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Context and Motivations

Life insurance liabilities are characterized by three main features :

Long term duration

Large volumes

Significant market risk exposure

The complexity of the products and low interest rates environment
→ The use of derivatives to hedge financial risks embedded within
insurance liability guarantees
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Context and Motivations

Guarantees embedded within insurance liabilities hold a convex risk
profile w.r.t the underlying stock → Insurance companies need to
buy some convex hedge assets

Such type of contracts can be hedged via dynamic hedging, static
hedging or semi-static hedging :

Dynamic hedging : Holding at any time t, ∆t shares of the
underlying asset.
Static hedging : Suggests replicating the embedded guarantees with
a static position in put options.
Semi-static hedging : Similar to static hedging but different in that
the insurer constructs a hedging portfolio at each rebalancing date by
following an optimal hedging strategy.
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Context and Motivations

In 2014, the NAIC Capital Market Bureau reported a 2 trillion
dollars of notional value of derivatives use in the insurance business,
mainly for hedging purposes (94% of the total notional value), 25%
are aimed for hedging equity risk, and options accounted for 44% of
the total notional value.

Trading such volumes can not come without a cost ; its impact
should be an important driver for prices, yet, there are no known
practices for splitting the targeted quantity to minimize such cost.

→ The need to take into account market impact as it is usual practice
in the stock market.

→ Minimize the cost of market impact by splitting the target value.
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Introduction

It is common practice in the stock market to split large orders to
minimize the market impact generated by such trades. This problem was
studied in the literature by many authors :

Optimal execution of a stock portfolio under market impact :
[Almgren and Chriss(2000), ?]

Option pricing and hedging : [Abergel and Loeper(2013), ?]

Our interest

Define an option execution price when the size of a trade is a driver
of the option price.

In the spirit of Almgren and Chriss, set a rigorous optimal execution
problem for an option buyer who seeks to minimize the cost of his
strategy.
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Introduction

What we aim to do

Define a price of an option under market impact under a
Black-Scholes framework.

Set a framework for the optimal purchasing problem that minimizes
one of the two criteria :

The expected cost.
The mean-variance of the cost.

Solve the problem using appropriate methods.

Extend the framework to local volatility models.
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A review of the Almgren-Chriss framework I

We consider a trading strategy on an asset S described by the asset
position xt held at time t ∈ [0,T ].

The path x = (xt)t∈[0,T ] is absolutely continuous and satisfies
x0 = X and xT+ = 0.

The unaffected asset price S is a semi-martingale.

When the strategy x is used, the price is changed from St to S̃t
which is given in the Almgren-Chriss framework by :

S̃t = St +

∫ t

0
g(ẋs)ds + h(ẋt),

where g(x) = γx describes permanent impact, h(x) = ηx
instantaneous (or temporary) impact and St = S0 + σWt .
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A review of the Almgren-Chriss framework II

Almgren and Chriss consider a mean-variance optimization problem.

The mean-variance functional is given by

E[C(x)] + λVar [C(x)]],

where C(x) =
∫ T

0 S̃tdxt is the cost function.

The optimal purchasing strategy is then found by minimizing the
mean-variance functional.
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The optimal purchasing problem for a portfolio of options

We consider a trading strategy on an option P described by the option
position xt held at time t ∈ [0,T ].

The path x = (xt)t∈[0,T ] is absolutely continuous and satisfies
x0 = X and xT+ = 0.

The unaffected option price P is a semi-martingale on a filtered
probability space (Ω,F , (Ft)t≥0,P).

When the strategy x is used, the price is changed from Pt to P̃t

where :

P̃t = Pt + impact term,
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A heuristic approach to derive the option price under
market impact constraint

We consider a universe with two agents :

Option end-users : buy options to hedge an external risk/ complex
product.

Option market-makers : sell options at their replication price :

→ The option replication price is inspired from [Leland(1985)]
transaction costs framework.

→ We consider a geometric Brownian motion for the unaffected
underlying price, i.e St = S0e

− 1
2 σ

2+σWt and proportional impact cost :

S̃t = St(1 + ηẋt + γ(xt − x0)),
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The transaction costs approach revisited

The transactions costs framework :

Introduced by [?] to hedge derivatives under proportional
transaction costs.

Based on an approximate replication of the European-type options
with terminal payoff VT under the Black-Scholes framework.

Leads to the Black-Scholes formula with a suitably enlarged
volatility.
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The setting

We consider an option issued at time 0 with maturity T̂ .

The underlying asset is given under the martingale measure by the
SDE :

dSt = σStdWt , 0 ≤ t ≤ T̂ .

The cash evolves with zero risk-free rate.

The hedging is performed over a discrete grid with n revision s
t0 < t1 < ... < tn = T̂ .

It involves proportional impact rate I0 on the underlying asset.
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Review of Leland’s framework I

The current value of the option process at time t ∈ [0, T̂ ] is defined by

V n
t = V n

0 +

∫ t

0
∆n

udSu −
∑
ti≤t

I0Sti | ∆n
i+1 −∆n

i |

where :

ti = tni = i/n, 0 ≤ i ≤ n, t0 = 0, tn = T̂ are the revision dates.

∆n = ∆n
i on the interval ]ti−1, ti ], ∆n

n+1 := ∆n
n.

∆n
i is Fti−1-measurable.

∆n corresponds to the trading strategy. The number of shares of the
risky asset that the holder possesses in the period i is then ∆n

i .
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Review of Leland’s framework II

The option price solves the following PDE :{
∂uP̃(u,S) + 1

2 σ̃
2S2∂SS P̃(u, S) = 0, (u,S) ∈ [0, T̂ [×]0,∞]

P̃(T̂ , s) = (K − s)+, s ∈]0,∞[.

where σ̃ is the ”enlarged volatility” and defined by

σ̃2 = σ2 + σI0n
1/2

√
8

π

Remark

Leland’s framework is known to present problems when the number
of revision dates n tends to infinity.

This issues is avoided by choosing n of a reasonable order and
finding the option price at time 0 that the market-maker will charge
the end-user.
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The Leland framework revisited

In our framework :

Leland’s transaction costs coefficient I0 is replaced by the impact
cost term ηẋt + γ(xt − x0) at an arbitrary time t ∈ [0,T ] where
T < T̂ .

We fix the hedging discretization step h and replace the number of

discretization n by T̂−t
h .

We rewrite the enlarged volatility at t as :

σ̃2
t = σ2 + (η̃ẋt + γ̃(xt − x0))

√
T̂ − tσ,

where η̃ = η
√

8
hπ and γ̃ = γ

√
8
hπ .

[Lépinette and Quoc(2014)] extends the framework to local volatility in
which case, we need only replace the constant volatility σ by σ(t,S).
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Simplifying the execution price and the impact function

Proposition

In the Black & Scholes framework, the put option effective price is
written as the following :

P̃(t,St , ẋt , xt) = P(t, St)

+
1

2
{η̃ẋt + γ̃(xt − x0)}σS2

t

(
T̂ − t

)3/2
Γ(t, St),

where :

η̃ controls the temporary impact strength in $× hour/N of options.

γ̃ controls the permanent impact strength and is in $N shares.

xt is the quantity held at time t and ẋt is the speed of trading in
number of options per time unit.
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The setting

Buy X put options over a finite time horizon [0,T ]. We define :

x = (xt)t∈[0,T ] execution strategy

x0 = X < 0, xT = 0 (liquidating a short position)

Assume xt is continuous and adapted

The option effective price

P̃t = Pt +
1

2
η̃ẋtσS

2
t

(
T̂ − t

)3/2
Γ(t, St).
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The cost function

The cost arising from the strategy x is

C(x) =

∫ T

0
P̃t ẋtdt.

which we can be rewritten as :

C(x) = −XP0 −
∫ T

0
σxtSt∆(t,St)dWt

+
1

2
η̃σ

∫ T

0
ẋ2
t S

2
t

(
T̂ − t

)3/2
Γ(t, St)dt,

and seek to minimize the two criteria :

The expected cost E[C(x)]

The mean-variance case E[C(x)] + λVar [C(x)]
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The optimal strategy : Minimizing the expected value

We consider the temporary market impact only, i.e. γ̃ = 0

Theorem

The optimal strategy x∗ resulting in minimizing the expected cost under
the Black & Scholes framework is characterized by :

ẋ∗(t) =
K1

(T̂ − t)3/2

x∗(t) =
K1

(T̂ − t)1/2
+ K2

where K1 = X

2

(
T̂− 1

2−(T̂−T )−
1
2

) and K2 = −2K1(T̂ − T )−1/2.
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The mean-variance case

The variance of the cost can be expressed as :

V [C(x)] = E
[( ∫ T

0
P̃t ẋtdt − E

[ ∫ T

0
P̃t ẋtdt

])2]
= E

[∫ T

0
x2
t σ

2S2
t ∂S P̃

2(t,St)dt

]
+ {terms arising from uncertainty in the drift part}.

The mean-variance objective function can be reasonably approximated as
the following :

E [C(x)] + λV
[
C(x)

]
≈

E
[ ∫ T

0

1

2
η̃σẋ2

t S
2
t

(
T̂ − t

)3/2
Γ(t,St)dt + λ̃

∫ T

0
x2
t σ

2S2
t ∆2(t,St)dt

]
.
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A dynamic programming framework

We define X (T ,X ) the set of all adapted and absolutely continuous
strategies that satisfy :

The boundary conditions x0 = X < 0, xT = 0

The integrability conditions E
[ ∫ T

0 ẋ2
t S

2
t

(
T̂ − t

)3/2
Γ(t, St)dt

]
<∞

and E
[ ∫ T

0 x2
t S

2
t ∆2(t, St)dt

]
<∞

And define the objective function :

U(0,S0,X ) :=

inf
x∈X (T ,X )

E
[ ∫ T

0

{
ẋ2
t S

2
t

(
T̂ − t

)3/2
Γ(t,St)

+ λx2
t σ

2(St)S
2
t ∆2(t, St)

}
dt
]
,
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A finite fuel problem

To solve these kind of optimal execution problems, usual practice is to :

Set α s.t : αt = −ẋt and

A(T ,X ) = {xαt ∈ X (T ,X ) | xαt := X −
∫ t

0
αsds, 0 ≤ t ≤ T},

Restrict the solution to Markovian processes of the form α(t,St , xt)
and solve :

U(t, S , x) = inf
α∈A(T ,X )

Et

[ ∫ T

t

{
α2
uS

2
u

(
T̂ − u

)3/2
Γ(u,Su)

+ λσ2(xαu )2S2
u∆2(u,Su)

}
du
]
,

Derive the Hamilton-Jacobi-Bellman equation to find a nonlinear
PDE.
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The value function

For a given strategy α(., ., .), the value function U(t,S , x) is defined as

U(t,S , x) = inf
α∈A(T ,X )

Et

[ ∫ T

t

{
α2
uS

2
u

(
T̂ − u

)3/2
Γ(u, Su)

+ λσ2(xαu )2S2
u∆2(u, Su)

}
du
]
,

where Et is the expectation conditional to St = s and xαt = x .
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The finite fuel constraint

U should satisfy a singular terminal condition of the form

lim
t→T

U(t, S , x) =

{
0 if x = 0

+∞ if x 6= 0,

To solve the problem, we substitute the infinite penalty problem
with a finite terminal condition and consider the parametrized value
function

Uε(t, s, x) = inf
α∈A(T ,X )

Et

[ ∫ T

t

{
α2
uS

2
u

(
T̂ − u

)3/2
Γ(u, Su)

+ λσ2(xαu )2S2
u∆2(u,Su)

}
du +

1

ε
ψ(xαT )

]
.

With terminal condition

Uε(T , s, x) =
1

ε
ψ(x)

{
0 if x = 0
� 1 if x 6= 0.
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The PDE of the optimal execution framework

Theorem

Let U∗ε be a regular function which solves the PDE :{
∂tU

∗
ε + 1

2σ
2S2∂SSU

∗
ε + λx2σ2S2∆2(t, S)− (∂xU∗

ε )2

4(T̂−t)3/2Γ(t,S)
= 0

U∗ε (T ,ST , xT ) = 1
εψ(xαT ).

Then U∗ε is the unique solution to the optimal execution problem.
Moreover, the optimal execution rate α∗t = −ẋ∗t is such that :

α∗t =
∂xU

∗
ε (t,St , x

∗
t )

4(T̂ − t)3/2S2
t Γ(t, St)

.
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Deriving HJB : A multiplicative state variable

Let St and xκt be the state variables and define the control variable κ
such that αt = xtκt

dSt = σ(St)StdWt

dxκt = −κtxκt dt

where κt > 0, x0 = X and xt increasing and bounded by 0.
This form implies that :

∀t ∈ [0,T ], xκt = Xe−
∫ t

0 κsds and xκu = xκt e
−
∫ u
t κsds for u > t

We define K(T ,X ) the set of admissible control processes κ such
that x belongs to X (T ,X ).

Using such parametrization offers a straightforward way to reduce
the problem through writing :

Uε(t, s, x) =: x2uε(t, s).
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Deriving the HJB equation

The reduced value function uε is defined by :

uε(t, S) = inf
κ∈K

Et

[ ∫ T

t
e−

∫ u
t 2κsds

{
κ2
u(T̂ − u)3/2S2

uΓ(u, Su)

+ λσ2S2
u∆2(u, Su)

}
du +

1

ε
e−

∫ T
t κsds

]
.

By means of Itō’s formula, uε verifies the HJB equation :

∂tuε+
1

2
σ2S2∂SSuε

+ inf
κ

{
κ2(T̂ − t)3/2S2Γ(t,S)− 2κuε

}
+ λσ2S2∆2(t,S) = 0

κ∗ is given by κ∗(t,S) = uε(t,S)

(T̂−u)3/2S2Γ(t,S)
.
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The PDE of the reduced value function

Theorem

Let u∗ε be a regular function verifying the following PDE{
∂tu
∗
ε + 1

2σ
2S2∂SSu

∗
ε + λσ2S2∆2(t, S)− 1

(T̂−t)3/2S2Γ(t,S)
u2
ε = 0

u∗ε (T , s) = 1
ε .

Then u∗ε is the unique solution to the reduced optimization problem. The
optimal trading rate κ∗t is given by :

κ∗(t, S) =
uε(t, S)

(T̂ − t)3/2S2Γ(t, S)
.
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Localization and boundary conditions

We localize the initial domain of the PDE to [0,T ]× [0,Smax] and add
the complementary conditions :

When S = 0 P(t,S) ≈ K , S2Γ(t, S) ≈ 0 and S2∆2(t, S) ≈ 0, thus
we find the variational equation :

min {∂tuε, uε} = 0 and uε(T ) =
1

ε
.

When S = Smax � K we again have S2Γ(t,S) ≈ 0 and
S2∆2(t,S) ≈ 0. The variational inequality arising from this
condition is :

min
{
∂tuε +

1

2
σ2S2∂SSuε, uε

}
= 0
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Results I

Parameter Value

σ 30%
T (the strategy horizon) 1/12 (years)

T̂ (the option maturity) 1 (years)
S0 1
K S0

Action Buy
x0 −1
η̃ 0.05
Trading frequency 4 trades per day
λ 0, 100

Table – Parameters for buying options under market impact over 1m horizon
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Results II

Figure – The rate of trading κ as a function of the underlying price S and
time t for different values of λ (λ = 0 top left, λ = 1 top right, λ = 10 bottom
left, λ = 100 bottom right). The strike K = S0 is fixed at time 0.
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Results III
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Figure – Sample paths of the evolution of the fundamental price, trading rate,
inventory and traded quantity throughout the execution for λ = 0.
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Figure – Sample paths of the evolution of the fundamental price, trading rate,
inventory and traded quantity throughout the execution for λ = 0.
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Results V

Figure – Heatmaps showing the density of inventory and trading speed
throughout the execution for λ = 0.
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Results VI

Figure – Heatmaps showing the density of inventory and trading speed
throughout the execution for λ = 100.
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The option price PDE

The option price with market impact can be extended to local volatility
models (see [?]). We focus on the CEV model, i.e. σ(S) = σ0S

β/2−1,
and rewrite the valuation PDE of P̃ as :{

∂uP̃(u, S) + 1
2 σ̃

2(t,S)S2∂SS P̃(u,S) = 0, (u, S) ∈ [t, T̂ [×]0,∞]

P̃(T̂ , s) = (K − s)+, s ∈]0,∞[,

where

σ̃2(t,S) = σ2(S) + (η̃ẋt + γ̃(xt − x0))

√
T̂ − tσ(S),
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The option price implied volatility
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Figure – Volatility smile as a function of the moneyness for the CEV model
with and without market impact.
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The objective and value function

The mean-variance objective function in this case is :

E
[ ∫ T

0
ẋt P̃(t,St , xt , ẋt)dt + λ

∫ T

0
x2
t σ

2(St)S
2
t ∂S P̃

2(t,St , xt , ẋt)dt
]
.

The value function taken backward, i.e. V (τ = T − t,S , x) solves
the following HJB equation :

∂τV =
1

2
σ2(S)S2∂SSV + inf

α

{
− α∂xV

− αt P̃(t,S , x ,−α) + λσ2(S)x2S2
t ∂S P̃

2(t,S , x ,−α)
}
.

Which we solve using appropriate terminal and boundary conditions.
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The numerical scheme

Let us define a set of nodes [s0, s1, ..., simax ], [x0, x1, ..., xjmax ], discrete
times τn = n∆τ , and localize the control candidates to values in finite
interval [αmin, αmax]. The numerical solution is performed in two steps :

Solve the PDE of the option valuation to determine P̃(τn, si , xj , α)
for each node as well as ∆̃(τn, si , xj , α) its partial derivative w.r.t
the asset price.

Let αn
i ,j the approximate value of the control variable α at mesh

node (τn, si , xj), and given the values of P̃ and ∆ at each mesh
node, solve :

V n+1
i ,j =∆τ(LhV )n+1

i ,j + inf
αn+1
i,j ∈[αmin,αmax]

{
V n
i ,ĵ

+ ∆τ
(
− αn+1

i ,j P̃n+1
i ,j (αn+1

i ,j ) + λσ0(xj)
2Sβj

(
∆̃n+1

i ,j (αn+1
i ,j )

)2
)}
.

where Vi ,ĵ is obtained by linear interpolation of the discrete value V n
i ,j .
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Results

Figure – Heatmap showing the density of the trading speed and inventory for
λ = 100.
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Summary

In the market impact topic we were able to :

Define a price of an option under market impact under a
Black-Scholes framework.

Set a framework for the optimal purchasing problem that
minimizes :

The expected cost.
The mean-variance of the cost.

Solve the problem using appropriate methods.

Extend the framework to local volatility models.
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Limitations and perspectives

We assumed that the effect of market impact on stock price is not
visible to the option buyer.

The numerical solution is sensitive to the terminal condition through
the choice of the penalty ε.

The Black-Scholes framework uses a Taylor approximation and the
general case consider is limited to a CEV model. simplicity.

What we would want to do :

Understand market impact on options from an empirical perspective.

Consider exotic payoffs for the framework (e.g. look back options)
and different risk criteria.

Assume that market impact on the stock is visible and that the
option seller opts for an optimal hedging strategy.

Improve the numerical scheme for the general case and account for
broader volatility models and stochastic interest rates.
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Questions ?
Thank you for you attention
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