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Overview

• Heavy tails in Economics and Finance: firm and city size, CEO

compensations, income and wealth distribution (Gabaix 2016).

• Majority of financial assets, in particular stocks have heavy tails;

that precludes Gaussian/log-Gaussian modeling (for e.g the kur-

tosis of S&P 500 return’s empirical distribution is somewhere around

10).

• The large deviation analysis of heavy tails is less studied in the lit-

erature; in particular simulating extreme events and their likelihood

estimation.
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Problem Statement

• Suppose X1, . . . , XN are independent, R-valued random vari-

ables (N is fixed). What are the asymptotics of P [X1 + . . .+XN > x]

as x→∞? and how can we estimate that?

• Where do these types of likelihood appear?

– Extreme losses or profits of a portfolio exposed to multiple inde-

pendent risk factor.

– Frequency of large economic downturns, and significant GDP de-

partures from equilibrium trend, caused by the heavy-tail na-

ture of microeconomic shocks (Acemoglu, Ozdaglar & Tahbaz-

Salehi 2017).

• What is particularly important for this estimation? As x →
∞ the deviation probability becomes excessively small, and finding

nontrivial confidence intervals as a measure of estimator’s efficiency

becomes more difficult.
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• Why simulation?

– Because, there may be no closed form solution for large deviation

likelihood.

– We may not know the form of individual distribution, and we have

to rely on the empirical observations which look like heavy tails.

• Finally, the estimation approach is different for light tailed dis-

tributions and heavy tails.

• In general there are two broad techniques for extreme event sim-

ulation: Importance sampling and Monte-Carlo methods.
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Example of Market Portfolio (Gaussian Environ-
ment)

• Assume there are M assets available in the market whose returns

are driven by k latent factors φ = (φ1, . . . , φk). The return to

asset i is

ηi = 〈βi, φ〉+ εi, (1)

where φ ∼ N (0, Ik) and εi ∼ N (0, σ2
i ).

• Let the market portfolio be the uniformly weighted average re-

turn of individual assets: ξ = 1
M

∑M
i=1 ηi = 〈β̄, φ〉+ ε̄.

• For large x how to calculate P [ξ > x]? Importance sampling with

an appropriate choice of sampling measure.

ξ ∼ N

0,
∥∥β̄∥∥2

2
+

M∑
i=1

σ2
i /M

2

 (2)
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• The cumulative generating function ψ(θ) exists for Gaussian distri-

bution for all θ ∈ R,

ψ(θ) = logE
[
eθξ
]

=
θ2

2

∥∥β̄∥∥2
2

+
1

M2

M∑
i=1

σ2
i

 (3)

• One candidate for the importance sampling distribution is Pθ, where

dPθ
dP

= eθξ−ψ(θ) (4)

• Now we can generate n samples from Pθ, and form the following sam-

ple average, which represents the unbiased estimator under the new

measure Pθ:
1

n

n∑
i=1

1[ξi>x]
dP
dPθ

(ξi) (5)

• Denote the per-sample estimator by Z(x) = 1[ξ>x]
dP
dPθ

(ξ). The next

definition spells out two notions that characterize relative error opti-

mality.
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Notions of Estimator’s Efficiency

Definition 1. The estimator Z(x) has bounded relative error

if

lim sup
x→∞

Var(Z(x))

E
[
Z(x)

]2 <∞, (6)

and is logarithmically efficient (a weaker notion) if for some

ε > 0

lim sup
x→∞

Var(Z(x))

E
[
Z(x)

]2−ε = 0. (7)

Importance Sampling Efficiency (Asmussen 2008)

Theorem 2. The exponential change of measure in (4) is

logarithmically efficient for the unique parameter θ that solves

x = ψ′(θ).



8

Example of Market Portfolio (Gaussian Environ-
ment)

• As a result of twisting the sampling distribution, the relative

error scales as P [ξ > x]
−ε/2

, compared to P [ξ > x]
−1/2

without

any measure transformation.

• But, what if the factors or the individual asset risk terms are

not Gaussian? The moment generating function may not exist,

then whole measure change methods breaks down!

• Therefore, to find the optimal measure change we have to appeal

to heuristic methods, or use Monte-Carlo methods.
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Regularly-Varying Environment

RV Distribution

Definition 3. A distribution function F has a regularly vary-

ing tail, if F̄ (x) ∼ L(x)/xα as x→∞, where α > 0 and L(·)
varies slowly at infinity, i.e.

lim
x→∞

L(tx)

L(x)
= 1 for all t > 0. (8)

A Regularity Condition

Condition 4. F satisfies the h-condition, if there exists an

eventually increasing function h(x) such that limx→∞ h(x) =

∞ and

lim
x→∞

F̄ (x+ h(x))

F̄ (x)
= 1. (9)
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Sum Asymptotics

Theorem 5. Suppose X1, . . . , XN are independent random

variables in R, such that:

(i) An RV distribution F exists, such that F̄i(x) ∼ ciF̄ (x)

for all i’s and at least one ci 6= 0,

(ii) F satisfies the h-condition,

then the following asymptotic result holds:

P [X1 + . . .+XN > x] ∼
N∑
i=1

P [Xi > x] ∼

 N∑
i=1

ci

 F̄ (x)

(10)
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Maximum Factor Asymptotics (Almost Catastrophe Principle)

Theorem 6. Suppose X1, . . . , XN are independently drawn

from F1 . . . , FN , and take values in R. Then, under the same

conditions i and ii of theorem 5, the following asymptotic

result holds: then the following asymptotic result holds:

N∑
i=1

P [Xi > x] + o(F̄ (x)) ≤ P
[

max
1≤i≤N

Xi > x

]

≤ (1− e−1)−1
N∑
i=1

P [Xi > x] + o(F̄ (x))

(11)
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Estimation of the Large Deviation Probability

• One candidate is to take
∑N
i=1 P [Xi > x] as an estimator, that

becomes more precise as x → ∞. However, it turns out that it

performs very weakly.

• A conditional Monte-Carlo (CMC) algorithm is developed in

(Asmussen, Kroese et al. 2006) to cope with the tail probability

of sum of i.i.d heavy tails. That idea is incorporated here to ob-

tain an estimator for the sum of independent but non-identical

factors.

• CMC steps:

(i) Take a sample draw Xi from its corresponding distribution Fi.

(ii) Let MN = max{Xi : i ∈ [N ]}.

(iii) Z(x) =
∑N
i=1 P

[
SN > x,MN = Xi|X−i

]
gives an unbiased esti-

mator for P [SN > x].
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CMC Efficiency Analysis

• The proposed CMC estimator has bounded relative error, i.e

lim supx→∞
Var(Z(x))
E[Z(x)]2 < N2α <∞.

• Let µ(x) = P [X1 + . . .+XN > x], and σ(x)2 = Var(Z(x)); re-

peat the CMC n times, and take the sample average Z̄n(x).

• CLT confidence interval: CLT implies Z̄n(x)−µ(x)
σ(x)/

√
n

d
=⇒ N (0, 1),

and

Z̄n(x) ∈
(
µ(x)(1− κ), µ(x)(1 + κ)

)
w.p

(
2Φ(κ

√
nN−α)− 1

)
(12)

• Markov confidence bound:

P
[∣∣Z̄n(x)− µ(x)

∣∣ > κµ(x)
]
≤

E
[(
Z̄n(x)− µ(x)

)2]
κ2µ(x)2

≤ N2α

κ2n
+ ox(1),

(13)
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CMC vs. Crude Monte-Carlo
Sample mean estimator after n repetition is

µ̂n(x) :=
1

n

n∑
k=1

1[
X

(k)
1 +...+X

(k)
N

>x

] (14)

where X
(k)
i is the kth independent draw from Fi.

Comparison of Estimators’ Concentration Speed

Proposition 7. For any precision level 0 < κ < 1, the CMC es-

timator Z̄n(x) is exponentially more efficient than µ̂n(x). Namely,

for any 0 < r < 2κ2N−2α

lim sup
x→∞

lim
n→∞

rn+ log

P
[∣∣Z̄n(x)− µ(x)

∣∣ > κµ(x)
]

P
[∣∣µ̂n(x)− µ(x)

∣∣ > κµ(x)
]

 = 0.

(15)
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Market Portfolio Large Deviation

• One of the main motivations of studying RV distributions was

to capture the large deviations of asset returns, as initially laid

out for the Gaussian case.

• Remember the factor model: ηi = 〈βi, φ〉 + εi and the market

portfolio: η̄ = 〈β̄, φ〉+ ε̄.

• Assume all factors (φ1, . . . , φk) and individual idiosyncratic noises

(ε1, . . . , εM ) have RV tails. Then, what can we say about P [η̄ > x]?

P

〈β̄, φ〉+
1

M

M∑
i=1

εi > x

 ∼ P
[
〈β̄, φ〉 > x

]
+ P

 1

M

M∑
i=1

εi > x


(∗)∼ P

[
〈β, φ〉 > x

]
(16)
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Empirical Implications

• Historical daily closed prices of Pierrel (the Italian pharmaceu-

tical company), Pampa Energia (the electricity company in Ar-

gentina), Gaumont Film (the oldest film production company

located in France) and Dow Jones commodity corn index over

the period of 12/2006-12/2016 are pulled out from compustat.

• AR(1)+GARCH(1,1) is then fit to all four stock returns:

rt = µt + ηt︸︷︷︸
σtεt

:= E
[
rt|Ft−1

]
+ (rt − E

[
rt|Ft−1

]
)

σ2
t = ω + γη2

t−1 + θσ2
t−1

µt = λ+ ϕµt−1

(17)

• QQ-plot of standardized returns v.s N (0, 1):
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Figure 1: QQ-plot versus standard Normal
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• Gaussianity over both left and right tails are violated! So we can

fit a Generalized Pareto distribution to both tails:

f(x;σ, α) =
1

σ

(
1 + ξ

x

σ

)−(1+1/ξ)

for x > 0. (18)

• The largest 10% of both positive and negative residuals in ab-

solute value are taken, then the ML estimates of the shape and

scale parameters are found.



19

Table 1: GPD ML estimates for positive and negative tails

Pierrel Pampa Energia Gaumont Film DJ corn

ξ+ 0.527
(0.141)

−0.006
(0.126)

0.086
(0.098)

0.050
(0.082)

σ+ 0.600
(0.097)

0.631
(0.099)

0.903
(0.126)

0.554
(0.067)

ξ− 0.101
(0.092)

0.009
(0.084)

0.059
(0.073)

0.111
(0.114)

σ− 0.541
(0.068)

0.536
(0.064)

0.727
(0.079)

0.563
(0.081)

Pierrel’s QQ-plot together with the first row of table 1 confirm that it

has the heaviest positive tail among four, and roughly second to DJ

corn for the negative tail

• This observation on heavy tailed nature of residual series backs up

the need for the efficient methods of deviation probability estimation,

as many events are directly or indirectly relied on such likelihoods.
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