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Abstract

In this paper we analyze performance-based remuneration for risk-

averse managers in a Black-Scholes-type model. We assume that the firm’s

performance is influenced by an industry and a firm-specific risk. A rel-

ative performance compensation which rewards a manager relative to the

exogenous performance of the firms in his peer group, can filter out the

industry-specific risk and lower the compensation costs to the firm. How-

ever, if all managers of the firms in the peer group receive an endogenous

relative performance compensation, we show that the managers may herd

in their investment decisions and choose an inferior investment despite the

presence of a more profitable alternative. This herding behavior is driven

by the managers’ risk-aversion and the endogenous relative performance

compensation.
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1 Introduction

1 Introduction

Delegating the management of a firm to a manager creates a conflict of inter-

ests between the owners of the firm and the manager. In practice, a variety of

compensation schemes have been designed, depending on the absolute or relative

performance of managers. The problem with absolute performance-based bonus

payments is that it is sometimes difficult to distinguish between good manage-

ment and luck. One potential solution is a relative performance-based bonus

payment, in which a comparison group of companies in the same industry is con-

sidered and managers are rewarded if their (delegated) firm does better than the

average firm in this group. Under certain assumptions a relative compensation

can serve as a sufficient statistic to disentangle the firm’s performance into a firm-

specific component (which the manager can influence) and an industry-specific

component (which the manager cannot influence).

This paper analyses the effect of relative compensation on risk-averse man-

agers and shows that it can lead to a “bad” equilibrium outcome. While relative

compensation has the potential merit of lowering the information asymmetry

between the shareholders and managers, it can lead to a socially non-optimal

outcome. If all managers are compensated relatively to each other, it is opti-

mal for the managers to choose the same investment strategies. Herding can

be interpreted as a hedging device for the risk-averse managers. Under certain

conditions herding can lead to the existence of a bad equilibrium outcome, in

which all managers choose an inferior investment project. The conclusion of our

research is that, relative management compensation is not unambiguously supe-

rior to absolute performance compensation and might potentially lead to inferior

outcomes.

The key assumption in our model is that all managers are compensated rel-

atively to each other. The strategic behavior of managers is different, if their

compensation is based on some exogenous benchmark, that they cannot influ-
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1 Introduction

ence. For example, if a firm is small, a major stock market index as the Dow

Jones can be regarded as exogenous. An exogenous relative performance com-

pensation can filter out some macroeconomic or industry-specific risk, which is

beyond the control of the manager, and thus lower the compensation costs to

the firm. However, in order to get a more precise estimation of the luck compo-

nent, the comparison group may be narrowed down to a smaller number of very

similar firms in the same industry. If there is a group of firms, whose managers

are all compensated relatively to each other, their strategic decisions influence

each other. In this paper we consider an endogenous reference index, where the

managers of all the firms are compensated such that each manager gets a bonus

whose magnitude depends on the the average stock price of the other firms. Un-

der certain conditions risk-averse managers will prefer to make the same decisions

as the other managers in the reference group in order to avoid risk.

Example 1. Consider as an example the management of Ford, GM and Chrysler.

As these companies are all car manufacturers, they are exposed to the same

macroeconomic shocks. If Ford is doing better than GM and Chrysler, this seems

to be very likely due to better management and not to luck. Assume, that the

managers of these firms could either invest into new environmentally friendly

technology and green cars or continue building SUVs. If the remuneration of

GM’s manager depends only on the stock price (or the overall performance) of

the company, the environmentally friendly technology might be risky, but strictly

preferred by the risk-averse manager and the risk neutral shareholders.

However, assume now that all three managers are compensated based on the

relative performance to each other. Given that GM and Chrysler have chosen

SUVs over green cars, the manager of Ford can reduce his payoff risk by building

SUVs as well. Hence, an overall bad decision might be profitable for the risk-

averse manager if it reduces a risk that he cannot hedge. The same argument

would apply to the managers of GM and Chrysler leading to a potential “bad

3



1 Introduction

equilibrium”.

Comparing a “good” manager to an endogenous index of firms with “bad”

managers, can lead to bad outcome for all firms. In our paper the herding motive

of the agents is purely motivated by their risk-aversion and the relative perfor-

mance component in their contracts. Imitating the actions of the other agents

in the peer group reduces unhedgeable risk of a manager. This herding behavior

implies that there can be two equilibrium outcomes - one in which every manager

chooses the good investment project and one in which all the managers undertake

the inferior investment project. If some of the managers in the comparison group

are of a “low” type, i.e. they cannot choose the better investment project either

because of a lack of ability or a behavioral bias, the “bad” outcome can be the

only remaining equilibrium.

In the present paper, we consider relative performance evaluation in a two-

period Black-Scholes economy with many managers of different types. The man-

agers can choose among investment opportunities with different drift and volatil-

ity. The principal agent problem for the shareholders is to choose a compensation

scheme that induces the managers (agent) to pick the right investment project

under the lowest costs for the shareholders (principal). Our model focuses on

illustrating the direct effect of the compensation externality and risk-aversion

on the strategic behavior. Among the herding literature, Gümbel (2005) is the

most similar one to ours and presents an information model of delegated portfolio

management in which herding behavior of risk-averse managers can also occur.

Our model differs from Gümbel (2005) in two aspects. First, our setting is not a

conventional information model. We focus only on the herding aspect and leave

other components out, e.g. acquisition of information, which are not necessary to

show our results. Second, we work in a more realistic Black-Scholes economy and

analyze how herding can occur in a model with N ≥ 2 managers, allowing the

existence of different types of managers. The herding idea in our paper is also dif-
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1 Introduction

ferent from the informational cascade described in Bikhchandani et. al. (1998).

In their setup every manager receives a private signal about the quality of an in-

vestment project, while in our model, investment projects are exogenously given.

In our model relative compensation poses a direct externality of one manager’s

action on the other managers’ outcomes. A somewhat different herding story is

presented in Scharfstein and Stein (1990), where managers have career concerns

and investors in the future periods will judge them partly on their performance

compared with other managers. These reputational concerns represent an indirect

externality for the managers, which can lead to the “sharing-the-blame” effect

which drives managers to herd. In most of the literature on optimal managerial

contracting in information models, the security returns are modeled quite simply.

Dybvig et. al (2009) represents an exception here and derives optimal managerial

contracts using a rich model of security returns. However, they do not consider

the effect of endogenous relative compensation. Empirical evidence on relative

performance evaluation is mixed. For instance, Murphy (1985), Antle and Smith

(1986), Gibbons and Murphy (1990), and Janakiraman et. al (1992) support it,

while Barro and Barro (1990), Jensen and Murphy (1990), and Aggarwal and

Samwick (1999a, b) reject its use.

The remainder of the paper is organized as follows. Section 2 introduces

the underlying assumptions in our model and particularly the two investment

possibilities the management faces. Here we allow for different drifts, but the

same volatility in the investment projects. Section 3 considers four different

cases for the manager’s remuneration and solves the corresponding principal-

agent problems. Section 4 moves to the case where the investment possibilities

are with different volatilities. In the subsequent Section 5, numerical analyses are

carried out to answer the question when the managers exhibit herding behavior

and all choose the bad project. Section 6 concludes the paper and Section 7

discusses some results in the main text by releasing some relevant assumptions

and collects all the proofs.
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2 Model

Assume we have N ≥ 2 firms. Each firm has a manager and shareholders. We

assume that all the managers are risk-averse and have the same CRRA utility

function

U(x) =
1

1− γ
x1−γ, γ > 1,

while the shareholders are risk-neutral.1 The managers have an outside option,

which will yield him the utility Ū . Hence, the certainty equivalent payoff of the

outside option to the managers is CE:

CE = ((1− γ)Ū)
1

1−γ .

The management of the firms decides about investment decisions. For sim-

plicity, we assume that the investment decisions have purely impact on the stock

prices of the firms. The shareholders decide about the remuneration of the man-

agers. We consider only two periods. At time 0 the compensation scheme of the

manager is fixed. Then the manager decides which investments to make. At time

T the payoffs are realized and the manager receives his compensation.

We assume that the stock price of firm i follows a geometric Brownian motion

under the real world measure P2:

dSi(t)

Si(t)
= µidt+ σ∗dW ∗(t) + σdWi(t) i = 1, · · · , N

Here µi denotes the drift and σ and σ∗ the volatilities. The uncertainty of the

stock price can be decomposed into randomness concerning all companies in a

certain industry (given by σ∗dW ∗(t)) and randomness specific to the firm (given

1None of the results change, if we allow the shareholders to be risk-averse as long as they

are less risk averse than the manager. We do not consider the case γ < 1 for simplicity.
2It is straightforward to let the volatilities be different among the firms. Adding the com-

plexity is not necessary to make our point.
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by σdWi(t)). We assume that W ∗ and Wi are independent.

Assume, the firm i’s manager can choose between two different investment

projects which lead to the following two possible stock prices (good project results

in S̄i and bad project in S̃i)

S̄i = S0 exp

((
µ̄− 1

2
(σ∗)2 − 1

2
σ̄2

)
T + σ∗W ∗(T ) + σ̄W̄i(T )

)
S̃i = S0 exp

((
µ̃− 1

2
(σ∗)2 − 1

2
σ̃2

)
T + σ∗W ∗(T ) + σ̃W̃i(T )

)
.

Distinguishing between an industry-wide risk and a firm-specific risk, we can

introduce the following notations:

S̄i = X̄iY, S̃i = X̃iY,

where

Y = exp

(
−1

2
(σ∗)2T + σ∗W ∗(T )

)
X̄i = S0 exp

((
µ̄i −

1

2
σ̄2

)
T + σ̄W̄i(T )

)
X̃i = S0 exp

((
µ̃i −

1

2
σ̃2

)
T + σ̃W̃i(T )

)
.

The only difference between the two projects is that the good project S̄i has the

parameters (σ̄2, µ̄, W̄ ), while the bad project S̃i has instead (σ̃2, µ̃, W̃ ). We mean

“good project” by assuming

E[S̄i] ≥ E[S̃i]⇔ µ̄ ≥ µ̃

E

[
S̄1−γ
i

1− γ

]
≥ E

[
S̃1−γ
i

1− γ

]
⇔ µ̄− µ̃ ≥ 1

2

(
σ̄2 − σ̃2

)
γ. (2.1)

For the simple case that σ̄2 = σ̃2 = σ2 and µ̄ > µ̃, the above two inequalities

are trivially satisfied. Intuitively, µ̄ > µ̃ implies that a good project results in

a higher expected return. In the appendix, we treat the more general case with
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2 Model

σ̄2 6= σ̃2.

Note that firm j 6= i can only invest in two projects as well. Compared to

firm i, the only difference lies in the firm-specific risks: W̄j(T ) and W̃j(T ). For

different firms, the correlation between the same investment projects is higher

than for different ones:

dW̄idW̃j = dW̃idW̄j = ρL

dW̄idW̄j = dW̃idW̃j = ρH

with max(ρL, 0) < ρH .3 It is intuitive to assume that the firm-specific risks of

two firms are more correlated, when both the firms decide for the same project,

whatever the project is good or bad.

In the subsequent section, we will discuss how diverse remuneration schemes

influence the management’s investment decisions. We consider four different cases

for the manager’s remuneration:

1. A bonus scheme based on the observable stock price of the firm S.

2. A bonus scheme based on the unobservableX (recall that S has an industry-

wide risk Y and a firm-specific risk X.)

3. A relative compensation only for firm i, i.e. manager i’s compensation

depends on the stock price of all the other companies within the industry,

while the other firms are compensated independently of firm i and use an

absolute compensation as in case 1.

4. All managers obtain a relative compensation.

3The condition ρH > 0 is not necessary in the case σ̄ = σ̃. As we will see later, only the

difference ρH − ρL matters. However, from an economic point of view it is sensible to require

similar investment projects to be positively correlated. For the more general case σ̄ 6= σ̃, where

this assumption becomes important.
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3 Performance Based Compensation

3.1 Case 1: A bonus scheme based on S

Take firm i as an example, in which the stock price of the firm is Si and the

manager of firm i obtains a fraction α1 of Si.
4 The shareholders receive what

remains (1 − α1)Si. The shareholders optimally determine the compensation

parameter α1 under the constraint that S̄i is implemented:

Shareholders max
α1

E[(1− α1)S̄i]

subject to E[U(α1S̄i)] ≥ Ū (PC)

E[U(α1S̄i)] ≥ E[U(α1S̃i)] (IC).

where PC stands for participation constraint and IC for incentive constraint. Note

that the incentive constraint is always satisfied due to (2.1). The participation

constraint holds if

α1 ≥ α∗1 :=
CE

(E[X̄1−γ
i ])

1
1−γ (E[Y 1−γ])

1
1−γ

=
CE

S0

exp

(
−
(

(µ̄− γ 1

2
σ2 − γ 1

2
(σ∗)2)

)
T

)
.

When the manager’s salary is a fixed fraction of Si, the first-best solution can

be implemented if the shareholder provides a compensation α∗1Si. The cost of

compensation is given by

E[α∗1S̄i] =
((1− γ)Ū)

1
1−γ

(E[X̄1−γ
i ])

1
1−γ (E[Y 1−γ])

1
1−γ

E[X̄i Y ]

=CE · E[X̄i]

(E[X̄1−γ
i ])

1
1−γ
· E[Y ]

(E[Y 1−γ])
1

1−γ

=:CE · kX · kY .

4In practice, managers typically receive a fixed and a variable component. In our problem,

we focus only on the variable component and assume that a certain amount of utility is obtained

by the variable component. We do not explicitly derive the relationship between the fixed and

variable component. The same compensation scheme has been used by Basak, Pavlova and

Shapiro (2003). With such type of compensation, the managers have an explicit incentive to

increase the stock price at time T .
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3 Performance Based Compensation

Lemma 1. It holds kX > 1 for σ > 0 and kY > 1 for σ∗ > 0. Hence, kX > 1 and

kY > 1 can be interpreted as a risk premium that the manager demands, because

he cannot hedge these risks that are part of his remuneration.

The costs to the shareholders are then

E
[
α∗1S̄i

]
= CE · exp

((γ
2
σ2 +

γ

2
(σ∗)2)

)
T
)
.

The positive risk premium increases in degree of risk aversion γ, the level of

riskiness σ and σ∗.

3.2 Case 2: A bonus scheme based on X

In the unrealistic case, where the shareholders can observe the “luck” component

of the firm’s output, they can write a more “efficient” contract. If Si and Y can be

observed, then the realization of Xi is known as well. Hence, the shareholders can

directly contract on Xi. We assume that the manager gets a constant fraction α2

of X̄i respectively X̃i. The optimal compensation parameter α2 can be determined

similarly as in Case 1. The optimization problem of the shareholders for X̄i being

implemented is given by

Shareholders max
α2

E[Si − α2X̄i]

subject to E[U(α2X̄i)] ≥ Ū (PC)

E[U(α2X̄i)] ≥ E[U(α2X̃i)] (IC).

Note that the incentive constraint is always satisfied due to (2.1). The participa-

tion constraint holds if

α2 ≥ α∗2 :=
CE

(E[X̄1−γ
i ])

1
1−γ

=
CE

S0

exp

(
−
(

(µ̄− γ 1

2
σ2)

)
T

)
.

When the manager’s salary is a fixed fraction of Xi, the first-best solution can

be implemented if the shareholder provides a compensation α∗2X̄i. The cost of
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3 Performance Based Compensation

compensation is given by

E[α∗2X̄i] =
((1− γ)Ū)

1
1−γ

(E[X̄1−γ
i ])

1
1−γ

E[X̄i]

=CE · E[X̄i]

(E[X̄1−γ
i ])

1
1−γ

=CE exp
((γ

2
σ2
)
T
)

=CE · kX ≤ CE · kX · kY = E[α∗1S̄i]

because kY > 1 for σ∗ > 0. The compensation scheme directly based on Xi is

cheaper for the shareholders. Thus, as expected including more information is

beneficial.

3.3 Case 3: A relative compensation only for firm i

Unfortunately, in practice, the shareholders do not observe Y . However, by

comparing the realized performance between different firms they can filter out

the influence of luck on the overall output. Assume there are N firms in the

economy and the performance of manager i is compared to the geometric average

of the performance of the other N − 1 firms. In more detail, we assume that the

manager of firm i receives a relative compensation:

β
Si(∏

j 6=i Sj

)1/(N−1)
.

Here, we consider the case in which firm i is the exclusive firm using relative

compensation scheme. All the other firms offer a compensation scheme as in

case 1, i.e. α1Sj, j 6= i. From the analysis for case 1, we already know that

manager j 6= i will choose good projects when α1 ≥ α∗1. The shareholders in firm

i solve the following optimization problem, if they want the good project S̄i to
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3 Performance Based Compensation

be implemented.

Shareholders max
β

E
S̄i − β S̄i(∏

j 6=i S̄j

)1/(N−1)




subject to EU

β S̄i(∏
j 6=i S̄j

)1/(N−1)

 ≥ Ū (PC)

EU

β S̄i(∏
j 6=i S̄j

)1/(N−1)

 ≥ EU

β S̃i(∏
j 6=i S̄j

)1/(N−1)

 (IC)

Lemma 2. The expected utility of choosing S̄i given that N − 1 firms choose the

good project is

EU

β S̄i(∏
j 6=i S̄j

)1/(N−1)

 =
β1−γ

1− γ
exp

(
1

2
(1− γ)2σ2 N

N − 1
(1− ρH)T

)
(3.1)

The expected utility of choosing S̃i given that N − 1 firms choose the good project

is

EU

β S̃i(∏
j 6=i S̄j

)1/(N−1)

 =
β1−γ

1− γ
exp

(
(1− γ)(µ̃− µ̄)T

+
1

2
(1− γ)2σ2

(
2(ρH − ρL) +

N

N − 1
(1− ρH)

)
T

)
.

(3.2)

Lemma 3. The incentive constraint is always satisfied.

The minimum number of shares β∗ such that the participation constraint is

satisfied is equal to

β∗ = CE exp

(
1

2
(γ − 1)σ2 N

N − 1
(1− ρH)T

)
.

The costs to the shareholders are then

E

β∗ S̄i(T )(∏
1≤j≤N−1 S̄j(T )

)1/(N−1)

 = CE exp

(
1

2
σ2 N

N − 1
(1− ρH)γT

)
.
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3 Performance Based Compensation

Lemma 4. If ρH ≥= 1/N := ρ∗H , then the compensation scheme of case 3 is

cheaper than the compensation scheme of case 2 (and accordingly also of case 1).

Since in equilibrium, all the managers choose the same (good) project, ρL

does not play a role in the cost. The higher the correlation coefficient ρH , the less

volatile the relative compensation S̄i(T )/
(∏

1≤j≤N−1 S̄j(T )
)1/(N−1)

becomes. If

there is a perfect positive correlation ρH = 1, the relative compensation becomes

risk-less.5

3.4 Case 4: All managers obtain a relative compensation.

The interesting case is when all managers receive a relative compensation. Then

manager i’s decision will affect the choice of manager j, which in turn has an

effect on manager i. Here, all managers make their decisions simultaneously.6

Therefore, the optimal investment decision is determined endogenously among

managers. In this section, we examine pure Nash equilibria. The important

question is when a bad Nash equilibrium exists, in which all the managers choose

bad projects. Assuming all the managers are identical (particularly with the

same risk aversion), a Nash equilibrium can be characterized up to relabeling by

the number NG of managers that choose the good project in the economy.

Similarly as in Case 3, there are N firms in the economy and the performance

of manager i is compared to the geometric average of the performance of the

other N − 1 firms. Assume that from the other N − 1 firms, NG − 1 choose the

5In our setup we can perfectly filter out the industry-specific risk. In practice, a benchmark

index will not completely filter out the luck component. It is straightforward to extend our

model to capture this effect. However, this is not going to change our results qualitatively.
6In practice, there is always some time delay between the decisions of different managers.

However, what is important is not when the decision is made, but when it becomes public

knowledge. We think it is not unrealistic to assume that at the time when the managers decide

about their investment projects, they do not know what their peers have done, and hence we

can treat the decision making process as a simultaneous event.
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3 Performance Based Compensation

good project S̄, while NB = N − NG choose the bad project S̃. Without loss

of generality we can label firm i as NG and assume that the first NG − 1 firms

choose the good project. To simplify notation, we denote the expected utility of

firm i given that NG − 1 of the other firms choose S̄ as

EU(Si|NG − 1) =
β1−γ

1− γ

 Si(∏
1≤j≤NG−1 S̄j

)1/(N−1) (∏
NG+1≤j≤N S̃j

)1/(N−1)


(1−γ)

for Si = S̄i or S̃i. We define p = NG−1
N−1

as the fraction of the good firms among

the other firms.

The shareholders in firm i solve the following optimization problem, if they

want the good project S̄i to be implemented.

Shareholders max
β

E
S̄i − β S̄i(∏

1≤j≤NG−1 S̄j

)1/(N−1) (∏
NG+1≤j≤N S̃j

)1/(N−1)




subject to EU(S̄i|NG − 1) ≥ Ū (PC)

EU(S̄i|NG − 1) ≥ EU(S̃i|NG − 1). (IC)

An important assumption is that if two firms make the same investment deci-

sions, there is more co-movement in the output than if they invest into different

projects. This is captured by the assumption ρH > max(ρL, 0).

Lemma 5. The expected utility of choosing S̄i given that NG − 1 firms choose

the good project is

EU(S̄i|NG − 1) =
β1−γ

1− γ
exp

(
(1− p)(1− γ)(µ̄− µ̃)T

+
1

2
(1− γ)2σ2

(
2(1− p)2(ρH − ρL) +

N

N − 1
(1− ρH)

)
T

)

The expected utility of choosing S̃i given that NG−1 firms choose the good project
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3 Performance Based Compensation

is

EU(S̃i|NG − 1) =
β1−γ

1− γ
exp

(
p(1− γ)(µ̃− µ̄)T

+
1

2
(1− γ)2σ2

(
2p2(ρH − ρL) +

N

N − 1
(1− ρH)

)
T

)

where p = NG−1
N−1

.

Lemma 6. The incentive constraint EU(S̄i|NG−1) ≥ EU(S̃i|NG−1) is satisfied

if and only if

µ̄− µ̃ ≥ (γ − 1)(ρH − ρL)σ2

(
1− 2

(
NG − 1

N − 1

))
(3.3)

For NG = 0, 1, (3.3) is satisfied automatically. For NG > 1, the higher the

number NG, the lower the RHS of (3.3) and the more likely the above inequality

holds. For this case, there is a critical number N∗G − 1 of other managers to

choose the good project such that the incentive constraint is always satisfied for

NG ≥ N∗G. In other words, if the fraction p of the managers who choose the good

project satisfies

p ≥ p∗ :=
N∗G − 1

N − 1
= max

{
0,

1

2

(
1− µ̄− µ̃

(γ − 1)σ2(ρH − ρL)

)}
, (3.4)

then the incentive constraint holds. As p∗ owns a value smaller than 0.5, the

inequality (3.3) is always satisfied if at least half of the other managers choose

good projects, i.e. p ≥ 0.5.

Definition 1. A Nash equilibrium with N managers is described by their choices

(S1, ..., SN). Up to relabeling a Nash equilibrium is completely characterized by

the number NG of good projects and the number NB = N − NG of bad projects.

For NG = 0 and NG = N we call the Nash equilibrium symmetric, as all agents

choose the same action.

As the utility function of each agent is the same, we will suppress the index

i and j in the following.
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3 Performance Based Compensation

Proposition 1. For N ≥ 3, asymmetric pure Nash equilibria, i.e. 1 ≤ NG ≤

N − 1, do not exist. NG = N is always a Nash equilibrium. NG = 0 is a Nash

equilibrium if and only if µ̄− µ̃ ≤ (γ − 1)(ρH − ρL)σ2.

The main takeaway for N ≥ 3 is that both extreme outcomes, the one where

every manager chooses the good project and the one where all managers pick

the bad project, can be equilibria. In other words, the bad equilibrium, i.e.

herding behavior, may arise when the mean return spread µ̄− µ̃ is smaller than

(γ−1)(ρH−ρL)σ2. The more risk averse the managers, the higher this magnitude

and the more likely this bad equilibrium might occur. Moreover, herding behavior

is justified by the fact that the managers’ expected utility is identical in the good

and bad equilibrium, i.e.

EU(S̄i|N − 1) = EU(S̃i|0) =
β1−γ

1− γ
exp

{
1

2
(1− γ)2σ2 N

N − 1
(1− ρH)T

}
.

It implies that the managers have no incentive to ensure that the good equilibrium

results.

Proposition 2. For N = 2, there exists an asymmetric Nash equilibrium if and

only if (µ̄− µ̃) = (γ − 1)(ρH − ρL)σ2. NG = 2 is a Nash equilibrium if and only

if (µ̄ − µ̃) ≥ (γ − 1)(ρH − ρL)σ2. NG = 0 is a Nash equilibrium if and only if

(µ̄− µ̃) ≤ (γ − 1)(ρH − ρL)σ2.

3.5 Different types of managers

Here, we restrict ourselves to N ≥ 3. We add another ingredient to our model:

different types of managers. The idea is that some managers are better than

others. Some managers might have more information or better business relation-

ships than other managers. Another interpretation is that the “bad” managers

suffer from some form of behavioral bias. We model the difference in abilities by

assuming that there is a number of “bad” managers who can only implement the

bad project. Equivalently, we can say that there is an upper bound N̄G on the

16



4 Different Volatilities for Different Investment Projects

number of managers who can choose between the good and the bad project. This

is a restriction to the possible Nash equilibria to the set {NG|0 ≤ NG ≤ N̄G}.

From our previous analysis we already know that NG ∈ {1, ..., N̄G − 1} cannot

be a Nash equilibrium.

Proposition 3. If N̄G < N∗G (N∗G defined in (3.4)), then N̄G is not a Nash

equilibrium and NG = 0 is the exclusive Nash equilibrium. If N̄G ≥ N∗G, then

NG = N̄G is the exclusive Nash equilibrium.

Note that in the proof of the above proposition, we do not need to examine

whether the “bad” managers have the incentive to deviate because they do not

have the choice to implement the good project.

4 Different Volatilities for Different Investment

Projects

So far we have assumed that the good and the bad investment project differ

only in their drift µ̄ respectively, µ̃. In Appendix 7.2 we treat the more general

case with (µ̄, σ̄) 6= (µ̃, σ̃) in both components. Our results still hold in the more

general case.

Proposition 4. For N ≥ 3, asymmetric pure Nash equilibria, i.e. 1 ≤ NG ≤

N − 1, do not exist. NG = N is always a Nash equilibrium. NG = 0 is a Nash

equilibrium if and only if

µ̄− µ̃ ≤ 1
2
(σ̄2 − σ̃2)(1− (γ − 1)(1− ρH)) + 1

2
(γ − 1)(ρH σ̄

2 + ρH σ̃
2 − 2σ̃σ̄ρL).

The incentive constraint EU [S̄i|NG − 1] ≥ EU [S̃i|NG − 1] is satisfied if and only

if

µ̄− µ̃ > 1

2
(σ̄2 − σ̃2)(1 + (γ − 1)(1− ρH)) +

1

2
(γ − 1)(1− 2p)(ρH σ̄

2 + ρH σ̃
2 − 2σ̄σ̃ρL)

The critical number N∗G − 1 of other managers to choose the good project, such

that the incentive constraint is always satisfied, (respectively, the critical fraction

17



5 Numerical Analysis

p∗) is given by:

p∗ :=
N∗G − 1

N − 1
= max

{
0,

1

2

(
1−

(µ̄− µ̃)− 1
2
(σ̄2 − σ̃2)(1 + (γ − 1)(1− ρH))

1
2
(ρH σ̄2 + ρH σ̃2 − 2σ̄σ̃ρL)

)}
.

5 Numerical Analysis

In this section we want to analyze how relevant our findings are for a range

of realistic parameter values. We are interested in four questions; each will be

analyzed in a separate subplot:7

a) How different are the costs to the shareholders for each of the compensation

schemes considered in case 1, case 2 and case 3, if we consider different levels

of risk aversion for the manager?

b) What is the minimal spread between µ̄ and µ̃ to ensure that the bad equi-

librium cannot occur for different levels of risk aversion for the managers

in case 4? Recall that the condition for a good Nash equilibrium holds

trivially, while the bad equilibrium requires µ̄ − µ̃ to be bounded by the

magnitude (γ − 1)(ρH − ρL)σ2. In other words, this magnitude is the min-

imum spread between µ̄ and µ̃ above which the bad equilibrium cannot

occur.

c) What is the minimal fraction of good managers p∗ below which the bad

equilibrium is the only equilibrium outcome as a function of the risk aversion

in case 4?

d) For a fixed risk aversion, how many good managers do we need in case 4 to

avoid that the bad equilibrium is the only equilibrium outcome?

7We only consider the simple case with σ̄ = σ̃ = σ. The results for σ̄ 6= σ̃ are quantitatively

similar.
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5 Numerical Analysis

To answer these questions, we choose the parameters as follows:

γ =3, CE = 100, µ̄ = 0.10, µ̃ = 0.08, σ = 0.20,

σ∗ =0.10, T = 1, N = 30, ρH = 0.5, ρL = −0.5. (5.1)

We have fixed the (reservation) certainty equivalent (CE) for managers with dif-

ferent levels of risk aversion, which implicitly assumes that they own different

reservation utilities. This is a plausible assumption.

In Figure 1 and Table 1, we analyze the four questions for a particular pa-

rameter set. The good investment project has a drift of µ̄ = 0.1 while the bad

investment project merely has a drift of µ̃ = 0.08. In the first plot we show the

costs to the shareholders of the three different compensation schemes labeled as

case 1 to 3. Obviously, a relative compensation scheme seems to be substantially

cheaper, because we have chosen ρH > 1/N . The higher the risk aversion of the

manager, the more expensive a performance-based compensation becomes and

the larger the cost advantage of a relative compensation scheme. In the second

plot we look at the minimal spread that is necessary to enforce that there is only

a unique “good” equilibrium outcome. This means, if the spread µ̄− µ̃ is below

the plotted line for a given risk aversion, the “bad” equilibrium is possible. For a

risk aversion of γ = 3 the minimal spread, which we need to avoid a bad equilib-

rium, is already relatively high, namely 0.08. This implies that the existence of

bad equilibria is a relevant question. In the third plot, we show the relationship

between p∗ (the fraction of good managers among the other managers) and the

risk aversion. If the fraction of bad managers is larger than 1− p∗, then there is

only a bad equilibrium outcome. Note that p∗ converges to 0.5 for an increasing

risk aversion γ. For γ = 3, the critical fraction is 0.375, i.e. if more than 72.5%

of the managers choose the bad investment, then the unique outcome is the bad

equilibrium. In the fourth plot, we are interested in how the number of good

managers influences the equilibria. We fix γ = 3. For instance, in a group of
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5 Numerical Analysis
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Figure 1: Cost of compensation and occurrence of bad and good equilibria with

parameters: γ = 3, CE = 100, µ̄ = 0.10, µ̃ = 0.08, σ = 0.20, σ∗ = 0.10, T =

1, N = 30, ρH = 0.5, ρL = −0.5.
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5 Numerical Analysis

cost of cost of cost of minimum spread

γ compensation compensation compensation µ̄− µ̃ p∗ =
N∗
G−1

N−1
N∗G

(case 1) (case 2) (case 3)

1.5 103.821 103.045 101.564 0.02 0. 1

2. 105.127 104.081 102.091 0.04 0.25 9

2.5 106.449 105.127 102.62 0.06 0.333333 11

3. 107.788 106.184 103.152 0.08 0.375 12

3.5 109.144 107.251 103.687 0.1 0.4 13

4. 110.517 108.329 104.225 0.12 0.416667 14

4.5 111.907 109.417 104.765 0.14 0.428571 14

5. 113.315 110.517 105.309 0.16 0.4375 14

Table 1: Cost of compensation, minimum spread µ̄− µ̃, p∗ and N∗G as a function

of γ for N = 30.

N = 30 managers, it is sufficient to have 18 bad managers to end up in the bad

equilibrium, which can be also read in Table 1.

Table 2 illustrates the effect of the firm-specific risk σ on the cost of compen-

sations and the other relevant magnitudes. We have the following observations.

First, the cost of compensation increases in the volatility. The advantage of using

the relative compensation is particularly demonstrated for high-volatile projects.

Second, the required mean return spread µ̄− µ̃ between the good and bad project

increases in σ. For instance, the spread needs to be 32% such that the bad equi-

librium outcome does not result. In other words, the more volatile the projects,

the more likely the bad equilibrium will occur. Accordingly, the fraction of good

managers p∗ and the number of N∗G should be higher to avoid a bad equilibrium.

But p∗ and N∗G do not increase unlimitedly and are capped by 1/2 and N/2.
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5 Numerical Analysis

cost of cost of cost of minimum spread

σ compensation compensation compensation µ̄− µ̃ p∗ =
N∗
G−1

N−1
N∗G

(case 1) (case 2) (case 3)

0.05 101.893 100.376 100.194 0.005 0 1

0.1 103.045 101.511 100.779 0.02 0 1

0.15 104.996 103.433 101.761 0.045 0.277778 10

0.2 107.788 106.184 103.152 0.08 0.375 12

0.25 111.488 109.829 104.969 0.125 0.42 14

0.3 116.183 114.454 107.232 0.18 0.444444 14

0.35 121.988 120.172 109.971 0.245 0.459184 15

0.4 129.046 127.125 113.217 0.32 0.46875 15

Table 2: Cost of compensation, minimum spread µ̄− µ̃, p∗ and N∗G as a function

of different firm-specific risk σ. σ∗ is fixed at 0.10.

How ρH (or ρH−ρL) influences the cost of compensation, the minimum spread

µ̄−µ̃, p∗ and N∗G is exhibited in Table 3. The cost of compensation in cases 1 and 2

does not depend on the correlation coefficient ρH , while the cost of compensation

in case 3 decreases in ρH . If there is a perfect positive correlation (ρH = 1), all

the risks of the relative compensation can be eliminated, therefore the lowest cost

results. ρH − ρL has the same effect on the other three magnitudes as σ2, as only

the product (ρH − ρL)σ2 enters the relevant formulas.
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6 Conclusion

cost of cost of cost of minimum spread

ρH compensation compensation compensation µ̄− µ̃ p∗ =
N∗
G−1

N−1
N∗G

(case 1) (case 2) (case 3)

0.1 107.788 106.184 105.745 0.048 0.291667 10

0.2 107.788 106.184 105.091 0.056 0.321429 11

0.3 107.788 106.184 104.441 0.064 0.34375 11

0.4 107.788 106.184 103.794 0.072 0.361111 12

0.5 107.788 106.184 103.152 0.08 0.375 12

0.6 107.788 106.184 102.514 0.088 0.386364 13

0.7 107.788 106.184 101.88 0.096 0.395833 13

0.8 107.788 106.184 101.249 0.104 0.403846 13

0.9 107.788 106.184 100.623 0.112 0.410714 13

1. 107.788 106.184 100. 0.12 0.416667 14

Table 3: Cost of compensation, µ̄− µ̃, p∗ and N∗G as a function of ρH . ρL is fixed

at −0.5.

6 Conclusion

The present paper investigates the question of how different relative compensation

schemes influence the investment decisions of the management. In a two period

Black-Scholes type model, risk-averse managers are compensated relatively to

other managers in their industry group and can choose between a good and a

bad investment project. Relative compensation can reduce the costs of compen-

sation to the shareholders as it can help to distinguish between the firm-specific

risk (which the manager can influence) and an industry-specific risk (luck). How-

ever, when all managers are rewarded relatively, “all the managers choosing the

good project” is only one possible pure Nash equilibrium. For sufficiently high

risk-aversion or low mean spread between the good and the bad project, “all the
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7 Appendix

managers choosing the bad project” can also be a Nash equilibrium. We show

that the only possible Nash equilibria in our model are consistent with herding

behavior, i.e. all managers will either choose the good or the bad project, but no

asymmetric pure equilibria exist.

In an extension we consider the case where a fraction of the managers in an

industry are of a low type, i.e. they cannot select the good investment project.

Rewarding all managers in such an industry relatively can lead to a situation,

where the only Nash equilibrium is that every manager chooses the bad project.

The magnitudes of the quantities reported in this paper are subject to the many

limitations and simplifications of our model. However, we see these results as

providing a useful perspective on the directional effects of relative compensation.

The conclusion of our research is that, relative management compensation is not

unambiguously superior to absolute performance compensation and might po-

tentially lead to inferior outcomes. Rewarding the managers according to their

rank rather than the level of relative performance (c.f. a tournament scheme

as in Lazear and Rosen (1981)) might mitigate the incentive to herd on a bad

investment. However it is not clear if it will in general lead to a more efficient

outcome.

7 Appendix

7.1 Proofs for the Main Text

Lemma 1. It holds kX > 1 for σ > 0 and kY > 1 for σ∗ > 0. Hence, kX > 1 and

kY > 1 can be interpreted as a risk premium that the manager demands, because

he cannot hedge these risks that are part of his remuneration.
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7 Appendix

Proof. It holds

E[X̄i] =S0 exp{µ̄T}, (E[X̄i
1−γ

])
1

1−γ = S0 exp

{
µ̄T − 1

2
σ2γT

}
E[Y ] =1, (E[Y 1−γ])

1
1−γ = exp

{
−1

2
(σ∗)2γT

}
.

Hence, kX > 1 for σ > 0 and kY > 1 for σ∗ > 0.

Lemma 2. The expected utility of choosing S̄i given that N − 1 firms choose the

good project is

EU

β S̄i(∏
j 6=i S̄j

)1/(N−1)

 =
β1−γ

1− γ
exp

(
1

2
(1− γ)2σ2 N

N − 1
(1− ρH)T

)
(7.1)

The expected utility of choosing S̃i given that N − 1 firms choose the good project

is

EU

β S̃i(∏
j 6=i S̄j

)1/(N−1)

 =
β1−γ

1− γ
exp

(
(1− γ)(µ̃− µ̄)T

+
1

2
(1− γ)2σ2

(
2(ρH − ρL) +

N

N − 1
(1− ρH)

)
T

)
.

(7.2)

Proof. The detailed proof is left out in this place. In the following Section 3.4, we

introduce and derive EU(S̄i|NG− 1) and EU(S̃i|NG− 1) to denote the expected

utility of firm i given that NG − 1 of the other firms choose S̄. The expected

utility in (7.1) equals EU(S̄i|NG − 1) for NG = N and the expected utility in

(7.2) equals EU(S̃i|NG − 1) for NG = N .

Lemma 3. The incentive constraint is always satisfied.

Proof. Based on Lemma 2, the incentive constraint is satisfied if and only if

µ̄− µ̃ ≥ −(γ − 1)(ρH − ρL)σ2.

This condition is trivially satisfied, because we have assume γ > 1 and ρH >

ρL.
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Lemma 4. If ρH ≥= 1/N := ρ∗H , then the compensation scheme of case 3 is

cheaper than the compensation scheme of case 2 (and accordingly also of case 1).

Proof. The cost in case 2 is CE exp
{

1
2
γσ2T

}
. The compensation scheme of case

3 is cheaper if and only if

1

2
σ2 N

N − 1
(1− ρH)γT ≤ 1

2
γσ2T ⇔ ρH ≥ 1/N.

Lemma 5. The expected utility of choosing S̄i given that NG − 1 firms choose

the good project is

EU(S̄i|NG − 1) =
β1−γ

1− γ
exp

(
(1− p)(1− γ)(µ̄− µ̃)T

+
1

2
(1− γ)2σ2

(
2(1− p)2(ρH − ρL) +

N

N − 1
(1− ρH)

)
T

)

The expected utility of choosing S̃i given that NG−1 firms choose the good project

is

EU(S̃i|NG − 1) =
β1−γ

1− γ
exp

(
p(1− γ)(µ̃− µ̄)T

+
1

2
(1− γ)2σ2

(
2p2(ρH − ρL) +

N

N − 1
(1− ρH)

)
T

)

where p = NG−1
N−1

.

Proof. Set

W̄j =
√
ρHW +

√
1− ρH ¯̄Wj

W̃j =
ρL√
ρH

W +

√
ρH −

ρ2
L

ρH
W̄ +

√
1− ρH ˜̃Wj
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for j = 1, ..., N and W , Ŵ , ¯̄Wj and ˜̃Wj are Brownian motions, which are inde-

pendent among each other and among all j. This construction yields

dW̄idW̄i = dW̃idW̃i = dt

dW̄idW̄j = dW̃idW̃j = ρHdt

dW̄idW̃j = dW̃idW̄j = ρLdt

Then

EU(S̄i|NG − 1) =
β1−γ

1− γ
E

[
exp

(
(µ̄− 1

2
σ2)(1− γ)T + (1− γ)σW̄i

)
exp

(
p(1− γ)

(
µ̄− 1

2
σ2
)
T + (1−γ)σ

N−1

∑NG−1
j=1 W̄j

)
1

exp
(

(1− p)(1− γ)
(
µ̃− 1

2
σ2
)
T + (1−γ)σ

N−1

∑N
j=NG+1 W̃j

)]

=
β1−γ

1− γ
exp

(
(1− p)(1− γ)(µ̄− µ̃)T +

1

2
(1− γ)2σ2TV ar(Z)

)
with

Z =
√
ρHW +

√
1− ρH ¯̄Wi −

1

N − 1

NG−1∑
j=1

(√
ρHW +

√
1− ρH ¯̄Wj

)

− 1

N − 1

N∑
j=NG+1

 ρL√
ρH

W +

√
ρH −

ρ2
L

ρH
W̄ +

√
1− ρH ˜̃Wj

 .

The other case is analogous.

Proposition 1. For N ≥ 3, asymmetric pure Nash equilibria, i.e. 1 ≤ NG ≤

N − 1, do not exist. NG = N is always a Nash equilibrium. NG = 0 is a Nash

equilibrium if and only if µ̄− µ̃ ≤ (γ − 1)(ρH − ρL)σ2.

Proof. 1 ≤ NG ≤ N − 1 is a Nash equilibrium if and only if the following two

inequalities are satisfied:

1. EU(S̄|NG − 1) ≥ EU(S̃|NG − 1),
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2. EU(S̃|NG) ≥ EU(S̄|NG).

If NG is a Nash equilibrium, it cannot be profitable for any player to deviate.

First, consider the NG players, who play S̄. If one of them deviates, he will get

EU(S̃|NG−1), while if he continues to play S̄ he gets EU(S̄|NG−1). Equation 1

ensures that the players with the good projects do not deviate. Next, the players

who play S̃ in the Nash equilibrium, get EU(S̃|NG) from keeping their strategy

and EU(S̄|NG) from deviating. Therefore, equation 2 ensures that the N −NG

players implement the bad project in equilibrium. Based on the results in Lemma

5, the above two conditions are equivalent to

1. µ̄− µ̃ ≥ (γ − 1)(ρH − ρL)σ2
(
1− 2NG−1

N−1

)
2. µ̄− µ̃ ≤ (γ − 1)(ρH − ρL)σ2

(
N−3
N−1
− 2NG−1

N−1

)
.

Apparently, these two inequalities do not hold simultaneously for a 1 ≤ NG ≤

N − 1.

NG = N is a Nash equilibrium if and only if EU(S̄|N − 1) ≥ EU(S̃|N − 1). This

condition is the same as

µ̄− µ̃ ≥ −(γ − 1)(ρH − ρL)σ2

which holds always.

NG = 0 is a Nash equilibrium if and only if EU(S̃|0) ≥ EU(S̄|0). This condition

is equivalent to

(µ̄− µ̃) ≤ (γ − 1)(ρH − ρL)σ2.

Proposition 2. For N = 2, there exists an asymmetric Nash equilibrium if and

only if (µ̄− µ̃) = (γ − 1)(ρH − ρL)σ2. NG = 2 is a Nash equilibrium if and only

if (µ̄ − µ̃) ≥ (γ − 1)(ρH − ρL)σ2. NG = 0 is a Nash equilibrium if and only if

(µ̄− µ̃) ≤ (γ − 1)(ρH − ρL)σ2.
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Proof. Denote these two firms by firm 1 and 2. Asymmetric Nash equilibrium

exists if and only if the following two inequalities hold:

a) EU(S̄1/S̃2) ≥ EU(S̃1/S̃2),

b) and EU(S̃1/S̄2) ≥ EU(S̄1/S̄2).

Conditions a) and b) can be written as

a) (µ̄− µ̃) ≥ (γ − 1)(ρH − ρL)σ2

b) and (µ̄− µ̃) ≤ (γ − 1)(ρH − ρL)σ2.

As a result, if (µ̄ − µ̃) = (γ − 1)(ρH − ρL)σ2, there is an asymmetric Nash

equilibrium.

NG = 2 is a Nash equilibrium if and only if EU(S̄1/S̄2) ≥ EU(S̃1/S̄2). NG = 0

is a Nash equilibrium if and only if EU(S̃1/S̃2) ≥ EU(S̄1/S̃2).

Proposition 3. If N̄G < N∗G (N∗G defined in (3.4)), then N̄G is not a Nash

equilibrium and NG = 0 is the exclusive Nash equilibrium. If N̄G ≥ N∗G, then

NG = N̄G is the exclusive Nash equilibrium.

Proof. If N̄G < N∗G, the incentive constraint for a good project being implemented

cannot be satisfied (see Lemma 6).

Note that NG = 0 is a Nash equilibrium if and only if (µ̄−µ̃) ≤ (γ−1)(ρH−ρL)σ2.

Recall the condition N̄G < N∗G implies

µ̄− µ̃ ≤ 1

2

(
1− N̄G − 1

N − 1

)
(γ − 1)σ2(ρH − ρL) ≤ (γ − 1)(ρH − ρL)σ2.

Hence, NG = 0 is a Nash equilibrium.

If N̄G ≥ N∗G, the condition for NG = N̄G being a Nash equilibrium is

EU(S̄|N̄G − 1) ≥ EU(S̃|N̄G − 1) ⇔ µ̄− µ̃ ≥ 1

2

(
1− N̄G − 1

N − 1

)
(γ − 1)σ2(ρH − ρL).

This condition is implied by N̄G ≥ N∗G.
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7.2 Different Volatilities for Different Investment Projects

Here we want to extend the relative stock price model to the case where σ̄2 6= σ̃2.

The good project S̄ has the parameters (σ̄2, µ̄), while the bad project S̃ is linked

to the parameters (σ̃2, µ̃). Recall that we assume

E[S̄t] > E[S̃t] ⇔ µ̄ > µ̃

EU [S̄t] > EU [S̃t] ⇔ µ̄− µ̃ > 1

2

(
σ̄2 − σ̃2

)
γ

i.e. we consider only drifts that satisfy µ̄ − µ̃ > max
(
0, 1

2
(σ̄2 − σ̃2) γ

)
. It is

crucial to assume that ρH ≥ max(0, ρL).

Lemma 6. The expected utility of choosing S̄ given that NG− 1 firms choose the

good project is

EU [S̄|NG − 1] =
β1−γ

1− γ
exp

(
(1− γ)(1− p)

(
(µ̄− µ̃)− 1

2
(σ̄2 − σ̃2)

)
T

+
1

2
(1− γ)2

(
(1− p)2(ρH σ̄

2 + ρH σ̃
2 − 2σ̄σ̃ρL)

+ (1− ρH)

(
σ̄2

(
1 +

p

N − 1

)
+ σ̃2 1− p

N − 1

))
T

)

The expected utility of choosing X̃ given that NG−1 firms choose the good project

is

EU [S̃|NG − 1] =
β1−γ

1− γ
exp

(
(1− γ)p

(
(µ̃− µ̄)− 1

2
(σ̃2 − σ̄2)

)
T

+
1

2
(1− γ)2

(
p2(ρH σ̄

2 + ρH σ̃
2 − 2σ̄σ̃ρL)

+ (1− ρH)

(
σ̃2

(
1 +

1− p
N − 1

)
+ σ̄2 p

N − 1

))
T

)
Lemma 7. The following two inequalities

1. EU [S̄|NG − 1] ≥ EU [S̃|NG − 1]

2. EU [S̃|NG] ≥ EU [S̄|NG]
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are equivalent to

1. µ̄−µ̃ > 1
2
(σ̄2−σ̃2)(1+(γ−1)(1−ρH))+ 1

2
(γ−1)(1−2p)(ρH σ̄

2+ρH σ̃
2−2σ̄σ̃ρL)

2. µ̄− µ̃ < 1
2
(σ̄2− σ̃2)(1− (γ− 1)(1− ρH)) + 1

2

(
1− 2p− 2

N−1

)
(γ− 1)(ρH σ̄

2 +

ρH σ̃
2 − 2σ̃σ̄ρL)

with p = NG−1
N−1

.

This allows us to generalize Proposition 1:

Proposition 4. For N ≥ 3, asymmetric pure Nash equilibria, i.e. 1 ≤ NG ≤

N − 1, do not exist. NG = N is always a Nash equilibrium. NG = 0 is a Nash

equilibrium if and only if

µ̄− µ̃ ≤ 1
2
(σ̄2 − σ̃2)(1− (γ − 1)(1− ρH)) + 1

2
(γ − 1)(ρH σ̄

2 + ρH σ̃
2 − 2σ̃σ̄ρL).

The incentive constraint EU [S̄i|NG − 1] ≥ EU [S̃i|NG − 1] is satisfied if and only

if

µ̄− µ̃ > 1

2
(σ̄2 − σ̃2)(1 + (γ − 1)(1− ρH)) +

1

2
(γ − 1)(1− 2p)(ρH σ̄

2 + ρH σ̃
2 − 2σ̄σ̃ρL)

The critical number N∗G − 1 of other managers to choose the good project, such

that the incentive constraint is always satisfied, (respectively, the critical fraction

p∗) is given by:

p∗ :=
N∗G − 1

N − 1
= max

{
0,

1

2

(
1−

(µ̄− µ̃)− 1
2
(σ̄2 − σ̃2)(1 + (γ − 1)(1− ρH))

1
2
(ρH σ̄2 + ρH σ̃2 − 2σ̄σ̃ρL)

)}
.

Proof. 1 ≤ NG ≤ N − 1 is a Nash equilibrium if and only if the following two

inequalities are satisfied:

1. EU [S̄|NG − 1] ≥ EU [S̃|NG − 1],

2. EU [S̃|NG] ≥ EU [S̄|NG].
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Based on the results in Lemma 7, the above two conditions can only hold simul-

taneously if

(σ̄2 − σ̃2)(1− ρH)(N − 1) ≤ −(ρH σ̄
2 + ρH σ̃

2 − 2σ̃σ̄ρL) ⇔

0 ≤ (σ̄2 + σ̃2)(ρH(N − 2)− (N − 1)) + 2σ̄σ̃ρL ⇔

0 ≥ σ̄2 + σ̃2 − 2σ̄σ̃ρL
(N − 1)− (N − 2)ρH

As one can show easily, that under the assumption ρH ≥ max(0, ρL), the largest

value that 2σ̄σ̃ρL
(N−1)−(N−2)ρH

can take is 2σ̄σ̃ for ρH = ρL = 1. Hence, if the above

inequality does not hold for this extreme case, it can never hold:

0 ≥ σ̄2 + σ̃2 − 2σ̄σ̃ ⇔

0 ≥ (σ̄ − σ̃)2

This inequality can at most hold for σ̄ = σ̃, but in Proposition 1 we have already

ruled out this case.

NG = N is a Nash equilibrium if and only if EU [S̄|N − 1] ≥ EU [S̃|N − 1].

This condition is the same as

µ̄− µ̃ > 1

2
(σ̄2 − σ̃2)(1 + (γ − 1)(1− ρH))− 1

2
(γ − 1)(ρH σ̄

2 + ρH σ̃
2 − 2σ̄σ̃ρL)

which holds always as (ρH σ̄
2 + ρH σ̃

2 − 2σ̄σ̃ρL) ≥ 0.

NG = 0 is a Nash equilibrium if and only if EU [S̃|0] ≥ EU [S̄|0]. This condition

is equivalent to

µ̄− µ̃ ≤ 1

2
(σ̄2 − σ̃2)(1− (γ − 1)(1− ρH)) +

1

2
(γ − 1)(ρH σ̄

2 + ρH σ̃
2 − 2σ̃σ̄ρL).

The other statements follow from Lemma 7.
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