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Abstract

We identify and correct excess dispersion in the leading eigenvector of
a sample covariance matrix, when the number of variables vastly ex-
ceeds the number of observations. Our correction is data-driven, and
it materially diminishes the substantial impact of estimation error on
weights and risk forecasts of minimum variance portfolios. We quan-
tify that impact with a novel metric, the optimization bias, which has
a positive lower bound prior to correction and tends to zero almost
surely after correction. The sample eigenvalues are used to correct
excess dispersion in the leading eigenvector. However, the sample
eigenvalues have no direct bearing on large minimum variance port-
folios: correcting the sample eigenvalues to their population counter-
parts does nothing to diminish the optimization bias.
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1. Introduction
There are countless instances throughout the physical, social and data

sciences where covariance matrices of large random vectors must be esti-
mated from small samples. In this article, we show that the sampling error
inherent in this process leads to excess dispersion of the leading eigenvector,
and we provide a data-driven adjustment that corrects the bias. The moti-
vation for our work comes from quantitative finance, where vast numbers
of securities and non-stationarity make large, noisy covariance matrices the
norm. These matrices are routinely used to construct portfolios with mean-
variance optimization, which overweights securities whose volatilities and
correlations with other securities are underforecast. The embedded sam-
pling error tricks the optimizer into constructing distorted and highly inef-
ficient portfolios. This practical problem is the starting point for the theory
developed in this article.

Simulation in a one-factor PCA model reveals that errors in security
weights and risk forecasts of the simplest mean-variance optimized port-
folio, minimum variance, are driven by errors in the leading eigenvector
and not in its associated eigenvalue (or variance). In this experiment, com-
municated to us by Stephen Bianchi, errors in weights and risk forecasts
of an estimated minimum variance portfolios are not diminished when the
estimated leading eigenvalue is replaced by its population counterpart. In
contrast, replacing the estimated leading eigenvector with its counterpart
(and leaving the estimated eigenvalue alone) substantially improves esti-
mates of both weights and risk forecasts for a minimum variance portfolio.
The strength of this experiment lies in well-known empirical facts: a single,
positive (or market-like) factor drives substantial return and risk in equity
markets, and that this factor determines, to a great extent, the weights of
mean-variance optimized portfolios.

Further investigation identifies the specific source of the problem as
excess dispersion in the entries of the estimated leading eigenvector. To
develop some intuition for why this is the case, consider a market where
correlations are driven by a single factor, and suppose all security expo-
sures to that factor are identical. With probability one, a PCA estimate of
the leading factor will have higher dispersion, or coefficient of variation,
of its entries. Decreasing the dispersion mitigates the estimation error. A
fresh perspective and some non-trivial analysis are required to mathemat-
ically articulate and verify these effects in a general setting, and we carry
that out in this paper. We remove just the right amount of dispersion re-
quired to produce minimum variance portfolios with good properties. We
do not correct all of the estimation error. Rather, we correct estimation er-
ror stemming from excess dispersion in the leading estimated eigenvector.
This turns out to be sufficient to mitigate distortion and inefficiency in an
optimized minimum variance portfolio.

We frame our results in the context of a single-factor model. This en-
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ables us to highlight our novel approach to covariance matrix estimation in
a setting that incorporates the most salient features of equity markets and
minimizes irrelevant complications. We show that shrinking an estimate of
the leading eigenvector toward the unique, positive dispersionless vector on
the sphere by a precisely defined amount materially improves the accuracy
of the weights of minimum variance portfolios and their risk forecasts. Our
analysis sheds light on previously unknown aspects of how sampling er-
ror corrupts an estimated covariance matrix, and it has deep connections to
quadratic optimization.

1.1. Our contributions
We identify and correct excess dispersion in the leading eigenvector of

a sample covariance matrix, when the number of variables vastly exceeds
the number of observations. Our analysis leads to a number of surprising
results, and also to a method that substantially improves the accuracy of
weights and risk forecasts for estimated minimum variance portfolios.

The centerpiece of our results is the optimization bias E, which drives
both the misspecification of a minimum variance portfolio and errors in its
risk forecasts. The optimization bias depends on the inner product between
the true leading eigenvector b and an estimate of it, as well along inner
products of the true and estimated eigenvector with the unique, positive,
dispersionless vector z on the sphere. The first surprise is that E has no
dependence on estimated eigenvalues. In other words, you can get the
eigenvalue very wrong and still get the minimum variance portfolio and its
risk forecast very right.

For the PCA estimate h of the leading eigenvector b, Ep(h) is bounded
away from zero almost surely as p ↑ ∞, so that errors in estimated mini-
mum variance portfolio weights and risk forecasts have a hard lower bound.
For the population eigenvector b, the optimization bias Ep(b) is zero of
course. The second surprise is the existence of a vector hτ∗ , determined by
the spherical law of cosines along the geodesic between h and z, for which
Ep(hτ∗) = 0. In other words, hτ∗ zeroes out an important source of estima-
tion error in a minimum variance portfolio even though the fixed number of
observations in our sample prevents hτ∗ from being a consistent estimator
of the population eigenvector b.

The vector hτ∗ is defined explicitly in terms of the population eigenvec-
tor b. However, we obtain a data-driven estimate hτ of hτ∗ , and show that
the optimization bias Ep(hτ) tends to 0 almost surely as p ↑ ∞.

Proofs of our results rely on delicate arguments concerning the asymp-
totic behavior of sample eigenvectors. The third surprise is that our argu-
ments are constructed entirely with tools from classical probability theory:
strong laws of large numbers and central limit theorems. This emphasizes
unexpected parallels between the high p low n regime, where the number of
variables vastly exceeds the number of observations, and classical statistics,
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where the number of observations vastly exceeds the number of variables.

1.2. Related literature
Sampling error has been an issue for investors since 1952, when Harry

Markowitz transformed finance by framing portfolio construction as a trade-
off between mean or expected return and its variance. Markowitz’s mean-
variance optimal portfolios form an efficient frontier, which is the basis
of theoretical breakthroughs as fundamental as the Capital Asset Pricing
Model (CAPM) and Arbitrage Pricing Theory (APT), as well as practical
innovations as impactful as Exchange Traded Funds (ETFs). Since we do
not observe efficient portfolios, we estimate them from data, so sampling
error permeates every aspect of finance. The seminal paper is Markowitz
(1952). See Treynor (1962), Sharpe (1964), Lintner (1965b), Lintner (1965a)
and Mossin (1966) for the Capital Asset Pricing Model and Ross (1976) for
the Arbitrage Pricing Theory.

The impact of sampling error on efficient frontier portfolios has been
investigated thoroughly in simulation and empirical settings. For example,
see Jobson & Korkie (1980), Britten-Jones (1999), Bianchi, Goldberg & Rosen-
berg (2017) and the references therein. DeMiguel, Garlappi & Uppal (2007)
compare a variety of methods for mitigating estimation error, benchmarking
against the equally weighted portfolio in out-of-sample tests. They conclude
that unreasonably long estimation windows are required for current meth-
ods to consistently outperform the benchmark. We briefly mention a few
important references that do not overlap at all with out work. Michaud &
Michaud (2008) recommends the use of bootstrap resampling. Lai, Xing &
Chen (2011) reformulate the problem of finding the mean-variance efficient
frontier as one of stochastic optimization with unknown moments. Gold-
farb & Iyengar (2003) develop a robust optimization procedure to determine
the efficient frontier by embedding a factor structure in the constraint set.

Early work on estimation error and the efficient frontier focused on
Bayesian approaches. Vasicek (1973) and Frost & Savarino (1986) were
perhaps the first to impose informative priors on the model parameters.
Prior work analyzed diffuse priors and was shown to be inefficient (Frost
& Savarino 1986). The latter, instead, presumes all stocks are identical and
have the same correlations. Vasicek (1973) specifies a normal prior on the
cross-sectional market betas (leading factor). More realistic priors incorpo-
rating multi-factor modeling are analyzed in Pástor (2000) (sample mean)
and Gillen (2014) (sample covariance). Formulae for Bayes’s estimates of the
return mean and covariance matrix based on normal and inverted Wishart
priors may be found in Lai & Xing (2008, Chapter 4, Section 4.4.1).

A related approach to the Bayesian framework is that of shrinkage or
regularization of the sample covariance matrix. In the Bayesian setup, sam-
ple estimates are “shrunk” toward the prior (Lai & Xing 2008). Shrinkage
methods have been proposed in contexts where little underlying structure
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is present (Bickel & Levina 2008) as well as those in which a factor or other
correlation structure is presumed to exist (e.g. Ledoit & Wolf (2003), Ledoit
& Wolf (2004), Fan, Liao & Mincheva (2013) and Bun, Bouchaud & Potters
(2016)). Perhaps surprisingly, shrinkage methods turn out to be related to
placing constraints on the portfolio weights in the Markowitz optimization.
Jagannathan & Ma (2003) show that imposing a positivity constraint typi-
cally shrinks the large entries of the sample covariance downward. This is
generalized and analyzed further in DeMiguel, Garlappi, Nogales & Uppal
(2009).

Factor models mitigate the impact of sampling error on an estimated
covariance matrix by reducing the number of required parameters. In-
vestors typically rely on fundamental models, where the factors (or correla-
tion drivers) are identified in advance. Financial practitioners typically use
the fundamental factor models developed in Sharpe (1963) and Rosenberg
(1974), in which factor exposures are specified from observable data and
factor returns are estimated with cross-sectional regression. Finance aca-
demics favor the dual construction of factor models popularized in Fama
& French (1992), in which factor returns are observed and exposures are
estimated by time series regression. Latent factor models, in which both
exposures and returns are extracted from are used everywhere in science.
TIn a financial context, the strengths and shortcomings of fundamental and
latent factor models are complementary. Fundamental models are intuitive
but prone to miss emerging return sources. Latent models are prone to false
positives and can be hard to interpret, but they have the capacity to identify
new sources of return. Further details are in Connor (1995).

Principal component analysis (PCA) has been the dominant technique
for extracting latent factors from observed security returns since Ross (1976).
Its use in a high dimensional low sample size (HL) regime, where the num-
ber of variables vastly exceeds the number of observations, is justified by
Chamberlain & Rothschild (1983), as the population eigenvectors approach
the true factors under a mild set of assumptions. PCA is applied in the HL
regime in the pioneering work by Connor & Korajczyk (1986) and Connor &
Korajczyk (1988). In this regime, sample eigenvectors exhibit behavior that
can be counterintuitive, as discussed in Hall, Marron & Neeman (2005).
Recent analysis of the HL regime is in (Wang & Fan 2017).

In the HL regime, the largest eigenvalues of the covariance matrix grow
linearly in tits dimension. This is not the traditional random matrix theory,
in which the number of variables grows in proportion to the number of ob-
servations. The seminal paper in this HH regime is Marchenko & Pastur
(1967), and an extensive treatment of the subject is Bai & Silverstein (2010).
In the HH regime, consistency of principal component analysis (PCA) es-
timates can be established, as shown in Bai & Ng (2008). In the setting of
Markowitz portfolios, the impact of eigenvalue bias and optimal corrections
are investigated in in El Karoui et al. (2010) and El Karoui (2013). Donoho,
Gavish & Johnstone (2018) consider eigenvalue corrections in “spiked" co-
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variance matrices, which are similar to the covariance matrices we consider
(in the HL) regime in this article. Onatski (2012) extends this framework to
consider “weak” factors.

It appears that while eigenvector bias is acknowledged, direct bias cor-
rections are made only to the eigenvalues corresponding to the principal
components (e.g. Ledoit & Péché (2011) in the HH regime and and Wang &
Fan (2017) in the HL regime). Several approaches to alter the sample eigen-
vectors indirectly do exist. For example, Ledoit & Wolf (2004) shrinks a
sample covariance matrix toward a structured covariance matrix. However,
these approaches are not focused on characterizing the bias inherent to the
sample eigenvectors themselves. Some work on characterizing the behavior
of sample eigenvectors may be found in Paul (2007) and Shen, Shen, Zhu &
Marron (2016).

A stream of the portfolio construction literature considers the impact
of the shape of the leading factor on the weights of Markowitz portfolios
in general and minimum variance in particular. Green & Hollifield (1992)
shows that the dispersion of the leading factor exposures drives the extreme
positions in the portfolio composition. Minimum variance is identified in
Markowitz (1952, footnote 9) as the efficient portfolio for which security
expected returns are assumed to be equal. Since that distinguished begin-
ning, minimum variance has played an important role in financial theory
and practice. As just one of many illustrations of its theoretical importance,
consider the place of minimum variance in the family of optimized port-
folios that can be constructed without reference to expected value, which
is notoriously difficult or even impossible to forecast. This family includes
risk parity and maximum diversification; see Anderson, Bianchi & Goldberg
(2012) and Clarke, De Silva & Thorley (2013) as well as references therein.
The tens or even hundreds of billions of dollars that have been invested
in ETFs on minimum variance since the financial crisis provide evidence
of its practical importance. The empirical properties of minimum variance
portfolios are studied in Clarke, De Silva & Thorley (2006), and Clarke, De
Silva & Thorley (2011) provides simple formulas for the weights of mini-
mum variance portfolios in a single-index model. Goldberg, Papanicolaou,
Shkolnik & Ulucam (2019) shows the beneficial impact of beta shrinkage on
minimum variance portfolios.

Bender, Lee, Stefek & Yao (2009), Bianchi et al. (2017), Ledoit & Wolf
(2017), Wang & Fan (2017) and Goldberg et al. (2019), and many studies
referenced in those articles use portfolio metrics such as variance or volatil-
ity forecast ratios, out-of-sample volatility and tracking error to assess the
accuracy of a covariance matrix. Tracking error is the workhorse of the fi-
nancial services industry and it is used, for example, to construct ETFs. By
definition, tracking error is the width of the distribution of the return dif-
ference between a portfolio and its benchmark. Typically, the benchmark
is taken to be a broad market index. Bianchi et al. (2017) and Goldberg
et al. (2019) use tracking error to gauge the impact of sampling error on
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optimization by measuring the width of the distribution of the return dif-
ference between portfolios constructed with population and finite sample
covariance matrices.

Finally, we note that while the notion of eigenvector shrinkage is new,
market beta shrinkage is widely used by financial practitioners. The idea
has its origins in Vasicek (1973) and Blume (1975). A detailed history is in
Goldberg et al. (2019).

2. Problem formulation
Let e = (1, . . . , 1) be the vector in Rp of all ones and denote by | · |

the Euclidian norm so that |e| = √p. Given a p × p covariance matrix
Σ = Var(Y) of returns Y ∈ Rp to p securities, we consider the following
optimization problem.

(1)
min
w∈Rp

w>Σw

e>w = 1

The solution minimizes the variance of the portfolio return over all fully
invested portfolios. In practice, the matrix Σ must be estimated from se-
curity returns data, and there is a plethora of literature documenting the
detrimental impact of estimation error on the portfolio weights computed
via (1) and related optimization problems. Our choice of (1) is guided by
the simplicity and practical importance of minimum variance and the fact
that it provides an ideal setting to illustrate the delicate tradeoffs inherent
in correcting estimation error in a covariance matrix.

2.1. The optimization bias
We adopt a framework in which the number of securities is large and

the number of observed returns is small. This arises in many practical situa-
tions. One example concerns the estimation of equity alpha and risk models
based on daily data. In such settings, typical estimation universes include
hundreds or even thousands of securities, and market non-stationarity severely
limits the available data history.

These considerations lead us to treat p as large, with the associated
asymptotics p ↑ ∞, and accept finite sample error in all estimates. We begin
by illustrating a phenomenon we term the optimization bias. Our analysis
focuses on a simple model.

For a vector β ∈ Rp and σ, δ ∈ (0, ∞), consider the covariance matrix

Σ = σ2ββ> + δ2I,(2)

where the I denotes a p× p identity matrix. This covariance model is consis-
tent with a market model which captures, in a remarkably simple manner,
the systematic and specific risk we observe in equity markets. In practice,
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the betas (β) in (2) are often taken to be security sensitivities to a cap-
weighted index. For many investors, beta is the main indicator, or even the
only indicator, of systematic risk. The σ and δ denote the volatilities of the
market and the specific (diversifiable) return.

For our analysis, we adopt a normalization to the unit sphere in Rp,
defining

b =
β

|β| and z =
e√
p

.(3)

Letting 〈x, y〉 = x>y, the projection of x ∈ Rp onto y ∈ Rp, we define

E(h) =
〈b, z〉 − 〈b, h〉〈h, z〉

1− 〈h, z〉2 |h| = 1, h ∈ Rp .(4)

We refer to E as the optimization bias, since it is arises from the interaction of
the optimization in (1) and the estimation error in the estimated covariance
matrix. To see this, consider a portfolio ŵ computed by solving (1) but after
replacing the covariance Σ by an estimate Σ̂. In particular, the triplet (β, σ, δ)
that leads to the Σ in (2) is estimated by some (β̂, σ̂, δ̂) from which an esti-
mate Σ̂ is then constructed. The true variance V2 of this estimated portfolio
ŵ is given (under the mild assumptions on (β̂, σ̂, δ̂) stated in Appendix B)
by

V2 = ŵ>Σŵ = σ2µ2(β)(1 + d2(β))E2(h) + op(5)

where the remainder op has op � 1/p, i.e., there are fixed constants c, C ∈ R

such that c/p ≤ op ≤ C/p for all p sufficiently large. In (5), the vector h =

β̂/|β̂| ∈ Rp and the µ(β) and d(β), the mean and dispersion (or coefficient
of variation) of β respectively, are defined by

µ(β) =
1
p

p

∑
i=1

βi and d2(β) =
1
p

p

∑
i=1

( βi

µ(β)
− 1
)2

.(6)

A remarkable observation is that the dependence of V2 on the estimates
of the volatilities σ and δ vanishes for p large. In fact, the sole estimated
quantity that determines the true variance V2 in (5) is h, the estimate of the
normalized betas b defined in (3). This dependence occurs through E(h)
and we note that E(b) = 0.

Note, V2 is the expected out-of-sample variance of a given estimated
portfolio ŵ, i.e., V2 = Var(Y>x | x = ŵ) as Y>x is the actual return to any
given portfolio x. Since ŵ minimizes the in-sample variance (with respect
to Σ̂), it is instructive to compare V2 in (5) to this estimated variance V̂2.
The latter (under the mild assumptions on (β̂, σ̂, δ̂) stated Appendix B) has

V̂2 = ŵ>Σ̂ŵ � 1/p .(7)
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This states that the in-sample variance of the portfolio ŵ vanishes as p
grows.

The asymptotic estimates supplied by (5) and (7) provide a first indi-
cation of how the optimization bias E is related to the investment process.
In particular, we observe that the ratio of the true variance to the estimated
variance satisfies

V2/V̂2 � pE2(h).(8)

which explodes for large p unless E2(h) tends to zero. In finite sample how-
ever, regardless of the estimation procedure, we expectE2(h) to be bounded
away from zero. Thus, the in-sample minimum variance will be severely
underestimated, for large portfolios, relative to that encountered out-of-
sample. This is because the optimization in (1) exploits the deviations of h
from the true vector b to hedge out the perceived systematic risk, yielding
a deceptively small portfolio variance. Additional portfolio metrics such as
the tracking error, which we use to measure the impact of sampling error
on portfolio weights and s asymptotically proportional to E2(h), are also
adversely affected.1

It may seem entirely impossible to remedy the dilemma posed by (8)
since in our finite sample regime, we cannot expect h to be a consistent
estimator (i.e., h cannot tend to b for which E(b) = 0). Yet, this is precisely
what we accomplish.

2.2. Model and assumptions
We consider a linear model for the excess return to p securities of the

form

Y = βX + Z,(9)

where the X ∈ R and Z ∈ Rp are random variables, while β ∈ Rp repre-
sents a constant parameter to be estimated from data that is generated from
the model.

To accommodate a forthcoming asymptotic analysis we consider the
sequences {βi}i∈N and {Zi}i∈N and write β = (β1, . . . , βp)> and Z =

(Z1, . . . , Zp)> for the vectors in (9) (with dimension p implied from con-
text). All random variables are defined on a common probability space
equipped with an expectation E, variance Var and covariance Cov opera-
tors, all with respect to a probability measure P.

Assumption 2.1. For finite σ, δ > 0, we have Var(X) = σ2 and every Var(Zi) =
δ2. Furthermore, X 6= 0 almost surely and every Cov(X, Zi) = E(X) = E(Zi) =
0.

1See Goldberg et al. (2019) for details.
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The generating process based on (9), under Assumption 2.1, is called a
single-index or “market model.”2 The systematic component βX is the sole
driver of correlation in the security return Y, and the specific component of
return Z diversifies away in large portfolios. While it is common to include
additional drivers of correlation, they are not relevant to minimum variance
portfolios (see, Clarke et al. (2011) and Goldberg et al. (2019)). Model (9)
also provides the simplest and most parsimonious means to capture the
empirically observed systematic and specific return components.3 It allows
us to isolate the profound influence of the leading factor β on portfolio
construction without the the distraction of less important effects.

Our analysis adopts an asymptotic regime wherein the number obser-
vations n of the return Y are finite (and fixed) while the number of securities
p grows large. This corresponds to the high dimension and low sample size
(HL) setting, which is relevant to modern applications involving large data
sets. Our assumptions below are concerned with the applicability of the HL
regime to financial data and the technical conditions that are required for
our analysis in Section 3 and Section 4.

Let µp(β) = µ(β) and dp(β) = d(β) denote the mean and dispersion
of β as defined in (6) with the subscript p denoting the dependence on the
dimension.

Assumption 2.2. The sequence {βi}i∈N is such that the {µp(β)}p∈N and {dp(β)}p∈N

converge to the limits µ∞(β) ∈ (0, ∞) and d∞(β) ∈ (0, ∞) respectively as p ↑ ∞.

Assumption 2.2 imposes regularity on the sequence {βi}i∈N in order to
simplify the statements of the theoretical results. The requirement that the
limit µ∞(β) is positive is without loss of generality, i.e., the {βi}i∈N may
always be negated to ensure the limit has a positive sign, while simultane-
ously negating the return X. This results in no change to the model (9) nor
to the covariance matrix Σ in (2).

We require further assumptions on the {Zi}i∈N and on the temporal
correlation of their realizations. Let Zj = (Z1

j , . . . , Zp
j ) ∈ Rp be the ran-

dom variable equal in law to Z ∈ Rp so that Yj = βXj + Zj for Xj the jth
realization of X.

Assumption 2.3. The random variables {Zi}i∈N are pairwise independent and
identically distributed and moreover, Cov(Zi

j, Zi
k) = 0 for all i ∈ N and every

j 6= k.

2The market model is also the standard, one-factor model that, under Assumption
2.1, yields to the theoretical requirements of estimation procedures such as principal
component analysis (PCA) (Jolliffe, Trendafilov & Uddin 2003). Note, for example, that
Var(Y) = Σ is of the form in (2).

3The market model as developed in Sharpe (1963) facilitates the efficient implementation
of mean-variance portfolio construction (Markowitz 1952) via the critical line algorithm
(Markowitz 1956).
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Assumption 2.3 may be relaxed to various forms of weak dependence
(replacing pairwise independence) across the securities and mixing condi-
tions (allowing for correlation) in time. This is evident from the proofs of
the main results in Appendix A. We do not pursue such extensions, fo-
cusing instead on introducing the concept of the dispersion bias and its
relationship to minimum variance portfolios.

We discuss the realism of Assumption 2.3 in the context of the tem-
poral correlation and non-stationarity of financial returns. For example,
market microstructure is evident in the time-series of returns at horizons of
fractions of a section. Our focus is primarily on daily and even lower fre-
quencies for which temporal correlation may not be a concern.4 Moreover,
Assumption 2.3 removes the temporal correlation from the specific return
only, leaving the market return X and ultimately the security return Y to
be potentially correlated in time. With respect to stationarity, returns do
exhibit volatility regimes, indicating that long histories may not be relevant
to current forecasts. As a consequence, risk estimates that rely on historical
returns are often based on short histories. The length of the applicable his-
tory varies with analysis date and data frequency, and it also depends on
the application. This underscores the importance of the asymptotic regime
(HL) that we adopt, i.e., when the number of securities p vastly exceeds n,
the number of observations.

3. Dispersion bias
Let Y denote the p× n data matrix of realized security returns, i.e., the

matrix whose jth column is Yj ∈ Rp. We denote by s2
p the largest eigenvalue

of

S = YY>/n,(10)

the sample covariance matrix of the returns. Since b in (3) is the eigenvector
of Σ in (2) with the largest eigenvalue, a natural estimate of b is the corre-
sponding sample eigenvector. To this end, we take the following definition
for the estimate h of b.

h ∈ Rp : Sh = s2
p h , |h| = 1, µp(h) ≥ 0.(11)

Note that the condition on µp(h) = 1
p ∑

p
i=1 hi is without loss of generality,

as an h with µp(h) < 0 can always be negated preserving the remaining
requirements. This convention is adopted for consistency with Assumption
2.2 (c.f., µ∞(β) > 0).5

The relative gap between s2
p and the average of the remaining nonzero

eigenvalues of S, denoted by `2
p, plays an important role in our analysis.

4In a compendium of stylized facts about financial returns, Cont (2001) argues that
temporal dependence is not an important consideration at a daily horizon.

5Note, h is not directly comparable to β in the sense that h estimates b = β/|β|.
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Define,

ψp =

√
s2

p − `2
p

s2
p

.(12)

To highlight the dependence on p, we write 〈x, y〉p = 〈x, y〉 = x>y
for any x, y ∈ Rp and let 〈x, y〉∞ = limp↑∞〈x, y〉p provided that the limit
exists. The following result characterizes the bias in a p-dimensional sample
eigenvector h that estimates its population counterpart b for p large with
respect to the z in (3).

Theorem 3.1. Fix n ≥ 2 and suppose Assumptions 2.1, 2.2 and 2.3 hold. Then,

〈h, z〉∞ = 〈h, b〉∞ 〈b, z〉∞ and 〈h, b〉∞ = ψ∞ ∈ (0, 1)(13)

almost surely and ψ∞ = limp↑∞ ψp is a nondegenerate random variable almost
surely.

The proof of Theorem 3.1 is deferred to Appendix A.

Remark 3.2. The (deterministic) limit 〈b, z〉∞ exists and is in (0, 1) under As-
sumption 2.2. This is easily seen from the calculation in Appendix C which shows
that

〈b, z〉2p =
1

1 + d2
p(β)

→ 1
1 + d2

∞(β)
∈ (0, 1) as p ↑ ∞ .

since dp(β) is assumed to converge to d∞(β) ∈ (0, 1) as part of Assumption 2.2.
This confirms the relation in (13) is not trivial (i.e., 〈h, z〉p and 〈b, z〉p converge to
zero).

Remark 3.3. The asymptotic angle 〈h, b〉∞ between the sample eigenvector h and
its population counterpart b has been studied in Shen et al. (2016) and elsewhere.
Our result differs in three respects from these prior works. First, the proof leverages
the structure of the factor model in Section 2.2 and consequently uses different
techniques. Second, our characterization of 〈h, b〉∞ is in terms of the limit of ψp
which may be computed from the observed returns data Y. This facilitates the
correction for the bias in Section 4. Third, an expression for 〈h, b〉∞ alone does not
point to a correction, as bias has to be characterized with respect to some known
vector. In our case, it is z.

Remark 3.4. Numerical evidence suggests this dispersion bias phenomenon con-
tinues to hold under a much weaker set of conditions than those of Assumptions
2.1–2.3.

We refer to the systematic error identified by Theorem 3.1 as the disper-
sion bias (of a sample eigenvector) for the following reason. The dispersion
dp(h) of h has

d2
p(h) =

1
p

p

∑
i=1

( hi

µp(h)
− 1
)2

=
1− 〈h, z〉2p
〈h, z〉2p

(14)
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by a calculation similar to that of Remark 3.2 (see Appendix C). Theorem
3.1 implies that 〈b, z〉p > 〈h, z〉p with high probability (w.h.p.)6 in p. Conse-
quently, for p large, dp(h) typically exceeds the dispersion dp(b) = dp(β) >
0 of b, since

d2
p(h) =

1− 〈h, z〉2p
〈h, z〉2p

>
1− 〈b, z〉2p
〈b, z〉2p

= d2
p(b) w.h.p. in p.(15)

More specifically, we have the following corollary of Theorem 3.1 which
specifies (asymptotically) the amount by which h is overly dispersed relative
to b.

Corollary 3.5. Fix n ≥ 2 and suppose Assumptions 2.1, 2.2 and 2.3 hold. Then,

d2
∞(h) =

1− ψ2
∞

〈h, z〉2∞
+ d2

∞(b)(16)

almost surely where d2
∞(h) = limp↑∞ d2

p(h) and d∞(β) = d∞(b).

Proof.This is a consequence of equations (13) and (14). �
The characterization of the dispersion bias in the leading eigenvector

of the sample return covariance matrix has significant implications for PCA
estimates of optimized portfolios. In particular, recalling that the optimiza-
tion bias E(h) in (4),

Ep(h) =
〈b, z〉p − 〈b, h〉p〈h, z〉p

1− 〈h, z〉2p
(17)

(we add the subscript p to highlight the dependence) is the primary driver
of error in minimum variance portfolios, motivates the following corollary
of Theorem 3.1. To see its ramifications for PCA estimated portfolios, re-
call from (8) that the ratio of the true to the estimated minimum variance
satisfies V2/V̂2 � pE2

p(h).

Corollary 3.6. Fix n ≥ 2 and suppose Assumptions 2.1, 2.2 and 2.3 hold. Then,

E∞(h) =
1− ψ2

∞
d2

∞(h)〈h, z〉∞ψ∞
(18)

almost surely where E∞(h) = limp↑∞Ep(h) with E∞(h) > 0 almost surely.

Proof.The result follows upon combining (13), (14) and (17). That
E∞(h) > 0 follows from (13) and that 〈b, z〉∞ > 0 (hence 〈h, z〉∞ > 0) per
Remark 3.2. �

6We say Ap > Bp w.h.p. (in p) if for any ε > 0 there is a pε such that Ap > Bp on a
set of probability 1− ε for all p ≥ pε. Our usage of this term is not standard, as w.h.p.
typically states that an event Ep holds w.h.p (in p) if for all ε > 0 there is a pε such that
P(Ep) > 1− ε for all p ≥ pε . The stronger statement we make is facilitated by Egoroff’s
theorem (Cohn 2013, Proposition 1.3.4).
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Figure 1. An illustration of the sample and population eigenvectors h and b
respectively. The angle θ〈h,b〉 between h and b is also the length of the arc on
the sphere between h and b. The left panel shows that the identification of the
bias in h is not possible without a reference frame. The latter is provided by
the vector z in the right panel, where the bias is illustrated by the shaded area.
This bias is the amount by which θ〈h,z〉 exceeds θ〈b,z〉 and is due to the excess
dispersion in h.

In the remainder of this section, we discuss the the geometric interpre-
tation of the dispersion bias suggested by the natural normalization of PCA
estimates to the unit sphere. Figure 1 illustrates the vectors h, b and z on the
unit sphere in Rp, with angle between any x and y denoted by θ〈x,y〉p so that
〈x, y〉p = cos θ〈x,y〉p . Since the population eigenvector b is unknown, there is
no available direction with respect to which the sample eigenvector h is bi-
ased. In particular, even given the known estimate ψp of 〈h, b〉p = cos θ〈h,b〉p ,
the left panel of Figure 1 shows that h may be located anywhere on the cone
around b of radius θ〈h,b〉p (c.f., Remark 3.3). The right panel of Figure 1 illus-
trates the portion of the bias of h that is identifiable relative to the vector z.
In particular, θ〈h,z〉p > θ〈b,z〉p w.h.p. in p, which is equivalent to the statement
in (15) in terms of the dispersions of h and b. This bias representation also
points to a potential correction which is the topic explored in Section 4.

4. Bias correction
To correct the dispersion bias in the estimate h (of b) specified by the

sample eigenvector in (11), we propose the following parametrized family
of estimators.

ht =
h + tz
|h + tz| , t ∈ R.(19)

The optimization bias Ep(h) given in (17) that stems from the estimate h
may then be replaced by Ep(ht) upon replacing h with the estimator ht in
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(17). We have,

Ep(ht) = Ep(h)− t
( 〈h, b〉p − 〈b, z〉p〈h, z〉p

1− 〈h, z〉2p

)
(20)

for any t ∈ R (see Appendix C). We propose a randomized choice τp for t
in (19),

τp =
(1− ψ2

p)〈h, z〉p
ψ2

p − 〈h, z〉2p
.(21)

We let hτ be the estimator constructed with τp replacing t in (19) with
subscript p in (21) inferred from the dimension of h ∈ Rp. It is optimal in
the following sense.

Theorem 4.1. Fix n ≥ 2 and suppose Assumptions 2.1, 2.2 and 2.3 hold. Then,

E∞(hτ) = lim
p↑∞

Ep(hτ) = 0 almost surely.(22)

Moreover, the parameter τp in (21) may be computed from p × n data matrix Y
only.

The proof (see Appendix A) is a consequence of Theorem 3.1 and fact
that

Ep(hτ) =
〈b, z〉pψ2

p − 〈h, z〉p〈h, b〉p
ψ2

p − 〈h, z〉2p
.(23)

The second part of the result is trivial, but it crucially shows that the op-
timal parameter τp in (21) is computable directly from the observed quanti-
ties. In particular, it may be directly computed from the sample covariance
matrix S.7 The first part of the result is remarkable in that even for only
two observations (n = 2) of the return Y we are able to remove all of the
optimization bias asymptotically.

The implications for the minimum variance portfolio are as follows.
Recall that the true variance of an estimated portoflio ŵ is V2

p = ŵ>Σŵ and
given in (5) by

V2
p = σ2µ2

p(β)(1 + d2
p(β))E2

p(h) + op(24)

for op ↓ 0. Recall from Corollary 3.6 that the limit E2
∞(h) > 0 almost surely

for the plain PCA estimate h, and under our assumptions, the V2
p remains

bounded away from zero almost surely. In other words, the expected out-
of-sample variance is strictly positive and potentially large (see (18)). On

7The vector h is an eigenvector of S and ψp is a function of the eigenvalues of S.
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the other hand, replacing h with the estimator hτ ensures the expected out-
of-sample variance tends to zero.

Next, we partially address the rate of convergence of the corrected opti-
mization biasE2

p(hτ) to zero. This has important implications for the ratio of
the true to the estimated portfolio variance in (8) which behaves as pE2

p(hτ)
(see Appendix B).

Conjecture 1. Fix n ≥ 2 and suppose Assumptions 2.1, 2.2 and 2.3 hold. In
addition, suppose that every Zi of Assumption 2.1 has a finite 6th moment. Then,

sup
p

E
(

pE2
p(hτ)

)
< ∞.(25)

Remark 4.2. We provide numerical support for (25) in Section 5.

Remark 4.3. In contrast to (25), we have lim supp↑∞ pE2
p(hτ) = ∞ almost

surely. This stems from a variant of the law of iterated logarithms, the fact that the
scaled sum Qp = Z1+···+Zp√

p for i.i.d. random variables {Zi}i∈N has lim supp↑∞ Qp =

∞ almost surely. The random walk oscillations are too erratic to avoid path-by-path
entirely, but given sufficient finite moments of Z1 (as above), they cancel in expec-
tation.

Remark 4.4. In view of Corollary 3.6, supp E
(
cpE

2
p(h)

)
= ∞ for any cp → ∞.

In the remainder of this section we explore some of the features of
the estimator hτ as compared with h, the (unadjusted) sample eigenvector.
Theorem 3.1 implies that h is adversely affected by a dispersion bias since
d2

p(h) > d2
p(b) w.h.p. per (15), i.e., the dispersion of h is larger than that of

b, the population eigenvector. But,

d2
p(ht) =

1− 〈ht, z〉2p
〈ht, z〉2p

=
1− 〈h, z〉2p

(〈h, z〉p + t)2 < d2
p(h) t > 0(26)

for ht in (19). In other words, for a positive parameter value, the estimator
ht has the effect of decreasing the dispersion of h. The left panel of Figure
2 illustrates the placement of a ht relative to the b and the dispersionless
vector z. Observe, that since ψ2

∞ − 〈h, z〉2∞ = ψ2
∞(1− 〈b, z〉2∞) > 0, under

the assumptions of Theorem 3.1, the optimal parameter τp given in (21) has
τ∞ = limp↑∞ τp > 0 almost surely.

To obtain some intuition for the precise value of the paramter τp and its
effect on the optimization bias Ep, we make the following two observations.

(1) As noted previously, Ep(b) = 0 which implies that h being a consistent
estimator (i.e., 〈h, b〉p → 0) is sufficient for removing the optimization bias
asymptotically. However, this is not possible in finite sample (when n is
fixed). Consistency turns out, surprisingly, to not be necessary. A remark-
able property of the optimization bias is that it has a root that is distinct
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Figure 2. An illustration of the placement of the estimator ht for a particular
t > 0 (left panel), which shrinks the dispersion d(ht) of ht relative to that of
h. Equivalently, we shrink the angle θ〈ht,z〉 relative to θ〈h,z〉 by taking t > 0
(see also Figure 1). The spherical angle Θht controls the optimization bias
Ep(ht) per formula (28). The right panel illustrates the choice hτ∗ at which
Θhτ∗ = 90 degrees. The equi-mean contour of b (points x with |x| = 1 and
〈x, z〉 = 〈b, z〉) is further from z than the optimal point hτ∗ . This means that
the distance to the point b is not minimized at the intersection of its equi-mean
contour and {ht}t∈R.

from the unknown vector b. It is easy to verify, via (20), that Ep(hτ∗) = 0
for ht as in (19) but with t = τ∗ given by

τ∗p =
〈b, z〉p − 〈h, b〉p〈h, z〉p
〈h, b〉p − 〈h, z〉p〈b, z〉p

(27)

where the suppressed subscript p in hτ∗ is inferred from the dimension
of h ∈ Rp. However, τ∗p cannot be constructed in practice since b is not
known. Theorem 4.1 states that τp approximates τ∗p for p large, and τp is
implementable from the observed data. Indeed, it is not difficult to check
that |τp − τ∗p | → 0 as p ↑ ∞ almost surely.

(2) The geometry of the (finite p) optimal point τ∗p in (27) is best illustrated
with the spherical law of cosines (Banerjee 2004). Recalling that θ〈x,y〉p de-
notes the angle between x and y in Rp, we can write the optimization bias
of ht for any t ∈ R as

Ep(ht) =
〈b, z〉p − 〈ht, b〉p〈ht, z〉p

1− 〈ht, z〉2p
=
(sin θ〈ht,b〉p

sin θ〈ht,z〉p

)
cos Θht(28)

where Θht denotes the spherical angle between the arcs emanating from ht,
i.e., the arcs from ht to z and ht to b. Figure 2 illustrates the spherical angle
Θht and we note that when Θht = 90 degrees, for such t ∈ R, we have
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Ep(ht) = 0 per (28). This occurs precisely for t = τ∗p in (27). It may be
verified that τ∗p is also the maximizer of 〈ht, b〉p over t ∈ R and equivalently,
τ∗p is the minimizer of θ〈ht,b〉p over t ∈ R, i.e., t = τ∗p minimizes the arc
length between b and ht on the unit sphere in Rp. The random parameter
τp approximates this minimizer asymptotically as p ↑ ∞.

Our findings are particularly interesting from the perspective of the in-
terplay between the geometry of the optimization bias and the optimality
of parametrized family of estimators {ht}t∈R in (19). The analysis of the
minimum variance in Section 2.1 motivated this family of estimators. But,
conversely, viewing the {ht}t∈R as a family of (dispersion) shrinkage es-
timators, the optimal choice of ht is naturally the one that minimizes its
“distance” to b, the unknown. This hτ∗ coincides with the root of the op-
timization bias Ep and so yields “optimal” minimum variance portfolios.
The fact that the hτ∗ may be arbitrarily well approximated in finite sample,
only from the observed data, and simply by considering more variables, is
striking.

5. Numerical study
We present results of two experiments that illustrate the impact of the

dispersion bias correction on an optimized minimum variance portfolio and
corroborate the theoretical results of Section 4.8

We generate observations Yj ∈ Rp of returns for securities j = 1, . . . , n
from model (9) so that

Yj = βXj + Zj(29)

for unobserved factor and specific returns X>j and Zj = (Z1
j , . . . , Zp

j )
> re-

spectively, which are mean-zero and normally distributed. We require the
generating process to obey Assumptions 2.1 and 2.3, so every Var(Yj) =

Σ = σ2ββ> + δ2I as in (2). We further take i.i.d. {Xj}n
j=1 with Var(X1) =

σ2 = (0.16)2 and i.i.d. {Zj}n
j=1 with Var(Zj) = δ2I = (0.5)2I. The vector

β ∈ Rp is constructed to have mean µ(β) = 1 and dispersion d(β) = 0.5,
and is held constant over the observations.9

We extract a PCA estimate h from the p×n data matrix Y = (Y1, . . . , Yn),
which per (11) is the positive-mean eigenvector of the sample covariance S
in (10). The estimator ht ∝ h + tz is formed via (19) for constant t ∈ R+.
Similarly, we form the estimators hτ∗ and hτ via (19) with the random (dis-
persion) shrinkage parameters τ∗p and τp in (27) and (21). The latter relies

8For complementary simulations calibrated to the US equity market, see Goldberg et al.
(2019).

9 More precisely, (independently of all other variables) some {ηi}p
i=1 are drawn inde-

pendently from the Normal distribution of mean one and variance one. The transforma-
tion βi = cηi/µ(η) + (1 − c) is then applied with c = 0.5/d(η) so that d(β) = 0.5 for
β = (β1, . . . , βp)>.
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on the eigenvalues of S. We refer to hτ∗ as the exact estimator since it carries
no optimization bias. We call hτ the blind estimator as it is unable to observe
β, and the family ht, for constant t ∈ R+, the parametric estimator, to which
the PCA estimator h0 = h belongs.

5.1. Market model estimation
We use each of the estimates ht, hτ∗ and hτ as the basis of an estimate

Σ̂ of the covariance matrix

Σ = σ2ββ> + δ2I,

as in (2). The structural form of Σ is implied by (9) and Assumptions 2.1
and 2.3. It follows that our task amounts to specifying estimates σ̂2, β̂ and
δ̂2 of σ2, β and δ2.

To motivate our model calibration, we rely on Lemma A.2, which shows
specific variance δ2 is equal to the average of the eigenvalues of Σ after
excluding the leading eigenvalue scaled by n/p. We adapt this recipe to the
sample covariance matrix by taking `2

p = (Tr(S)− s2
p)/(n− 1), the average

of the eigenvalues of S excluding zeros and s2
p, the largest value. Then

δ̂2 = (n/p)`2
p. As it is only that product of σ2 and |β| that can be identified

and not their individual values (since the factor returns Xj are not observed),
and since the product σ2|β|2 is equal to the leading eigenvalue of Σ minus
the specific variance scaled by 1/n as shown in Lemma A.2, take σ̂2|β̂|2 =
p(s2

p/p− δ̂2/n) = s2
p − `2

p. As the scale |β̂| cannot be identified, we are free
to assume it is 1 and to set σ̂2|β̂|2 = σ̂2 = s2

p − δ̂2. Finally we set β̂ to be ht,
hτ∗ or hτ.10 Given a choice of β̂, we estimate the covariance matrix Σ

Σ̂ = σ̂2 Ht + δ̂2I ; Ht = β̂β̂> .(30)

We remark that the values σ̂2 and δ̂2 are identical for all our estimators
Σ̂; it is only the estimate of β̂ that changes. Further, the leading eigenvalue is
the same for all our estimators Σ, and it is equal to s2

p, the leading eigenvalue
if Σ̂.

5.2. Dispersion bias identification
Table 1 provides support for Theorem 3.1 with estimates of the means

and standard deviations of 〈h, z〉p, 〈h, b〉p and ψp over 106 simulations with
n = 50 observations and numbers of securities p ranging from 500 to 8000.
The value of 〈b, z〉 multiplied by the point estimate E(〈h, b〉p) is equal to the
point estimate E(〈h, z〉p) to four decimal places for each p. is well within
the 99% confidence intervals around E(〈h, z〉p) for each p. Further, the sam-
ple means of the values 〈h, b〉p and ψp, which are asymptotically equal, get

10A different choice of scale for |β̂| would lead to estimates of β̂ that look more like
security market betas. For example, we could normalize β̂ so that its mean entry is equal
to 1. However, this choice would not affect the numerical results presented here.
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closer as p increases from 500 to 8000. The 99% confidence intervals around
E(ψp) and E(〈h, b〉p), however, do not overlap for the values of p we consid-
ered.

p E(〈h, z〉p) E(〈h, b〉p) E(ψp) SD(〈h, z〉p) SD(〈h, b〉p) SD(ψp)

500 0.8287 0.9265 0.9290 0.01513 0.01467 0.01305
1000 0.8292 0.9271 0.9283 0.01358 0.01399 0.01318
2000 0.8295 0.9274 0.9280 0.01227 0.01366 0.01325
4000 0.8296 0.9275 0.9278 0.01235 0.01349 0.01328
8000 0.8297 0.9276 0.9277 0.01213 0.01340 0.01330

Table 1. Sample means and standard deviations for 〈h, z〉p, 〈h, b〉p and ψp
with 〈b, z〉 ≈ 0.89442 (corresponding to d2(b) = 0.5) over 106 simulations.
For each value of p, we use n = 50. Estimates for E(〈h, z〉p) have 99% con-
fidence intervals of ±2.58 SD(〈h, z〉p)× 10−3 and analogously for E(〈h, b〉p)
and E(ψp).

5.3. Minimum variance portfolio volatility
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Figure 3. Boxplots of the true volatility V of the estimated minimum variance
portfolio ŵ constructed with the parametric, exact and blind estimators. The
boxplots for five constant parameter estimators ht are shown on the right of the
V-axis. The minimizer (over t) of the average volatility is approximately 0.625.
The left of the V-axis shows boxplots for the PCA, exact and blind estimators.
The dashed line marks the optimal minimum volatility M. For each boxplot,
we perform 103 simulations, each consisting of n = 50 observations of p = 500
securities. Each boxplot shows the interquartile range, the means marked with
triangles, and the outliers that lie below 1% and above 99% of the distribution.

We compare the performance of the exact and blind estimators to PCA
and investigate the behavior of the parametric estimator. For each estimator
we form a covariance estimate Σ̂ and compute the estimated, minimum
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Figure 4. Histograms of 105 simulations for the exact and blind (dispersion)
shrinkage parameters τ∗p and τp respectively (see formulas (21) and (27)). The
sample means and variances are approximately 0.685 and 0.021 for τ∗p and
0.649 and 0.019 for τp. For each, we take n = 50 observations and p = 500
securities.

variance portfolio ŵ by solving (1) after replacing Σ by Σ̂. We take the true
volatility V (the square root of V2 = ŵ>Σŵ defined in (5)) of the estimated
minimum variance portfolio as our performance metric. This metric, which
may be regarded as the out-of-sample volatility, emphasizes the practical
utility of the experiments we conduct.

Figure 3 shows distribution boxplots of V for each of the estimators.
Even for the moderate number of securities (p = 500) and small sample
size (n = 50) used in experiment, the exact and blind estimators materially
outperformed PCA. For instance, relative to the PCA estimator, we observe
a reduction in median V of more that 25% along with a reduction of more
than 50% in the interquartile range for the exact and blind estimators. The
(horizontal) dashed line in Figure 3 marks the value of the optimal mini-
mum volatility M, the square root of the minimum value w>Σw attained
in optimization (1). All estimators produce portfolios with higher volatility
than M (approximately 2.144), indicating a higher level of risk than optimal.
However, the median volatility produced by the exact and blind estimators
are both within 25% of the optimum M, while the PCA estimator yields
a median volatility that exceeds the optimum by 75%. Figure 3 displays
results for five parametric estimators (on the right of the V-axis). The best
parametric estimator achieves similar performance gains to the blind and
exact estimators. The estimator ht∗ corresponds to the value t∗ = 0.625 that
necessarily depends on the unknown β. It approximately minimizes the
median volatility (a function of Σ) over the nonrandom parameter choices.
However, this value is never accessible in practice since Σ is not known
in such settings. Remarkably, it underperforms (in term of the mean and
the variance) the blind estimator, which relies only on the observed data Y.
The distributions of the random, dispersion-shrinkage parameters τ∗p and
τp are shown in Figure 4. These histograms support the theoretical finding
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that τp approximates well the exact parameter τ∗p , which benefits from the
knowledge of β in the model.

E(V) E(V̂) E
(
V/V̂

)
SD(V) SD(V̂)

PCA 3.770 1.739 2.178 0.313 0.070
Exact 2.691 2.690 1.000 0.109 0.086
Blind 2.715 2.646 1.029 0.124 0.159
Param 2.750 2.621 1.053 0.159 0.121

Table 2. Sample means and standard deviations for the true and estimated
volatilities V and V̂ and their ratio V/V̂ over 106 simulations. Estimates for
E(V) have 99% confidence intervals of ±2.58 SD(V)× 10−3 and analogously
for E(V̂). Param denotes the best parametric estimator h0.625.

Table 2 supplements Figure 3 and reports the sample means and vari-
ances of the true volatility V for PCA, exact, blind and best parametric
(Param) estimators. It also reports the same statistics for the estimated
volatility V̂ where V̂2 = ŵ>Σ̂ŵ was defined in (7). The blind estimator
outperforms PCA and the best parametric estimator (ht∗ with t∗ = 0.625) in
terms of mean and variance. We find a variance reduction of factors 6.22
and 1.68 relative to PCA and the best parametric estimator respectively.
Conversely, the blind estimator exhibits a variance for the estimated volatil-
ity V̂ that is larger than both the PCA and ht∗ . This is an advantage as the
higher number allows for a larger level of uncertainty to be taken into ac-
count in practice. Table 2 also reports statistics for the ratio of the true to
the estimated volatility V/V̂. This reports how much the forecast volatility
deviates from the true volatility. The exact, blind and best parametric es-
timators show a desirably small level of deviation. On the other hand the
volatility forecast produced by PCA is a factor larger than two away from
the true volatility (c.f., (8) in Section 2.1).

5.4. Asymptotics of the optimization bias
We experimentally confirm the statements of Theorems 3.1 and 4.1 and

Conjecture 1 by simulating models of increasing size, taking p as large as
8, 000. For every p,11 we generate a β ∈ Rp and draw n = 50 i.i.d. observa-
tions of the returns obeying (29) as described at the outset. The subscript p
highlights the dependence on size.

We study the optimization bias Ep(h) for the PCA estimate and its cor-
rected counterpart Ep(hτ) that is produced by the blind estimator (the exact
estimator has no optimization bias). The error Ep was shown to be closely
related to true volatility of the estimated minimum variance portfolio in-
vestigated in Section 5.3. Indeed, the error Ep is the sole component of the

11Following footnote 9, we generate a sequence η1, η2, . . . and take (increasing) subsets
{ηi}p

i=1 for each size p to produce the vector β ∈ Rp with µp(β) = 1.0 and dp(β) = 0.5.

22



asymptotic description of the true volatility (see Vp in (5)) that may be ma-
nipulated in an estimation context. Moreover, by (8), the ratio of the true to
the estimated variance V2

p/V̂2
p is proportional to pE2

p .
Figure 5 considers the moderate deviations (on the scale

√
p) of the cor-

rected error Ep(hτ). It confirms that these deviations do not grow in p and
further suggests a convergence (in law) of the rescaled variable

√
pEp(hτ)

to some nondegenerate limit of mean zero and finite variance. These re-
sults confirm Theorem 4.1 (not almost surely, but as convergence in law)
that states that the corrected optimization bias Ep(hτ) vanishes as the size
of the portfolio increases. It also indirectly supports Conjecture 1, which
posits that

√
pEp(hτ) has a bounded (in p) second moment. Tables 3 and 4

provide further support. Table 3 (the first two columns) illustrates that the
mean and standard deviation of of Ep(hτ) both tend to zero as p grows. The
rate at which the mean tends to zero appears to be linear while the standard
deviation looks to converge at the rate

√
p (c.f., Figure 5). Table 4 supple-

ments these statistics with those for pE2
p(hτ). The first column of Table 4

provides evidence for Conjecture 1 by showing that the mean of pE2
p(hτ)

does not grow in p. It further demonstrates (second column) that the stan-
dard deviation likely remains bounded as well (at least the Gaussian setting
that we adopt).

Figure 6 draws a comparison between the optimization bias produced
by the PCA and blind estimators. The distribution of the optimization bias
Ep(h) scaled by

√
p and the mean of that of the blind estimator are illus-

trated in Figure 6. As predicted, the mean and standard deviation of the
distribution of

√
pEp(h) both grow at rate

√
p, This growth results in a

scale difference of tenfold as compared to Figure 5, which displays the same
quantities for the blind estimator. Table 3 records (fifth column) the ratio of
the means of Ep(h)) and Ep(hτ) showing an improvement of a factor in the
hundreds over PCA for large values of p. Columns three and four of Table
3 confirm the convergence of the optimization bias of PCA to a nondegen-
erate positive limit (c.f. Corollary 3.6). Table 4 further confirms the linear
blow up of the mean and standard deviation of pE2

p(h) as the portfolio size
grows.

We point out that the theoretical results we confirm here in a setting
of i.i.d. Gaussian observations hold much more broadly. Neither the i.i.d.
not the Gaussian requirements are needed to obtain qualitatively similar
results. We refer to reader to extensive simulations in Goldberg et al. (2019)
that test our conclusions even for more complex models of security returns
and under several market calibrations.
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Figure 5. Boxplots of
√

pEp(hτ) vs growing portfolio size p. Each blind
estimator corrected optimization biasEp(hτ) is constructed from (23) by using
50 observations. 1000 simulations are used to construct each boxplot that
displays the median, the interquartile range and outliers below 1% and above
99% are shown. Sample means for each value of p are marked with a (upside
down) triangle.
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Figure 6. Boxplots of
√

pEp(h) vs growing portfolio size p. The optimization
bias Ep(h) of PCA is constructed from (17) by using 50 observations. Sample
means for each corrected bias

√
pEp(hτ) is depicted with a (upside down)

triangle marker. 1000 simulations are used to construct each boxplot that
displays the median, the interquartile range and outliers below 1% and above
99% are shown.
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p E(Ep(hτ)) SD(Ep(hτ)) E(Ep(h)) SD(Ep(h))
E(Ep(h))

E(Ep(hτ))

500 0.0185 0.0611 0.4004 0.0485 21.62
1000 0.0093 0.0436 0.3987 0.0464 42.77
2000 0.0047 0.0310 0.3980 0.0453 84.26
4000 0.0024 0.0220 0.3976 0.0448 166.4
8000 0.0012 0.0156 0.3973 0.0445 338.3

Table 3. Sample statistics for the optimization bias Ep produced by the PCA
estimator (h) and the blind estimator (hτ) versus growing portfolio size p.
Estimates of the ratio E(Ep(h))/E(Ep(hτ)) measure the improvement of the
blind estimator relative to PCA. Each sample estimate for an expectation (E)
and a standard deviation (SD) is computed using 106 simulations. Every
estimate of E(Ep(hτ)) has the 99% confidence interval ±2.58 SD(Ep(hτ))×
10−3 and analogously for the PCA estimator. For each value of p we use
n = 50 observations.

A. Proofs
Recall the p× n data matrix Y = Yp×n of n excess returns to p securities.

According to (9), the jth observation (jth column of Y) is Yj = βXj +Zj, and

Y = βX> + Z(31)

for β ∈ Rp, a row vector X> = (X1, . . . , Xn) of realized market return X
and Z = Zp×n, the p× n matrix with jth column Zj, the jth realized specific
return.

Under Assumption 2.2 for all p sufficiently large, we have µp(β) > 0
and

|β|2 = pµ2
p(β)(1 + d2

p(β))(32)

as in Appendix C, for the mean µ(β) = µp(β) and dispersion d(β) = dp(β)
in (6).

A.1. Proof of Theorem 3.1
Recall the eigenvector h of the (p × p) sample covariance matrix S =

YY>/n with the eigenvalue s2
p as in (11). We consider the the singular

value decomposition of Y and the χp ∈ Rn with |χp| = 1 such that h and χp
form the left and right singular vectors of Y/

√
n respectively with singular
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p pE(E2
p(hτ)) pSD(E2

p(hτ)) pE(E2
p(h)) pSD(E2

p(h))

500 2.036 3.013 81.32 19.74
1000 1.990 2.991 161.2 37.66
2000 1.964 2.971 321.0 73.42
4000 1.959 2.992 640.5 145.1
8000 1.953 2.992 1279. 287.9

Table 4. Sample statistics for the scaled square of the optimization bias pE2
p

produced by the PCA estimator (h) and the blind estimator (hτ) versus grow-
ing portfolio size p. Each sample estimate for an expectation (E) and a stan-
dard deviation (SD) are computed using 106 simulations. Every estimate of
pE(E2

p(hτ)) has the 99% confidence interval±2.58 pSD(E2
p(hτ))× 10−3 and

analogously for the PCA estimator. For each value of p we use n = 50 obser-
vations.

value sp ≥ 0.12 Then, by (31),

hsp = Yχp/
√

n =
βX>χp + Zχp√

n
.(33)

Taking a dot product of both sides with b and z yields the following identi-
ties.

〈h, b〉p = h>b =

( |β|X>χp

sp
√

n

)
+

(
β>Z√

p|β|

)(
χp
√

p
sp
√

n

)
(34)

〈h, z〉p = h>z = 〈b, z〉p
( |β|X>χp

sp
√

n

)
+

(
e>Z√

p|e|

)(
χp
√

p
sp
√

n

)
(35)

Taking the dot product of both sides of (33) with hsp and dividing by p
yields

s2
p /p =

|β|2(X>χp)2

np
+

χ>p Z>Zχp

np
+ 2(X>χp)

(
β>Z√

p|β|

)(
χp|β|
n
√

p

)
.(36)

The next result facilitates limit (p ↑ ∞) computations in (34), (35) and
(36).

Lemma A.1. Let {ηi}i∈N ⊆ R be a sequence with µp(η) =
1
p ∑

p
i=1 ηi satisfying

lim infp↑∞ µp(η) > 0. For {Zk}k∈N a collection of mean-zero, pairwise indepenent
and identically distributed (real) random variables with Var(Z1) < ∞, writing

η = (η1, . . . , ηp)> and Z = (Z1, . . . , Zp)>, we have η>Z√
p|η| → 0 almost surely as

p ↑ ∞.
12 By convention, the singular values of a real matrix A are taken as the nonnegative

square roots of the (nonnegative) eigenvalues of A>A. The largest such value a satisfies
a2 = sup|x|=1 A>A.
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Proof.Since for all p large enough, µp(η) > 0, the dispersion dp(η) is

well defined (see Appendix C) and then, for Wk = ηkZk/
(
µp(η)

√
1 + d2

p(η)
)
,

we have

η>Z√
p|η| =

1
p

p

∑
k=1

Wk .

The result now follows by the SLLN of Chandra & Goswami (1992, Theo-
rem 6) provided supp

1
p ∑

p
k=1 E(W2

k ) < ∞. As E(W2
k ) = η2

k Var(Z1)/(µ2
p(η)(1+

d2
p(η)), we have 1

p ∑
p
k=1 E(W2

k ) = Var(Z1)|η|2/(µ2
p(η)(1+d2

p(η)) = Var(Z1) <

∞. �
By applying Lemma A.1 to each

( β>Z√
p|β|
)

j and
( e>Z√

p|e|
)

j for 1 ≤ j ≤ n in

(34) and (35) we have, under Assumptions 2.2 and 2.3 (only µ∞(β) > 0 and
the pairwise independence of the {Zi}i∈N is required here) that (34) and
(35) reduce to

〈h, b〉∞ = lim
p↑∞

( |β|X>χp

sp
√

n

)
(37)

〈h, z〉∞ = 〈b, z〉∞ lim
p↑∞

( |β|X>χp

sp
√

n

)
(38)

provided the limit on the rights side exist almost surely (for the existence
of 〈b, z〉∞, see Remark 3.2) and that supp sp/

√
p < ∞ almost surely (see

Lemma A.2 below).
Define the (nondegenerate) random variable σ2

X (which is well-defined
by Assumption 2.2 and is strictly positive almost surely by Assumption 2.1)
as

σ2
X =
|X|2

n
µ2

∞(β)(1 + d2
∞(β)) .(39)

With Tr(S) denoting the matrix trace13 of S, we have `2
p = (Tr(S) −

s2
p)/(n− 1) as in the definition of ψp in (12) after taking p ≥ n ≥ 2.

Lemma A.2. Suppose that Assumptions 2.2 and 2.3 hold. Then, almost surely, we

have limp↑∞ sp/
√

p =
√

σ2
X + δ2/n, limp↑∞ χp → X/|X| and limp↑∞ `2

p/p →
δ2/n.

Proof.Let Sn−1 = {x ∈ Rn : |x| = 1}. By definition (see, foot-
note 12) we have that s2

p /p = gp(χp) = supx∈Sn−1 gp(x) where gp(x) =

(x>Y>Yx)/(np) so that

gp(x) =
|β|2(X>x)2

np
+

x>Z>Zx
np

+ 2(X>x)
(

β>Z√
p|β|

)(
x|β|
n
√

p

)
.(40)

13The sum of the diagonal elements of S, and equivalently the sum of its eigenvalues.
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To conclude the first two claims (pertaining to limp↑∞ sp/p and limp↑∞ χp),
it suffices to show that the functions gp converge uniformly to g∞ on Sn−1

almost surely, where

g∞(x) = σ2
X

(
X>x
|X|

)2

+
δ2

n
.(41)

If so, then almost surely,

lim
p↑∞

s2
p/p = lim

p↑∞
sup

x∈Sn−1
gp(x) = sup

x∈Sn−1
g∞(x) = σ2

X + δ2/n,

since the convergence of gp to g∞ must be uniform. Taking (positive) square

roots, we have limp↑∞ s2
p/p =

√
σ2

X + δ2/n.

Almost surely, σ2
X + δ2/n = supx∈Sn−1 g∞(x) is attained only at ±X/|X|,

so the almost sure convergence

lim
p↑∞

χp =
X
|X|

follows from the uniform convergence of the sequence gp to the continuous
limit g∞ and the fact that left-hand side of (38) must be positive almost
surely for p sufficiently large whether or not the limit on the right side of
this equation exists.

We proceed to show the almost sure convergence of gp to g∞, which
follows from the bound |gp(x)− g∞(x)| ≤ |γ1(x)|+ |γ2(x)|+ |γ3(x)| where

|γ1(x)| = (X>x)2
∣∣∣∣ |β|2np

− σ2
X
|X|2

∣∣∣∣ ,
|γ2(x)| =

∣∣∣∣x>Z>Zx
np

− δ2

n

∣∣∣∣ ,
|γ3(x)| = 2(X>x)

∣∣∣∣( β>Z√
p|β|

)(
x|β|
n
√

p

)∣∣∣∣ .
Using that |β|2 = pµ2

p(β)(1 + d2
p(β)) by (32) for all p sufficiently large

(under Assumption 2.2), we have supx∈Sn−1 γ1(x) → 0 by the definition of
σ2

X in (39). For the term γ2(x), observe that x>Z>Zx = ∑n
j=1 ∑n

k=1 xjZ>j Zkxk
so that

|γ2(x)| ≤ 1
n

n

∑
j=1

n

∑
k=1
|xjxk||Z>j Zk/p− δ21{k=j}|

≤ n max
1≤j,k≤n

|Z>j Zk/p− δ21{k=j}|

where 1A denotes the indicator of A. Per Assumption 2.1, E((Zi
j)

2) = δ2 <

∞. Thus under Assumption 2.3, every Z>j Zj/p = 1
p ∑

p
i=1(Z

i
j)

2 → δ2 by
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the SLLN (Etemadi 1981, Theorem 1). Similarly, E(Zi
jZ

i
k) = 0 for j 6= k

by Assumption 2.3, so Z>j Zk/p = 1
p ∑

p
i=1 Zi

jZ
i
k → 0 for every j 6= k. Thus,

supx∈Sn−1 |γ2(x)| → 0.
The required convergence of gp follows by applying Cauchy-Schwartz

to |γ3(x)|,

|γ3(x)| ≤ 2|X|2
∣∣∣∣ β>Z√

p|β|

∣∣∣∣( |β|n
√

p

)
,(42)

so that supx∈Sn−1 |γ3(x)| → 0 almost surely by Lemma A.1 and the fact that
supp |β|2/p = supp µ2

p(β)(1 + d2
p(β)) < ∞ under Assumptions 2.2 and 2.3.

Finally, observe that since nS = YY> = X>Xββ> + ZZ> + βX>Z> +
ZXβ>, the almost sure limit as p ↑ ∞ of the trace of S is given by

lim
p↑∞

Tr(S)
p

= lim
p↑∞

( |β|2|X|2
pn

+
tr(Z>Z)

pn
+ 2
( |β|√

pn

)
β>ZX
|β|√p

)
= σ2

X + δ2(43)

where we applied (32) and (39) to the first term to obtain σ2
X, an argument

identical to that for x>Z>Zx above to the second term to obtain δ2, and
Lemma A.1 to remove the third term. From (43) and the fact that s2

p/p →
σ2

X + δ2/n almost surely, we deduce that

`2
p/p = (Tr(S)/p− s2

p/p)/(n− 1)→ δ2/n

almost surely. �
We now complete the proof of the main result. Applying (32) and

Lemma A.2 to the right sides of (37) and (38) we obtain that 〈h, z〉∞ =
〈b, z〉∞〈h, b〉∞ and

〈h, b〉∞ =
σ2

X
σ2

X + δ2
∈ (0, 1)(44)

almost surely. Applying Lemma A.2 to ψ2
p = (s2

p − `2
p)/s2

p in (12), we obtain
that the limit ψ∞ equals the right side of (44) almost surely. This concludes
the proof.

B. Asymptotic estimates
Let ŵ ∈ Rp denote the solution to mine>w=1 w>Σ̂w, the optimization

in (1) with Σ̂ replacing Σ = σ2ββ> + δ2I so that the (β, σ, δ) is replaced by
(β̂, σ̂, δ̂). With b = β/|β| and z = e/

√
p as in (3), we have Σ in (2) taking

the form

Σ = pσ2
b bb> + δ2I
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where by (32) we have σ2
b = σ2|β|2/p = σ2µ2(β)(1 + d2(β)) (c.f., σ2

X of
(39)). Define κ = δ̂/(σ̂

√
p) and h = β̂/|β̂|, the estimate of b (not necessarily

the sample eigenvector h that appears in (11)). Analogously to σ2
b , we let

σ2
h = σ̂2|β̂|/p.

The solution ŵ (which has a closed-form) may be written as

ŵ =
1√
p

(
zρ− h

ρ− 〈h, z〉

)
where ρ =

1 + κ2

〈h, z〉 .

The true variance V2 = ŵ>Σŵ = pσ2
b (b
>ŵ)2 + δ2|ŵ|2 and the estimated

variance V̂2 = ŵ>Σ̂ŵ = pσ2
h(h
>ŵ)2 + δ̂2|ŵ|2 depend on the asymptotics of

the following.

(pσ2
b )(b

>ŵ)2 = σ2
b

(
(1 + κ2)〈b, z〉 − 〈h, b〉〈h, z〉

κ2 + 1− 〈h, z〉2
)2

(pσ2
h)(h

>ŵ)2 = σ2
h

(
κ2〈h, z〉

κ2 + 1− 〈h, z〉2
)2

|ŵ|2 =
1
p

(
1 + κ2

κ2 + 1− 〈h, z〉2 −
κ2 〈h, z〉2

(κ2 + 1− 〈h, z〉2)2

)
From the expressions given above, the asymptotics of V2 and V̂2 are

immediate. We add a subscript p below to highlight the dependence on p.

Assumption B.1. The estimates σ̂2 and δ̂2 are bounded away from zero and 〈h, z〉p
is nonnegative and bounded away from one in p ∈N.

Note that these assumptions are satisfied for the PCA estimates we
analyze (see Theorem 3.1). Let op � 1/p, recalling (per Section (2.1)) this
notation means there are fixed constants c, C ∈ R such that c/p ≤ op ≤ C/p
for all p sufficiently large. Under Assumption B.1, for some constant K > 0
and Ep in (4) we have

V2
p = σ2

bE
2
p(h) + op

V̂2
p = δ̂2|ŵ|2 + Kκ4

p

confirming the asymptotics stated in (5) and (7).

C. Auxiliary calculations
Consider any η ∈ Rp with (Euclidean) length |η|, mean µ(η) = 1

p ∑
p
i=1 ηi

and dispersion d2(η) = 1
p ∑

p
i=1(ηi/µp(η) − 1)2 defined for µ(η) > 0, we

have

|η|2 =
p

∑
i=1

η2
i = pµ2

p(η) +
p

∑
i=1

(ηi − µ(η))2

= pµ2
p(η)(1 + d2

p(η)) µ(η) > 0.(45)
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Next, recall the vectors e = (1, . . . , 1)> ∈ Rp and z = e/
√

p and for η

above with |η| > 0, define h = η/|η|. We have 〈h, z〉 = h>z =
pµp(η)√

p|η| and by

(32),

〈h, z〉2 =
1

1 + d2(η)
and d2(η) =

1− 〈h, z〉2
〈h, z〉2 .

This calculation justifies equations (14) and (15).
We proceed to justify (20). For any q ∈ Rp with |q| = 1 let E(q) =

〈b,z〉−〈q,z〉〈q,b〉
1−〈q,z〉2 . Then for any h ∈ Rp with |h| = 1 and t ∈ R, defining

ht =
h+tz
|h+tz| , we have

Eht =
〈b, z〉|h + tz|2 − 〈h + tz, b〉〈h + tz, z〉

|h + tz|2 − 〈h + tz, z〉2

=
〈b, z〉(1 + 2t〈h, z〉+ t2)− (〈h, b〉+ t〈z, b〉)(〈h, z〉+ t)

1 + 2t〈h, z〉+ t2 − (〈h, z〉+ t)2

=
〈b, z〉+ t〈b, z〉〈h, z〉 − 〈h, b〉〈h, z〉 − t〈h, b〉

1− 〈h, z〉2

= Eh − t
〈h, b〉 − 〈b, z〉〈h, z〉

1− 〈h, z〉2 .

To justify (26) we check that,

d2
p(ht) =

1− 〈ht, z〉2
〈ht, z〉2 =

|h + tz|2 − (〈h, z〉+ t)2

(〈h, z〉+ t)2

=
1− 〈h, z〉2
(〈h, z〉+ t)2 .
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