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IMPLICIT PREDICTION RULE

Equilibrium equation:
x = φ(Ax + Bu)

Prediction:
ŷ(u) = Cx + Du

• Input u ∈ Rp, predicted output ŷ(u) ∈ Rq , hidden “state” vector x ∈ Rn.

• Model parameter matrix:

M =

(
A B
C D

)
.

• Activation: vector map φ : Rn → Rn, e.g. the ReLU: φ(·) = max(·, 0)
(acting componentwise on vectors).
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DEEP NEURAL NETS AS IMPLICIT MODELS

A neural network. An implicit model.

Implicit models are more general: they allow loops in the network graph.
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EXAMPLE

Fully connected, feedforward neural network:

ŷ(u) = WLxL, xl+1 = φl(Wlxl), l = 1, . . . , L− 1, x0 = u.

Implicit model:

(
A B
C D

)
=



0 WL−1 . . . 0 0

0
. . .

...
...

. . . W1 0
0 W0

WL 0 . . . 0 0


,

x =
xL

...
x1

 ,

φ(z) =
φL(zL)

...
φ1(z1)

 .

The equilibrium equation x = φ(Ax + Bu) is easily solved via backward
substitution (forward pass).
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EXAMPLE: RESNET20

The A matrix for ResNet20.

• 20-layer network,
implicit model of
order n ∼ 180000.

• Convolutional
layers have blocks
with Toeplitz
structure.

• Residual
connections
appear as lines.
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NEURAL NETWORKS AS IMPLICIT MODELS

Framework covers most neural network architectures:

• Neural nets have strictly upper triangular matrix A.

• Equilibrium equation solved by substitution, i.e. “forward pass”.

• State vector x contains all the hidden features.

• Activation φ can be different for each component or blocks of x .

• Covers CNNs, RNNs, recurrent neural networks, (Bi-)LSTM, attention,
transformers, etc.
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WELL-POSEDNESS

The matrix A ∈ Rn×n is said to be well-posed for φ if, for every b ∈ Rn, a
solution x ∈ Rn to the equation

x = φ(Ax + b),

exists, and it is unique.

Equation has two or no solutions,
depending on sign(b).

Solution is unique for every b.
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PERRON-FROBENIUS THEORY

A square matrix P with non-negative entries admits a real eigenvalue λ with a
non-negative eigenvector v 6= 0:

Pv = λv .

The value λ dominates all the other eigenvalues.

A web link matrix.

Google’s Page rank search engine
relies on computing the
Perron-Frobenius eigenvector of the
web link matrix.
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PF SUFFICIENT CONDITION FOR WELL-POSEDNESS

Fact: Assume that φ is componentwise non-expansive (e.g., φ = ReLU):

∀ u, v ∈ Rn : |φ(u)− φ(v)| ≤ |u − v |.

Then the matrix A is well-posed for φ if the non-negative matrix |A| satisfies

λpf (|A|) < 1,

in which case the solution can be found via the fixed-point iterations:

x(t + 1) = φ(Ax(t) + b), t = 0, 1, 2, . . .

Covers neural networks: since then |A| is strictly upper triangular, thus
λpf (|A|) = 0.
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NORM CONDITION

More conservative condition: ‖A‖∞ < 1, where

λPF(|A|) ≤ ‖A‖∞ := max
i

∑
j

|Aij |.

Under previous PF conditions for well-posedness:

• we can always rescale the model so that ‖A‖∞ < 1, without altering the
prediction rule;

• scaling related to PF eigenvector of |A|.

Hence during training we may simply use norm condition.
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COMPOSING IMPLICIT MODELS

A cascade connection.

Class of implicit models closed under the following connections:

• Cascade

• Parallel and sum

• Multiplicative

• Feedback
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ROBUSTNESS ANALYSIS

Goal: analyze the impact of input perturbations on the state and outputs.

Motivations:

• Diagnose a given (implicit) model.

• Generate adversarial attacks.

• Defense: modify the training problem so as to improve robustness
properties.

13 / 24



WHY DOES IT MATTER?

Changing a few carefully chosen pixels in a test image can cause a classifier
to mis-categorize the image (Kwiatkowska et al., 2019).
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ROBUSTNESS ANALYSIS

Input is unknown-but-bounded: u ∈ U , with

U :=
{

u0 + δ ∈ Rp : |δ| ≤ σu

}
,

• u0 ∈ Rn is a “nominal” input;

• σu ∈ Rn
+ is a measure of componentwise uncertainty around it.

Assume (sufficient condition for) well-posedness:

• φ componentwise non-expansive;

• λPF(|A|) < 1.

Nominal prediction:

x0 = φ(Ax0 + Bu0), ŷ(u0) = Cx0 + Du0.
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COMPONENT-WISE BOUNDS ON THE STATE AND OUTPUT

Fact: If λPF(|A|) < 1, then I − |A| is invertible, and

|ŷ(u)− ŷ(u0)| ≤ S|u − u0|,

where
S := |C|(I − |A|)−1|B|+ |D|

is a “sensitivity matrix” of the implicit model.

Sensitivity matrix of a classification network with 10 outputs (each image is a row).
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GENERATE A SPARSE ATTACK ON A TARGETED OUTPUT

Attack method:

• select the output to attack based on the rows (class) of sensitivity matrix;

• select top k entries in chosen row;

• randomly alter corresponding pixels.

Changing k = 1 (top) k = 2 (mid, bot)
pixels, images are wrongly classified,
and accuracy decreases from 99% to
74%.
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GENERATE A SPARSE BOUNDED ATTACK ON A TARGETED OUTPUT

Target a specific output with sparse attacks:

U :=
{

u0 + δ ∈ Rp : |δ| ≤ σu, Card(δ) ≤ k
}
,

With k ≤ n. Solve a linear program, with c related to chosen target:

max
x, u

c>x : x ≥ Ax + Bu, x ≥ 0, |x − x0| ≤ σx , |u − u0| ≤ σu

‖diag(σu)
−1(u − u0)‖1 ≤ k .

Changing k = 100 pixels by a
tiny amount (σu = 0.1), target
images are wrongly classified
by a network with 99%
nominal accuracy.
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TRAINING PROBLEM

• Inputs: U = [u1, . . . , um], with m data points ui ∈ Rp, i ∈ [m].

• Outputs: Y = [y1, . . . , ym], with m responses yi ∈ Rq , i ∈ [m].

• Loss function:

L(Y , Ŷ ) =
m∑

i=1

L(yi , ŷi)

with e.g. L a cross-entropy loss (assuming y ≥ 0, 1T y = 1)

L(y , ŷ) = log(

q∑
j=1

eŷ(j))− y>ŷ .

Predictions: with X = [x1, . . . , xm] ∈ Rn×m the matrix of hidden feature
vectors, and φ acting columnwise,

Ŷ = CX + DU, X = φ(AX + BU).
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TRAINING PROBLEM

min
X ,A,B,C,D

L(Y , Ŷ ) + π(A,B,C,D)

s.t. Ŷ = CX + DU, X = φ(AX + BU), ‖A‖∞ ≤ κ.

• Constraint on A with κ < 1 ensures well-posedness.

• π(·) is a (convex) penalty, e.g. one that encourages robustness:

π(A,B,C,D) ∝ 1
2
‖B‖2

∞ + ‖C‖2
∞

1− ‖A‖∞
+ ‖D‖∞.

• May also incorporate penalties to encourage sparsity, low-rank, etc., e.g.:∑
i∈[p]

‖Bei‖∞

encourages entire columns of B to be zero, for feature selection.
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PROJECTED (SUB) GRADIENT

SGD can be adapted to the problem:

• Differentiating through the equilibrium equation is possible.

• Need to deal with the constraint of well-posedness via projection.

• Projection on constraint ‖A‖∞ ≤ κ can be done extremely fast using
(vectorized) bisection, solving for each row of A in parallel.

• Can extend to Frank-Wolfe methods, which are suited to seeking sparse
models.
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EXAMPLE: TRAFFIC SIGN DATA SET
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22 / 24



TAKE-AWAYS

• Implicit models are more general than standard neural networks.

• Well-posedness is a key property that can be enforced via norm or
eigenvalue conditions.

• Models can be composed together in modular fashion.

• The notationally very simple framework allows for rigorous analyses for
robustness, model compression, architecture optimization, etc.

• The corresponding training problem is amenable to SGD methods.
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TOWARDS A GENERAL THEORY?
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THANK YOU!
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