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IMPLICIT PREDICTION RULE

X = ¢(Ax + Bu)

y(u) = Cx + Du

e Input u € RP, predicted output y(u) € RY, hidden “state” vector x € R".

- (443)

e Activation: vector map ¢ : R” — R”, e.g. the ReLU: ¢(-) = max(-,0)
(acting componentwise on vectors).

e Model parameter matrix:
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DEEP NEURAL NETS AS IMPLICIT MODELS

@ nputLayer @ Hidden Layer @ Output Layer

A neural network. An implicit model.
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DEEP NEURAL NETS AS IMPLICIT MODELS

@ nputLayer @ Hidden Layer @ Output Layer
A neural network. An implicit model.
Implicit models are more general: they allow in the network graph.
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EXAMPLE

}A/(U):WLXL, X/_¢_~|:(J5/(VV/X/)7 /:1,...,L—1, Xo = U.

Implicit model:
0o W._ 0] 0
T x = 9(2) =
(0] i : :
A|B . XL ¢L(ZL)
C D = VV1 O I : ) :
0 | Wo ' :
W, 0 .. 0o X ei)

The equilibrium equation x = ¢(Ax + Bu) is easily solved via
(forward pass).
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EXAMPLE: RESNET20

e 20-layer network,
implicit model of
order n ~ 180000.

e Convolutional
layers have blocks
with Toeplitz
structure.

e Residual
connections
appear as lines.

The A matrix for ResNet20.

6/24



NEURAL NETWORKS AS IMPLICIT MODELS

Framework covers most neural network architectures:

e Neural nets have VR
Equilibrium equation solved by substitution, i.e. “forward pass”.

State vector x contains all the hidden features.

Activation ¢ can be different for each component or blocks of x.

Covers CNNs, RNNs, recurrent neural networks, (Bi-)LSTM, attention,
transformers, etc.
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WELL-POSEDNESS

The matrix A € R™" is said to be if, for every b € R”, a
solution x € R" to the equation

x = ¢(Ax + b),

exists, and it is unique.

r = max(0, 2)

Equation has two or no solutions, Solution is unique for every b.
depending on sign(b).
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PERRON-FROBENIUS THEORY

A square matrix P with admits a real eigenvalue A with a
non-negative eigenvector v # 0:

Pv = A\v.

The value A dominates all the other eigenvalues.

Google’s Page rank search engine
relies on computing the
Perron-Frobenius eigenvector of the
web link matrix.

A web link matrix.
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PF SUFFICIENT CONDITION FOR WELL-POSEDNESS

Assume that ¢ is componentwise non-expansive (e.g., ¢ = RelLU):
Vu,veR" : |p(u) — o(v)| < u—vl.
Then the matrix A is well-posed for ¢ if the non-negative matrix |A| satisfies
Mor(JA]) < 1,
in which case the solution can be found via the

X(t+1) = ¢(Ax(t) + b), t=0,1,2,...

: since then |A| is strictly upper triangular, thus
Aor(|A) = 0.
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NORM CONDITION

More conservative condition: ||Al|- < 1, where

Aee([A]) < [[Alloo := max Z |Ajl-
J

Under previous PF conditions for well-posedness:

e we can always rescale the model so that || Al < 1, without altering the
prediction rule;

e scaling related to PF eigenvector of |A|.

Hence during training we may simply use norm condition.
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COMPOSING IMPLICIT MODELS

A cascade connection.

Class of implicit models closed under the following connections:

e Cascade

e Parallel and sum
o Multiplicative

[ ]
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ROBUSTNESS ANALYSIS

: analyze the impact of input perturbations on the state and outputs.

Motivations:
. a given (implicit) model.
e Generate
° modify the training problem so as to

properties.
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WHY DOES IT MATTER?

80m 30m go go
speed speed right straight

limit limit

Changing a few carefully chosen pixels in a test image can cause a classifier
to mis-categorize the image (Kwiatkowska et al., 2019).
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ROBUSTNESS ANALYSIS

Input is T u €U, with

U={P+5cR : Jf| <o},

e u° € R"is a “nominal” input;
e 0, € R is a measure of componentwise uncertainty around it.

Assume (sufficient condition for)

e ¢ componentwise non-expansive;
° )\pF(|A|) <1.

Nominal prediction:

x° = p(AX° + Bu®), §(u°) = Cx° + D
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COMPONENT-WISE BOUNDS ON THE STATE AND OUTPUT

If Aer(JA]) < 1, then [ — |A| is invertible, and
7(u) = 9()] < Slu— ],

where
S:=|CI(/ - |A)~"|B| +|D|

is a “sensitivity matrix” of the implicit model.

Sensitivity matrix of a classification network with 10 outputs (each image is a row).
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GENERATE A SPARSE ATTACK ON A TARGETED OUTPUT

Attack method:

e select the output to attack based on the rows (class) of sensitivity matrix;
e select top k entries in chosen row;

e randomly alter corresponding pixels.
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GENERATE A SPARSE ATTACK ON A TARGETED OUTPUT

Attack method:

e select the output to attack based on the rows (class) of sensitivity matrix;
e select top k entries in chosen row;

e randomly alter corresponding pixels.

Changing k = 1 (top) k = 2 (mid, bot)
pixels, images are wrongly classified,
and accuracy decreases from 99% to
74%.
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GENERATE A SPARSE ATTACK ON A TARGETED OUTPUT

Target a specific output with sparse attacks:
U = {uO 1 5ERP |8 <oy Card(6) < k},

With k < n. Solve a , with = related to chosen target:

max X : Xx>Ax+Bu, x>0, [x—x° <oy |u—U| <oy
X

|| diag(ow) ™" (u — u°)]ls < k.
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GENERATE A SPARSE ATTACK ON A TARGETED OUTPUT

Target a specific output with sparse attacks:
= {uO +5ERP : |§] <oy, Card(s) < k},
With k < n. Solve a , with = related to chosen target:
max X : x>Ax+Bu, x>0, Ix = x°| < oy, |U—U0| <ou

| diag(ow) " (u— )]s < k.

Changing k = 100 pixels by a
tiny amount (o, = 0.1), target
images are wrongly classified
perurked (= 1000 = 0. by a network with 99%

r nominal accuracy.
f’ -9
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TRAINING PROBLEM

e Inputs: U = [us, ..., un], with m data points u; € RP, i € [m].
e Outputs: Y = [y1, ..., ym], with m responses y; € RY, i € [m].
e Loss function: .

LY, V) => Ly 5)

i=1

with e.g. £ a cross-entropy loss (assuming y > 0,17y = 1)
q v -
L(y,9)=1log(>_ V) -yTy.
j=1

twith X = [xq, ..., Xm] € R™" the matrix of hidden feature
vectors, and ¢ acting columnwise,

Y = CX+ DU, X = ¢(AX + BU).
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TRAINING PROBLEM

min  L(Y, Y) + =(A, B, C, D)
st. Y =CX+DU, X=¢AX+BU), |Alw < &

e Constraint on A with x < 1 ensures
e 7(-) is a (convex) penalty, e.g. one that encourages

11Bl3 +IClI5%

m(A,B,C, D) ox 5 == e

+ 1Dl oo

e May also incorporate penalties to encourage sparsity, low-rank, etc., e.g.:

> lBeil

iclp]

encourages entire columns of B to be zero, for
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PROJECTED (SUB) GRADIENT

SGD can be adapted to the problem:

o Differentiating through the equilibrium equation is possible.
e Need to deal with the via projection.

e Projection on constraint ||A||. < & can be done extremely fast using
(vectorized) bisection, solving for each row of A in parallel.

e Can extend to Frank-Wolfe methods, which are suited to seeking sparse
models.
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EXAMPLE: TRAFFIC SIGN DATA SET

0.95 - -2.0
— - implicit model test accuracy implicit model test loss
0.90 - neural network test accuracy neural network test loss _ 1 g

0.85- Ay IO
0.80 - WM e MM ::

0.70 -

>
@)
©
o
>
[v]
o
©

0.65 -
0.60 -
0.55 -
0.50 -

epochs
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TAKE-AWAYS

° are more general than standard neural networks.

° is a key property that can be enforced via norm or
eigenvalue conditions.

Models can be together in modular fashion.

e The allows for rigorous analyses for
robustness, model compression, architecture optimization, etc.

The corresponding training problem is amenable to SGD methods.
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TOWARDS A GENERAL THEORY?

LTI systems Uncertain systems
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