changed, we need to control for

calculate

E[τ3(Genderi,Agei,T2D)],
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where the potential outcome τ3 is defined as

τ3(Genderi,Agei,T2Di) = E[CVDi(LCD = 1)|Genderi,Agei,T2D(LCD = 0)]

− E[CVDi(LCD = 0)|Genderi,Agei].

The symbol T2D(LCD = 0) is the counterfactual distributions of BMI and T2D given that the

status of LCD is 0. The expectations above are taken over the corresponding interventional (i.e.,

LCD = 0, 1) and counterfactual (i.e., T2D(LCD = 0)) distributions. We implement I-Rand, which

gives the direct effect for the Reynolds risk score in Table 3. Figure 7 summarizes the direct effects

of LCD on all four measures of CVD risk. The LCD has a significant direct effect on lowering the

Reynolds risk score (RRS) and serum total cholesterol (TBC) with the average p-value less than

10%. We complement the results shown in Figure 7 with the distributions of ATEs and p-values

of the subsamples in Appendix D.2. The direct effect in this example represents a stable causal

effect that, different from the total effect, is robust to T2D and any cause of CVD risk that is

mediated via T2D. This robustness makes the natural direct effect a more actionable concept, and

in principle, it can be transported to populations with different physical conditions such as T2D

status.

4.2.4 Indirect effect of LCD on CVD

To isolate the indirect effect from the direct effect, we need to consider a hypothetical change in

the mediator while keeping the treatment constant. In our CVD example, we may ask:

“How would the CVD risk of an individual without taking LCD be if his / her T2D

status had instead following the T2D distribution of individuals taking LCD?”

The answer to this question is the average natural indirect effect (Pearl, 2001). It can be written

as

E[τ4(Genderi,Agei,T2D)],

where the potential outcome τ4 is defined as

τ4(Genderi,Agei) = E[CVDi(LCD = 0)|Genderi,Agei,T2D(LCD = 1)]

− E[CVDi(LCD = 0)|Genderi,Agei].

The symbol T2D(LCD = 1) refers to the counterfactual distribution of T2D had LCD been 1,

and the expectations are taken over the corresponding interventional (i.e., LCD = 0, 1) and coun-

terfactual (i.e., T2D(LCD = 1)) distributions. Under our assumptions, any changes that occur in
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an individual’s CVD risk are attributed to treatment-induced T2D and not to the treatment (i.e.,

LCD) itself.

Figure 8: Indirect Effect: Mean ATE bar plot (left) and p-values box plot (right) for the indirect
effect of LCD on CVD risk factors with age, gender as confounders and diabetes as a mediator.
Each row corresponds to a causal diagram:“Outcome | Treatment; Confounders [Mediator]”. For
example, “SBP | LCD; Gender, Age [T2D]” represents the causal diagram with the systolic blood
pressure as the outcome, gender, age, as the confounders, T2D as the mediator, and the LCD as
the treatment.

For a linear model in which there is no interaction between treatment and mediator, the total

causal effect can be decomposed into a sum of direct and indirect contributions (Pearl, 2001):

total effect = direct effect + indirect effect. (11)

This decomposition can be applied to each permutation in each subsample. The estimates are

averaged, yielding an estimate of the indirect effect and corresponding distribution of the p-values.

Based on this result, we can assess the indirect effect of LCD on the Reynolds risk score, where

the result is provided in Table 3. The negative sign on the indirect effect indicates that, in addition

to its direct effect, the LCD lowered Reynolds risk score through the mediator T2D. We report the

average ATEs and box plots for the distributions of p-values for other CVD risk factors in Figure

8. It shows that the LCD would also have a significant indirect causal effect on other risk factors

of CVD, including a reduction in systolic blood pressure (SBP) and an improvement in good

cholesterol (HDL). We found, however, that the LCD would have a significant indirect effect in

the form of an increase in serum total cholesterol (TBC).
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5 Case Study II: Is Obesity A Significant Risk Factor for T2D
and CVD?

5.1 Causal effect of obesity on T2D

Figure 9: Assumed coarse-grained causal graph for the relationship between BMI and T2D, with
gender and age as confounders.

Building on the queries in the previous section, we now want to quantify the causal effect of

obesity on T2D and CVD (Yoon et al., 2006). Consider the counterfactual question,

“What would be the effect on T2D if an individual changes from normal weight to

overweight?”

This question cannot be evaluated with a randomized controlled trial, which would require an

experimenter to randomly assign individuals to be either obese or of normal weight. Instead,

we can attempt to estimate the effect of obesity on T2D from observational data. We make the

following assumptions and a specification of the underlying causal structure. First, the BMI is

modeled as a categorical variable in this section: normal weight if BMI < 25, overweight if

BMI ∈ [25, 30), obese if BMI ∈ [30, 35)), and severely obese if BMI ≥ 35. In our analysis,

we compare consecutive ordinal levels of obesity pairwise. At each time, we denote the higher

level of obesity as 1 (treatment) and the lower level of obesity as 0 (control). Second, similar to

the motivating example in Section 2.1, gender is a binary variable and age is an ordinal variable,

and the medical outcome T2D is an ordinal variable indicating status at time of reporting: non-

diabetics, pre-diabetics, and diabetics. Finally, we assume the causal graph shown in Figure 9, and

motivate it by thinking of the following data-generating process: (1) BMI affects the risk of T2D;

(2) Gender, age and LCD are unaffected by the BMI level; (3) Gender, age and LCD affect the
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Table 4: Average treatment effect of BMI on T2D: E[τ5]

Normal weight vs. overweight Overweight vs. obese Obese vs. severely obese

ATE 0.477 0.316 0.14
p-value 0.002 0.011 0.196

risk of T2D and the BMI level. Thus gender, age and LCD are confounders of BMI and T2D. (4)

Causal sufficiency: there are no hidden confounders. Under these assumptions, we can calculate

an estimate of the effect of BMI on T2D, by adjusting for the confounders using the model of

potential outcomes in Section 2.3.

According to the causal graph in Figure 9, BMI takes the role of a treatment that affects the

outcome T2D. To quantify the expected change in T2D if BMI were changed, we need to calculate

E[τ5(Genderi,Agei,LCDi)],

where the potential outcome τ5 is defined as

τ5(Genderi,Agei,LCDi) = E[T2Di(BMI = 1)|Genderi,Agei,LCDi]

− E[T2Di(BMI = 0)|Genderi,Agei,LCDi].

By I-Rand in Algorithm 2, we obtain the mean of ATEs E[τ1] over 500 subsamples and the mean

p-value (from the permutation tests) as follows (see, also Figure 10) for all three pairwise differ-

ences: (1) changing from normal weight to overweight; (2) changing from overweight to obese;

(3) changing from obese to severely obese.

We summarize the results in Table 4, which suggests that the difference of T2D constitutes

a causal effect, and changing BMI level from a lower level to a higher level would lead to an

increased risk of T2D, where the results are subject to our modelling assumptions. We note that

under the null hypothesis of no causal effect, the p-values follow a uniform distribution on (0, 1)

given sufficiently many subsamples. However, the box plot of p-values in Figure 10, correspond-

ing to the causal graph in Figure 9, shows p-values are concentrated at the origin, which indicates

a strong evidence for the alternative hypothesis. In particular, the causal effect of the treatment

(normal weight vs. overweight) with p-value 0.002 is significant under the Bonferroni’s false dis-

covery control at the 0.01 level. The detailed distributions of ATEs and p-values are provided in

Appendix D, which confirms the consistency of these results across subsamples.
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Figure 10: Mean ATE bar plot (left) and p-value box plot (right) for BMI as the treatment. Each
row corresponds to a causal diagram: “Outcome | Treatment; Confounders”. For example, “SBP
| BMI; Gender, Age, T2D” represents the the causal diagram with the systolic blood pressure as
the outcome, and the gender, age, T2D as the confounders, and the BMI as the treatment which
takes three pairwise comparisons: normal weight vs. overweight (green), overweight vs. obesity
(orange), obesity vs. severe obesity (blue).

5.2 Mediation analysis for the effect of obesity on CVD

We now seek to understand the role of T2D as a mediator of the effect of obesity on CVD risk. As

discussed in Section 4.2, this mediation analysis is particularly relevant from the perspective of

an individual with both T2D and CVD. We study four well-known risk factors of CVD: systolic

blood pressure, serum cholesterol level, high-density lipoprotein, and Reynolds risk score; see,

Ridker et al. (2007).

5.2.1 Causal graph of T2D as a mediator

We assume the causal graph in Figure 11, and motivate Figure 11 with the following data-

generating process: (1) Choose a BMI level at random; (2) Given a selected BMI level, sample an

individual with a T2D status; (3) Conditional on the choice of BMI level and T2D status, sample

the medical outcome within a given CVD risk factor. The details are as follows. First, the arrow
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Figure 11: Assumed coarse-grained causal graph for the relationship between BMI, T2D, and the
outcome CVD. Within this view, T2D acts as a mediator of the effect of BMI on CVD, with the
gender, age and LCD as confounders.

BMI→ T2D encodes that the distribution of T2D depends on BMI level. This dependence was

quantified in Section 5.1. Second, the arrow T2D → CVD reflects the established knowledge

in nutrition science that T2D influences CVD risk (Martı́n-Timón et al., 2014; Benjamin et al.,

2018). Finally, since our model assumes causal sufficiency, and in particular, that T2D is the only

mediator in the effect of BMI on CVD risk, the arrow BMI → CVD represents obesity-specific

influences on CVD risk. In addition to the causal graph in Figure 11, we assume there are no

hidden confounders. Given these assumptions, we see that BMI causally influences CVD risk

along two different paths: a path BMI→ CVD, giving rise to a direct effect, and a path BMI→

T2D → CVD mediated by T2D, giving rise to an indirect effect. Note that the direct effect of

BMI on CVD is likely mediated by additional variables that are subsumed in BMI→ CVD Risk.

We discuss this point further in Section 6. In mediation analysis, the goal is to quantify direct and

indirect effects. We start with the total effect and then formulate the direct and indirect effects by

allowing the treatment to propagate along one path while controlling the other path.

5.2.2 Total effect of BMI on CVD

Given the causal assumptions in the previous section, the first measure of interest is the total causal

effect of obesity on CVD, i.e., the answer to the following question:

“What would be the effect on CVD if an individual changes from normal weight to

overweight?”
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Table 5: Mediation analysis for the effect of BMI on SBP

Normal weight vs. overweight Overweight vs. obese Obese vs. severely obese

Total effect E[τ6] (p-value) 29.634 (0.001) 15.911 (0.001) 8.929 (0.022)
Direct effect E[τ7] (p-value) 31.48 (0.001) 16.023 (0.001) 9.359 (0.021)

Indirect effect E[τ8] (p-value) -1.846 (0.112) -0.112 (0.146) -0.43 (0.231)

As we did in Section 5.1, we formulate the answer using the ATE:

E[τ6(Genderi,Agei,LCDi)],

where the potential outcome τ6 is defined as

τ6(Genderi,Agei,LCDi) = E[CVDi(BMI = 1)|Genderi,Agei,LCDi]

− E[CVDi(BMI = 0)|Genderi,Agei,LCDi].

We now give a detailed result for one of the CVD risk factors, namely the systolic blood pressure,

where the description and the summary statistics are deferred to Appendix C. It is known that

increasing systolic blood pressure significantly increases the risk of CVD (Bundy et al., 2017).

By the proposed I-Rand with 500 subsamples and the corresponding permutation test for each

subsample, we obtain the mean of ATEs E[τ6] given in Table 5. The results show that an individual

changing from normal weight to overweight would significantly lead to an increase in systolic

blood pressure. In contrast, the box plot of p-values in Figure 10 indicates only weak evidence

that changing BMI would have a causal effect on other risk factors of CVD including serum

total cholesterol (TBC), high-density lipoprotein (HDL), and Reynolds risk score (RSS). The

observation is also supported by distributions of ATEs and p-values in Appendix D. The failure to

reject the null hypothesis may also be due to unobserved confounders such as genetic information,

smoking, and stress levels.

5.2.3 Direct effect of BMI on CVD

We now study the natural direct effect (Pearl, 2001) of obesity on CVD risk in the context of the

following hypothetical question:

“For an individual of normal weight, how would a weight gain affect the risk of

CVD?”
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We are asking what would happen if the treatment, BMI, were to change, but that change did

not affect the distribution of the mediator, T2D. In that case, the change in treatment would be

propagated only along the direct path BMI → CVD in Figure 11. To disable all but the direct

path, we need to stratify by T2D. This closes the indirect path BMI → T2D→ CVD. But in so

doing, it opens the path BMI→ T2D← (Gender, Age, LCD)→ CVD since T2D is a collider in

Figure 11. If we control for (Gender, Age, LCD) as well, we close the direct path, and therefore

any correlation remaining must be due to the direct path BMI→ CVD.

To quantify the expected change in T2D if BMI were changed, we need to calculate

E[τ7(Genderi,Agei,LCDi,T2D)],

and where the potential outcome τ7 is defined as follows:

τ7(Genderi,Agei,LCDi,T2Di) = E[CVDi(BMI = 1)|Genderi,Agei,LCDi,T2D(BMI = 0)]

− E[CVDi(BMI = 0)|Genderi,Agei,LCDi].

The symbol T2D(BMI = 0) refers to the counterfactual distribution of T2D given that the value of

BMI is 0, and the expectations are taken over the corresponding interventional (i.e., BMI = 0, 1)

and counterfactual (i.e., T2D(BMI = 0)) distributions. Hence, τ7 defines the influence that is

not mediated by T2D in the sense that it quantifies the sensitivity of the CVD to changes in

BMI while T2D is held fixed, as illustrated in Figure 11. By I-Rand algorithm, we obtain mean

ATEs E[τ7] with 500 subsamples and the mean p-value of permutation tests for systolic blood

pressure in Table 5. See, also Figure 10 for other CVD risk factors. In addition to the summary

statistics shown above, we provide the distributions of ATEs and p-values of the subsampling in

Appendix D.4. We find, for example, that a change from normal weight to overweight would lead

to a increase in systolic blood pressure of 31.48 mmHg on average (see Appendix C for summary

statistics of systolic blood pressure). The direct effect in this example represents a stable biological

relationship that, different from the total effect, is robust to T2D and any cause of high systolic

blood pressure that is mediated via T2D.

5.2.4 Indirect effect of BMI on CVD

We conclude this section by studying the indirect effect in the context that
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“How would the CVD risk of a normal weight individual be if his / her T2D status

had instead following the T2D distribution of overweight individuals?”

The answer is formulated by

E[τ8(Genderi,Agei,LCDi, ,T2D)],

where the potential outcome τ8 is defined

τ8(Genderi,Agei) = E[CVDi(BMI = 0)|Genderi,Agei, ,LCDiT2D(BMI = 1)]

− E[CVDi(BMI = 0)|Genderi,Agei,LCDi].

Under our assumptions, any changes that occur in an individual’s CVD risk are attributed to BMI-

induced T2D and not to the BMI itself. The indirect effect of the treatment is the change of CVD

risk obtained by keeping the BMI of each individual fixed and setting the distribution of T2D to

the level obtained under treatment.

Figure 12: Indirect Effect: Mean ATE bar plot (left) and p-values box plot (right) for the indirect
effect of BMI on CVD risk factors with age and gender as confounders and T2D as a mediator.
Each row corresponds to a causal diagram: “Outcome | Treatment; Confounders [Mediator]”. For
example, “SBP | BMI; Gender, Age, [T2D]” represents the causal diagram with the systolic blood
pressure as the outcome, gender and age as the confounders, T2D as the mediator, and BMI as the
treatment.

Consider a linear model in which there is no interaction between treatment and mediator. This

yields the decomposition (11) and the indirect effect of BMI on the systolic blood pressure given in
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Table 5. We report the average ATEs and box plots for the distributions of p-values for other CVD

risk factors in Figure 12 . We find that changing only the distribution of T2D that results from

an increase in BMI from normal weight to overweight would lead to a decrease in systolic blood

pressure of about 1.848 mmHg on average. Notably, the sign of this indirect effect is opposite

to the sign of the corresponding direct effect, which suggests that indirect and direct effects tend

to offset one another. There are several possible explanations for this. For example, the offset

may be due to missing BMI data, which results in selection bias. Further discussion of selection

bias is in Section 6. Another possible explanation is the obesity paradox given the comorbidity

conditions (Uretsky et al., 2007; Lavie et al., 2009) that overweight people may have a better

prognosis, possibly because of the medication or overweight individuals having lower systemic

vascular resistance compared to leaner hypertensive individuals.

6 Discussion on Assumptions and Models

We assume the causal relationships between variables of demographics, obesity, T2D, and CVD

to be captured by causal graphs in the previous sections, which correspond to different nutrition-

related questions. These causal graphs constitute a coarse-grained view, which neglects many

potentially important risk factors. A strength of this coarse-grained approach is that it allows for

quantitative reasoning about different causal effects including total, direct, and indirect effects in

situations where the data do not allow a more fine-grained analysis. In the following, we discuss

assumptions and limitations of our approach and point out some future directions.

6.1 Selection bias

The data we considered concerns only those patients who are from the Norwood general practice

surgery in England and has opted to follow LCD by 2019 (Unwin et al., 2020). We can introduce

an additional variable V with V = 1 meaning that an individual who is from the Norwood general

practice surgery and follows LCD by 2019 and V = 0 otherwise. In that case, our analysis is

always conditioned on V = 1. If the individual who follows LCD is randomly sampled from the

population of Norwood general practice surgery with 9,800 patients, the implicit conditioning on

V = 1 would not introduce bias to an inference for the larger population. However, samples are

generally not collected randomly. In particular, age and health conditions are causal factors on
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the participation in the LCD program, i.e., age→ V and health condition→ V and through self-

selection. Moreover, due to the possible speciality and reputation of the LCD program, T2D→ V ,

CVD→ V . Finally, there may be complex interactions between office visit and T2D or CVD,

where the process involves the feedback V → T2D and V → CVD. The fact that we consider only

individuals who participate in the LCD program while the visit itself depends on multiple other

factors inevitably leads to the problem of selection bias. Several approaches have been developed

to decrease this bias under certain conditions; see, Bareinboim and Tian (2015); Bareinboim and

Pearl (2016).

6.2 Unobserved confounders

An important assumption for our causal analysis is causal sufficiency, which is the absence of im-

portant hidden confounders other than the ones we considered, gender and age. This assumption

is necessary for counterfactual reasoning. In particular, it is the basis of our estimates of direct

and indirect effects. However, it may be possible to relax causal sufficiency depending on the

availability of experimental data. See Pearl (2001) for further discussion.

6.3 Additional mediators

In our coarse-grained view, the arrows possibly subsume many other potentially important risk

factors within the causal paths. For example, the strength of the effect BMI→ T2D in Section 2.1

is estimated without consideration of mediators.

6.4 Model selection

In this section, we compare the proposed I-Rand with the method of difference-in-differences

(DD; Angrist and Pischke (2008)), which studies the impact of the differential effect of a treatment

on a “treatment group” versus a “control group”. Then we discuss some generalizations of the

models used for analysis in the previous sections. The following analysis explores the impact

of difference in treatment on difference in outcome (DD). For a given variable, we calculate the

difference as the value on the second visit minus the value on the first visit. In our analysis, we

set confounders (e.g., age and gender) to the values recorded at the first visits. We note two main

differences between I-Rand and DD. First, when the LCD is the treatment, all individuals are
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Algorithm 3 Difference-in-difference with data re-organization of two-point time-series without
control group

1: Input: Observed data of confounders, treatment and outcome (Xi,t, Ti,t, Yi,t) where i is the
individual’s ID and t is the state.

2: Create the “treatment” difference-in-differences matrix with Ti,1 = Ti,t=1 − Ti,t=0, Yi,1 =
Yi,t=1 − Yi,t=0, Xi,1 = Xi,t=0. Its “control” image with the following attributes: Ti,0 = 0,
Yi,t=0 = 0, Xi,0 = Xi,t=0. Form the difference-in-differences matrix as the concatenation of
the two.

3: Calculate ATE by the matching method over the concatenated matrix. Here, the estimation of
the ATE leads to E[Yi(1)|Xi]− 0 since the control set consists of only 0 valued outcomes. In
the permutation analysis on the other hand, the estimation results in a difference of the two
usual quantities.

4: for s = 1 to S do
5: Sample a binary vector of length N , where the index is the individual’s ID and the value is

the state (sampling without replacement). Selecting the corresponding subsample s as the
shuffled vector of treatment. Note that the shuffling performed is equivalent to assigning
each individual the treatment with probability 1/2 (N independent Bernoulli variables with
parameter p = 1/2). This is a strong assumption that needs to be supported by data.
However, this choice is consistent with our I-Rand algorithm and can further be adjusted to
a better choice of p;

6: Calculate ATE(s) for the shuffle s of the treatment.
7: end for
8: Calculate the p-value= 1

S

∑S
s=1 1ATE(s)>(resp. <)ATE for the one-tailed test for the null hypoth-

esis of no treatment effect.
9: Output: ATE and p-value.

LCD-takers and there is no control group. The I-Rand creates a control group by subsampling,

while difference-in-differences relies on the null hypothesis of “no effect.” Second, when BMI

is the treatment, I-Rand subsamples one of the two observations for each individual to avoid

two types of unintended treatments. In DD, such subsampling is unnecessary since we have one

observation for each individual. We perform two experiments: a decrease in BMI (i.e., ∆BMI <

0), or a change in BMI in excess of a threshold (e.g., ∆BMI < median of |∆BMIi|). The latter

choice of treatment splits the data into two equally-sized subgroups of treatment and control, and it

is more robust than the first choice of treatment since the BMI of almost all individuals decreased

between visits. For BMI with a median threshold, the causal effect for individual i has the usual

estimation formula, i.e., ATE = E|τ(Xi)], where τ(Xi) = E[Yi(1)|Xi] − E[Yi(0)|Xi]. In the

case of LCD and decrease of BMI, the causal effect reduces to τ(Xi) = E[Yi(1)|Xi]. Note that
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the design of the experiment however, breaches the non-zero probability of receiving treatment

assumption, i.e., 0 < P (T = 1|X) < 1, which is required by the causal effect estimation. As a

matter of fact, all individuals are treatment-takers between the two observation dates. Hence, we

add a hypothetical control group that does not take the treatment and has a 0 valued outcome. To

estimate the causal effect for the latter that is applicable to permutation analysis, we implement

Algorithm 3 for difference-in-differences analysis.

Figure 13: Bar plot of ATE for LCD as the treatment for the difference-in-differences anal-
ysis without threshold (we omit the p-values as they are all under a 1% significance level).
Each row corresponds to a causal diagram:“Outcome | Treatment; Confounders”. For example,
“SBP—LCD; Gender, Age, BMI” represents the causal diagram with the systolic blood pressure
as the outcome, and gender, age, BMI as the confounders, and LCD as the treatment.

We summarize the results in Figures 13, 14, and 15. For a change in diet (i.e., ∆LCD = 1),

we find that LCD diet significantly impacts the change in T2D status and CVD risk factors. The

same applies to the first choice of treatment for BMI (i.e., ∆ BMI < 0). For the second choice

of treatment for BMI (i.e., ∆ BMI < Threshold), we find that a change in BMI has a significant

causal effect on a change in T2D even when controlling for the BMI categories. Moreover, a

decrease in BMI leads to an increase in HDL (ATE= 3.983, p-value< 4.6% without controlling

for BMI categories and ATE= 4.275, p-value< 2.9% when controlling for BMI categories).

The limitation of the difference-in-differences in our dataset is that we do not have enough

data for longitudinal analysis. As a result, variance across samples (noise) could be much larger

than the variance within samples (signal). On the other hand, the results based on the difference-
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Figure 14: Bar plot of ATE for BMI as the treatment for difference-in-differences analysis without
threshold (we omit the p-values as they are all under a 1% significance level). Each row corre-
sponds to a causal diagram:“Outcome | Treatment; Confounders”. For example, “SBP | BMI;
Gender, Age” represents the causal diagram with the systolic blood pressure as outcome, gender
and age as confounders, and BMI as treatment.

Figure 15: Bar plot of ATE (left) and p-value (right) for BMI as the treatment for the
difference-in-differences analysis with threshold (median). Each row corresponds to a causal
diagram:“Outcome | Treatment; Confounders”. For example, “SBP | BMI; Gender, Age” repre-
sents the causal diagram with the systolic blood pressure as the outcome, and gender, age as the
confounders, and BMI as the treatment.

in-differences method with only two time points are always subject to biases (Raudenbush, 2001).

There are different ways to generalize our linear models to nonlinear models. For example,
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it could be of interest to ask whether or not BMI above a certain threshold has a causal effect on

CVD or T2D. Moreover, the linear models we used in this article cannot represent interactions

among variables. It could also be of interest to assess the direct and indirect effects allowing for

interactions between treatments and mediators (Pearl, 2001).
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A Matching Methods

A.1 Distance measure based on propensity score

We need to determine which confounders to include for matching and to combine those variables
into one measure. Under the strong ignorability assumption, it is necessary to include all variables
known to be related to both treatment assignment and the outcome in the matching procedure
(Heckman et al., 1998; Rubin and Thomas, 1996). There is little cost to including variables
that are not associated with treatment assignment. However, excluding a potentially important
confounder can yield a large bias. In the other direction, variables such as colliders and mediators
that may have been affected by the treatment should be excluding from the matching process, and
should be used instead in the analysis model for outcomes (Greenland, 2003).
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The propensity score, a popular measure to combine confounders, is defined for each individ-
ual i as the probability of receiving the treatment, given the observed confounders (Rosenbaum
and Rubin, 1983):

ei(Xi) = P(Ti = 1|Xi).

The propensity score has two well-known properties. First, a propensity score is a balancing
score in the sense that at any level of the propensity score, the distributions of the confounders
defining the propensity score in the treated and control groups are the same. Second, the treatment
assignment is ignorable given the propensity score if treatment assignment is ignorable given the
confounders. Hence, it is reasonable to match individuals on the basis of propensity score rather
than the vector of multivariate confounders.

These properties imply that the difference in means for the outcomes between treated and
control individuals with a particular propensity score value is an unbiased estimate of the treat-
ment effect at that propensity score value. The distance between individuals i and j through the
propensity score isDij = |ei−ej|. In practice, propensity scores are unknown and we use logistic
regression to estimate eis for the case studies in Sections 5 and 4.

A.2 Propensity score matching

We apply the propensity score matching algorithm for our case studies in Sections 5 and 4. The
simple weighted difference in means estimate for the ATE is given in the step 2 of the algorithm
in Section 2.3.

We use matching with replacement to minimize the propensity score distance between the
matched control individuals and the treatment individuals. This reduces bias, even if an individual
in the control group is matched more than once. As a comparison, matching without replacement
is sensitive to the order in which individuals are matched. This method may force us to match
individuals whose propensity scores are far apart, leading to an increase in bias. Further, We also
use the single-nearest-neighbor matching, which selects a single individual in the control group
whose propensity scores are closest to those of the treated individual. Single-nearest-neighbor
matching can be extended to k ≥ 1 nearest-neighbors.

In addition to the simple weighted difference in means for estimating the treatment effect in
the algorithm in Section 2.3, one can also use a weighted regression, which takes account of the
number of times a control is matched (Dehejia and Wahba, 2002).

A.3 Model diagnosis

The diagnosis of the quality of the resulting matched samples is an important step in using match-
ing methods. In particular, we need to assess the covariate balance in terms of the similarity of the
empirical distributions of the full set of confounders in the matched treated and control groups.
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Ideally, we want the empirical distribution of XT=1 in the treatment group is the same as the em-
pirical distribution of XT=0 in control treatment group . That is, the treatment is unrelated to the
confounders.

In our case studies in Sections 5 and 4, we apply the standardized difference in means as a bal-
ance measure: (X̄T=1 − X̄T=0)/σT=1, where X̄T=1 and X̄T=0 are sample means of the treatment
and control groups, and σT=1 is the sample standard deviation for the treatment group. We calcu-
late the standardized difference in means for each covariate and use the (X̄T=1−X̄T=0)/σt < 0.25

as a criteria to check that the matching gives balanced samples (Rubin, 2001).

B Proofs

B.1 Proof of Theorem 1

Proof. We claim that under the LCD-like treatment design (3), it is not possible to obtain an
accurate estimate of the treatment effect (6) if the parametric functional forms of f(·) and g(·) in
(2) are unknown. This claim is explained as follows. Under the null hypothesis that there is no
trend in the control group {i|Ti(t = 1) = 0, Ti(t = 0) = 0}, i.e.,

EX [E[Yi(t = 1)|Ti(t = 1) = 0, Ti(t = 0) = 0, X]] = EX [E[Yi(t = 0)|Ti(t = 1) = 0, Ti(t = 0) = 0, X]],

(12)
then the difference-in-differences leads to an estimate to the following effect:

EX [E[Yi(t = 1)− Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0, X]]

= f(1)− f(0) + E[g(Xi(t = 1))]− E[g(Xi(t = 0))].
(13)

Here f(1) − f(0) corresponds to the treatment effect in (6) and E[g(Xi,1)] − E[g(Xi,0)] is the
nuisance effect from the confounder. If the parametric functional forms of f(·) or g(·) is unknown,
it is easy to show that for g′(·) ≡ 2g(·), the treatment effect f ′(1) − f ′(0) defined as follows
satisfies (13):

f ′(1)− f ′(0) ≡ EX [E[Yi(t = 1)− Yi(t = 0)|Ti(t = 1) = 1, Ti(t = 0) = 0, X]]

− {E[g′(Xi(t = 1))]− E[g′(Xi(t = 0))]}.

However, f ′(1) − f ′(0) 6= f(1) − f(0). Hence, the treatment effect f(1) − f(0) is unidentiable
using difference-in-differences under the two-point structure (3).

B.2 Multiple treatment versions

Theorem 2. Suppose that for each individual, there is a fixed version that would have been re-
ceived, had the individual been given T ∈ {0, 1}. Then if Figure 16 is a causal graph, the average
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treatment effect is equivalent to

ATE∗ ≡ EX [E[Y |T = 1, X]]− EX [E[Y |T = 0, X]]. (14)

The I-Rand Algorithm 2 gives an unbiased estimate of ATE∗ in (14) if the estimator ATE(m) in (1)
is unbiased for ATE.

Figure 16: Causal graph illustrating relationship between treatment T , version of T , outcome Y ,
and X consists of observed and unobserved confounders.

Proof. Since there is a fixed version of treatment that an individual would have been received if
the individual has been given T ∈ {0, 1}, we have

E[Y (T )] = EX [E[Y (T )|X]] = EX [E[Y (T )|T,X]].

where the last step is due to the fact that given Figure 16, T is ignorable relative to outcome Y ,
conditional on X (Pearl, 2009). Denote by KT (T ) the counterfactual variable of which version of
treatment that an individual would have been received if the individual has been given T ∈ {0, 1}.
Then

EX [E[Y (T )|T,X]] = EX [E[Y (T,KT (T ))|T,X]]

= EkT ,X [E[Y (T, kT )|T,KT (T ) = kT , X]]

= EkT ,X [E[Y (T, kT )|T,KT = kT , X]]

= EkT ,X [E[Y |T,KT = kT , X]]

= EX [E[Y |T,X]].

where the third step is by the assumption that there is a fixed version of treatment that an individual
would have been received, and the third step is by the consistency for Y . Therefore, E[Y (T )] =

EX [E[Y |T,X]] and we obtain the desired the average treatment effect

EX [E[Y |T = 1, X]]− EX [E[Y |T = 0, X]].
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Suppose that X = (X1, X2), where X1 consists of observed confounders and X2 represents
unobserved confounders. Then

EX [E[Y |T = 1, X]]− EX [E[Y |T = 0, X]] =
∑
x2

ATE(X2 = x2)P(X2 = x2).

where

ATE(X2 = x2) = EX1 [E[Y |T = 1, X1, X2 = x2]]− EX1 [E[Y |T = 0, X1, X2 = x2]].

By the sampling strategy of the I-Rand estimator (1) yields that P(X2 = x2) = 2−N and ATE(m)

is a matching method estimator for ATE(X2 = x2). This completes the proof.

C Variables Definition and Summary Statistics of Data Used
in the Paper

count mean std min 25% 50% 75% max
LCD Variable

Gender 256 0.590 0.493 0.000 0.000 1.000 1.000 1.000
Age 256 61.574 12.111 23.000 53.000 60.000 71.000 91.000
Height 75 1.706 0.092 1.473 1.625 1.720 1.770 1.900
Weight 251 96.160 18.621 55.300 83.700 95.000 107.000 159.000
BMI 66 33.887 6.071 21.660 29.890 33.495 36.980 57.100

0 T2D 256 1.281 0.811 0.000 1.000 2.000 2.000 2.000
HbA1c/ mmol/mol 202 61.376 20.652 37.000 45.000 54.500 71.000 135.000
TBC 176 5.314 1.302 2.500 4.385 5.200 6.225 9.300
HDL 195 1.280 0.421 0.600 1.000 1.200 1.450 3.500
SBP 171 143.503 15.476 114.000 132.000 142.000 152.000 223.000

Gender 256 0.590 0.493 0.000 0.000 1.000 1.000 1.000
Age 256 63.424 12.387 23.167 54.750 62.750 73.500 91.500
Height 75 1.706 0.092 1.473 1.625 1.720 1.770 1.900
Weight 251 87.070 17.352 51.000 75.000 84.400 97.100 140.000
BMI 65 30.356 5.923 19.240 27.040 29.270 32.470 53.620

1 T2D 256 0.719 0.867 0.000 0.000 0.000 2.000 2.000
HbA1c/ mmol/mol 201 45.925 9.319 32.000 40.000 43.000 50.000 84.000
TBC 174 4.892 1.247 2.400 4.025 4.700 5.700 8.800
HDL 189 1.413 0.542 0.700 1.090 1.340 1.610 4.900
SBP 170 132.100 11.021 108.000 125.000 132.000 139.500 170.000
months 256 22.199 17.456 1.000 8.000 19.000 32.000 84.000

Table 6: Summary statistics of variables collected in the study. LCD=0 corresponds to data col-
lected at the first visit and LCD=1 for data collected at the second visit.

Gender: a binary variable with “female”= 0 and “male” = 1.
Age: the age of the participants at their visit.
BMI: the body mass index of the participants. Here BMI is defined as the ratio of the weight
squared height. We note that although recent studies on nutrition suggest that different obesity
metrics can lead to different relationships between obesity to CVD risk, the consensus is that
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compared to BMI measures the more refined modalities (e.g., waist circumference, waist-to-hip
ratio, waist-to-height ratio) do not add significantly to the BMI assessment from a clinical per-
spective (Gelber et al., 2008).
T2D: a three-states variable to inform of the type-2 diabetes status; 0 for non-diabetic, 1 for pre-
diabetic and 2 for diabetic.
HbA1c: the glycated haemoglobin of the participants. It develops when haemoglobi, a protein
within red blood cells that carries oxygen throughout the body, joins with glucose in the blood,
becoming ‘glycated’. This measure allows to determine the T2D status.
LCD: a binary variable which equals to 1 only if the participant is suggested to follow a low-
carbohydrate diet.
TBC: the total blood cholesterol level of the participants. It is a measurement of certain elements
in the blood, including the amount of high- and low-density lipoprotein cholesterol (HDL and
LDL) in a person’s blood.
HDL: the high-density lipoprotein cholesterol of the participants. The HDL is the well-behaved
”good cholesterol.” This friendly scavenger cruises the bloodstream. As it does, it removes harm-
ful “bad” cholesterol from where it doesn’t belong. A high HDL level reduces the risk for heart
disease.
SBP: the systolic blood pressure of the participants. The SBP indicates how much pressure the
blood is exerting against your artery walls when the heart beats. It is one of the CVD risk factors
used to calculate the Reynolds risk score.
Months: the number of months between the two visits of participants to the clinic (end date –
start date).

D Supplementary Numerical Results

D.1 Treatment effect of LCD on T2D

We provide details on assessing the significance of the reduction of the risk of T2D due to the
LCD using the I-Rand algorithm, where the causal diagram is shown in Figure 1. We show the
distribution of ATEs for the subsampling step in Figure 17 and the distribution of the p-value from
the permutation test under the null hypothesis of no causal effect (ATE = 0) in Figure 18. The
distributions confirm the consistency of these results across the subsamples.

D.2 Mediation analysis for the effect of LCD on CVD

We provide details on assessing the significance of reduction in Reynolds risk score due to the
low-carbohydrate using the I-Rand algorithm. The causal diagrams are shown in Figure 6 for the
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Figure 17: Distribution of the ATE of the LCD on T2D in Figure 1. The results are based on 500
subsamples.

Figure 18: Distribution of p-values of the ATE of the LCD on T2D in Figure 1. The results are
based on 500 subsamples.

direct and indirect effects. We show the distribution of ATE for the subsampling step in Figure
19 and the distribution of the p-values from the permutation test under the null hypothesis of no
causal effect (ATE = 0) in Figure 20, for the total effect (sum of direct and indirect effect); and
correspondingly, Figures 21 and 22, for the direct effect. The distributions confirm the consistency
of these results across the subsamples.
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Figure 19: Distribution of total effect of the LCD on the Reynold risk score in Figure 6. The
results are from 500 subsamples.

Figure 20: Distribution of p-values the total effect of the LCD on the Reynolds risk score in Figure
6. The results are based on 500 subsamples.

D.3 Causal effect of obesity on T2D

We provide additional details on testing the significance of obesity as a cause of T2D, where
the causal diagram is shown in Figure 9. In particular, we show the distribution of ATE for the
subsampling step in Figure 23 and the distribution of p-values from the permutation test under
the null hypothesis of no causal effect (ATE = 0) in Figure 24, using the I-Rand algorithm. The
distributions confirm the consistency of these results across the subsamples.
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Figure 21: Distribution of the direct effect of the LCD on the Reynolds risk score in Figure 6. The
results are based on 500 subsamples.

Figure 22: Distribution of p-values of the direct effect of the LCD on the Reynold risk score in
Figure 6. The results are based on 500 subsamples.

D.4 Mediation analysis for the effect of obesity on CVD

We provide results on testing the significance of. the effect of obesity on high systolic blood pres-
sure, according to the proposed I-Rand algorithm. The causal diagrams are shown in Figure 11
for the direct and indirect effects. In particular, we show the distribution of ATE for the subsam-
pling step in Figure 25 and the distribution of the p-value from the permutation test under the null
hypothesis of no causal effect (ATE = 0) in Figure 26, for the total effect; and correspondingly,
Figures 27 and 28, for the direct effect. The distributions confirm the causal effect of the obesity
to CVD consistently across the subsamples.
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Figure 23: Distributions of ATE of obesity on T2D in Figure 9. The results are based on 500
subsamples with different BMI splits.

Figure 24: Distributions of p-values of the ATE of obesity on T2D in Figure 9. The results are
based on 500 subsamples with different BMI splits.
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Figure 25: Distributions of the total effect of obesity on the systolic blood pressure in Figure 11.
The results are based on 500 subsamples with different BMI splits.

Figure 26: Distributions of p-values of the total effect of obesity on the systolic blood pressure in
Figure 11. The results are based on 500 subsamples with different BMI splits.
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Figure 27: Distributions of the direct effect of obesity on the systolic blood pressure in Figure 11.
The results are based on 500 subsamples with different BMI splits.

Figure 28: Distribution of p-values of the direct effect of obesity on the systolic blood pressure in
Figure 11. The results are based on 500 subsamples with different BMI splits.
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