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Simple Random Sampling

Simple random sampling: drawing k objects from a group of n
in such a way that all

(
n
k

)
possible subsets are equally likely.

In practice, it is difficult to draw truly random samples.

Instead, people tend to draw samples using

1 A pseudorandom number generator (PRNG) that produces
sequences of bits, plus

2 A sampling algorithm that maps a sequence of pseudorandom
numbers into a subset of the population

Most people take for granted that this procedure is a sufficient
approximation to simple random sampling.



Using computers to sample

Social applications may require the PRNG to produce all possible
samples – e.g. jury duty summons, gaming machines, lottery
tickets.

Marsaglia [2003]

The preceding examples indicate that social applications may
require the [PRNG] is able to select from every possible outcome, a
requirement that can be satisfied with RNGs having many random
seed values... Thus, multiple-seed [PRNGs] seem desirable for
some applications and mandatory for others.

But passing PRNs into a sampling algorithm adds an additional
layer to the problem.



Simple Random Sampling

If PRNGs are unable to generate all simple random samples, the
problem will be even worse for other methods: permutation,
bootstrap samples, MCMC, Monte Carlo integration...

Number of possible samples for n = 100, k = 50

SRSs
(
n
k

) (
100
50

)
≈ 1029

Bootstrap Samples nk 10050 = 10100

Permutations n! 100! ≈ 10158



Pseudorandom number generators (PRNGs)

A PRNG is a deterministic function with several components:

• A user-supplied seed value used to set the internal state

• A function that maps the internal state to pseudorandom
bits

• A function that updates the internal state

Seed
Internal

state
Random

bits

Update



Pigeons and Pigeonholes

Theorem (Pigeonhole Principle)

If there are n pigeonholes and m > n pigeons, then there exists at
least one pigeonhole containing more than one pigeon.

(Wikipedia)

Corollary (Too few pigeons)

If
(
n
k

)
is greater than the size of a PRNG’s state space, then the

PRNG cannot possibly generate all samples of size k from a
population of n.

https://commons.wikimedia.org/w/index.php?curid=4658682
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Pigeons and Pigeonholes

Period of 32-bit linear congruential generators (the most basic
acceptable PRNG):

at most 232 ≈ 4× 109

Samples of size 10 from 50:(
50
10

)
≈ 1010

More than half of samples cannot be generated

State space of Mersenne Twister (standard PRNG in Statistics):
232×624 ≈ 2× 106010

Permutations of 2084 objects:
2084! ≈ 3× 106013

Less than 0.01% of permutations can be generated
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Overview

• Some sampling algorithms are better than others – look under
the hood of your software

• PRNGs for Statistical applications should be judged on how
well they produce random samples when passed into a
reasonable sampling algorithm

I will show

• New tests for pseudorandomness based on simple random
sampling

• (New to Statistics) PRNGs based on cryptographic hash
functions
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Sampling Algorithms

Given a sequence of (pseudo)random numbers, how do we use
them to draw a SRS?

Two general strategies:

• “Shuffle the deck” and take the top k as the sample

• Number the population, select k random integers, and take
the corresponding items



PIKK

Algorithm 1 PIKK: Permute indices and keep k

1: Assign IID uniform values on [0, 1] to the n elements of the
population

2: Sort the population according to these values (break ties ran-
domly)

3: Take the top k to be the sample

• Relies on assumption that all permutations are equally likely

• Inefficient: requires n PRNs and O(n log n) sorting operation

• Possibly the basis for the sample function in Stata



Shuffling algorithms

• Knuth shuffle: requires n− 1 random integers, but no sorting.
This is what np.random.choice does.

Algorithm 2 Fisher-Yates-Knuth-Durstenfeld shuffle

1: for i = 2, . . . , n do
2: J ← random integer uniformly distributed on 1, . . . , i
3: (a[J ], a[i]) ← (a[i], a[J ])

4: Take the first k to be the sample

Proof

• Reservoir algorithms: Algorithm R (Knuth [1997]), Algorithm
Z (Vitter [1985]) are related to shuffling and don’t require
knowing the population size a priori



Random indices

Algorithm 3 Uniform random indices

1: ñ ← n
2: Population indices ← {1, . . . , n}
3: for i = 1, . . . , k do
4: w ← A random integer on {1, . . . , ñ}
5: j ← The wth element in Population indices
6: Sample indices ← Sample indices ∪{j}
7: Population indices ← Put last remaining index in place w
8: ñ ← ñ− 1

9: Take the items with selected Sample indices

• Method used by R sample, Python random.sample

• More efficient: uses only k PRNs and no sorting



Generating (non)uniform integers

• These algorithms depend on uniformly distributed integers.

• A common way to obtain an integer in the range {1, . . . ,m}:
• Generate a PRN U on [0, 1), take bmUc+ 1
• But U is not really continuous – it can only take 2w values

(where w is number of bits in PRNG output)
• Unless m is a multiple of 2w, bmUc will not truly be uniform!

(Knuth [1997])

Lemma

For m < 2w, the ratio of the largest to smallest selection
probability is, to first order, 1 +m2−w.

Proof



Generating (non)uniform integers

• A better way to generate integers on {1, . . . ,m}: Let

w =

{
log2(m) if m is a power of 2
blog2(m)c+ 1 otherwise

Generate a w-bit integer J . If J > m, discard and repeat.

• Possibly slow: will discard nearly half of draws when m is
close to 2w−1

• Resulting integers will truly be uniform



Sampling Algorithms

Package Sampling algorithm Random integer algorithm

R random indices variant of floor method

Python random random indices discard method

Numpy random shuffle and keep k discard method

Stata ? ?

• Stata blogs recommend people use PIKK when coding up
sampling themselves. But Stata’s sort function is randomized
by default. Not reproducible! (Schumm [2006])

• R creates random integers the “wrong” way – working to
submit a bug report

https://bugs.r-project.org/bugzilla/
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Pseudorandomness

Dilbert

Pseudorandom: deterministic, but having the same relevant
statistical properties as if random

• Uniformity: values and sequences of values should be
equiprobable

• Independence: lack of serial correlation, unpredictable

PRNGs can’t do this perfectly.
• They are deterministic: knowing input tells you the output.
• Most are periodic: they eventually produce the same

sequence of values.
• They have some predictable mathematical structure.

http://dilbert.com/strip/2001-10-25
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Pseudorandomness

https://www.wired.com/2017/02/russians-engineer-brilliant-slot-machine-cheat-casinos-no-fix/

https://www.wired.com/2017/02/russians-engineer-brilliant-slot-machine-cheat-casinos-no-fix/


What makes a PRNG

• Mimics a random generator
• Cryptography definition: No application of the PRNG should

behave differently from a “random oracle”
• Stats definition: We cannot reject the null hypothesis that the

outputs come from a uniform distribution

• Fast and memory efficient

• Desirable, but not essential:
• Unpredictable. This is different from random - if it’s

deterministic, then it’s predictable to some degree. Important
in cryptography, less important in Statistics.

• Jump-ahead feature to efficiently skip through random
numbers, generate multiple streams for parallel applications

• Easy seeding: should be simple to set the state from the seed,
robust to value supplied



Testing PRNGs

• “Uniform” and “independent” are broad criteria – many ways
to define and check for these properties
• Uniformity at varying levels of granularity

• Independence within and between subsequences

• Test batteries:
• Diehard battery (Marsaglia [1995])

• NIST Statistical Test Suite (Soto [1999], Rukhin et al. [2010])

• TestU01 suite (L’Ecuyer and Simard [2007])



Testing for uniformity

1 Kolmogorov-Smirnov test: values should appear IID U [0, 1]

2 Chi-squared test: break values or sequences of values into
categories with known frequencies under the null

3 New proposal: Range test
Break values into equally probable categories and compute the
range of observed frequencies

R = max
i
Oi −min

i
Oi

R has a complicated distribution... use asymptotic
approximation from Young [1962]:

P(R ≤ r) ≈ P (WN ≤ (r − (2B)−1)(N/B)1/2)

where WN denotes the sample range of N independent
standard normal random variables and B is the number of
multinomial draws.

Power
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Testing for independence

1 Gap test: count length of sequence between values in a given
range

2 Permutation test: look at ordering of values in subsequences
of length t

3 Serial correlation test: correlation between consecutive pairs
of values

4 Many more possibilities!



Compressability tests

Idea: More information needed to describe structure ⇐⇒ less
correlation between consecutive PRNs

1 Compressability test: measures entropy in sequences of PRNs

2 Spectral test in dimension d: measures the maximum distance
between parallel hyperplanes that cover all points in a
sequence

d1

d2
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New tests for PRNGs

• Some sampling algorithms use PRNGs in ways that are not
covered by these tests

• E.g. Algorithm 3 for sampling by uniform random indices
• To generate a SRS of size k from n, obtain PRNs (U1, . . . , Uk)

where Uj is uniform on {1, . . . , n− j + 1}
• The sequences (U1, . . . , Uk) should themselves be equiprobable

• Proposal: test by generating a large “sample” of B SRSs

H0 : P(SRSi) =
1(
n
k

) for all

(
n

k

)
possible SRSs

H1 : P(SRSi) 6=
1(
n
k

) for some SRS

• Under H0, the number of times each SRS is observed follows
a multinomial distribution with B trials and equal selection
probabilities 1/

(
n
k

)
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New tests for PRNGs

Chi-squared or range test: generate a fixed number of samples
starting with seed S and look at sample frequencies.
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Unsatisfactory: how do we choose number of samples?



Sequential probability ratio test

• A sequential probability ratio test is a hypothesis testing
procedure that weighs the evidence of each observation as it
comes in (Wald [1973])

• Tests H0 : (Xn) ∼ f0 against H1 : (Xn) ∼ f1 by checking the
likelihood ratio (LR) after each observation

Algorithm 4 Sequential probability ratio test

1: α, β ← desired type I and II error rates
2: LR ← 1
3: while β

1−α < LR < 1−β
α do

4: Xm ← A new observation
5: LR ← LR× f1(Xm)

f0(Xm)

6: if LR ≤ β
1−α then

7: Fail to reject the null hypothesis; stop

8: if LR ≥ 1−β
α then

9: Reject the null hypothesis; stop



Sequential probability ratio test

Sequential test for multinomial random variables: reduce it to a
test about a Bernoulli p (Weiss [1962])

• Fix s and define

B(n) ≡ I(nth sample is among the s most frequent samples before step n)

• B(n) ∼ Bernoulli(p). Then we may test

H0 : p = p0 = s

(
n

k

)−1
H1 : p = p1 > s

(
n

k

)−1
• Peculiar: B(n) depends on the samples that have been

observed before the nth!
But under the null, p0 is fixed and doesn’t depend on what
the samples actually are.



Sequential probability ratio test

Preliminary results:

• Simulations show that the test has the correct level under the
null

• Issues of power: how to choose s and p1? Depends on what
we believe the alternative is.

Mersenne Twister RANDU
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Linear Congruential Generators

LCGs have the form

Xn+1 = (aXn + c) mod m

Smart choices of a,c, and m can make the LCG fast to compute
and more or less random

Theorem (Hull-Dobell Full Period Theorem)

The period of an LCG is m for all seeds X0 if and only if

• m and c are relatively prime,

• a− 1 is divisible by all prime factors of m, and

• a− 1 is divisible by 4 if m is divisible by 4.



The good, the bad, and the ugly

(Knuth, 1997)

“Random numbers should not be generated with a method chosen
at random.”

Marsaglia [1968] proved that n-tuples of numbers generated by
any LCG will lie on parallel hyperplanes, making them especially
non-random.

Triples of RANDU lie on 15 planes in 3D space
xn+1 = (65539xn) mod 231

(Wikipedia)



The good, the bad, and the ugly

(Knuth, 1997)

“Random numbers should not be generated with a method chosen
at random.”

Marsaglia [1968] proved that n-tuples of numbers generated by
any LCG will lie on parallel hyperplanes, making them especially
non-random.

Triples of RANDU lie on 15 planes in 3D space
xn+1 = (65539xn) mod 231

(Wikipedia)



Better LCGs

• Super-Duper: Xn+1 = (69069Xn) mod 232

• 69069 = 3× 7× 11× 13× 23
• Considered a good LCG, passes spectral tests in low dimensions

• MINSTD: Xn+1 = (16807Xn) mod (231 − 1)
• 16807 = 75

• The “minimum standard” against which other PRNGs should
be judged (Park and Miller [1988])

• KISS: combines Super-Duper with two other PRNGs
• Was previously the only PRNG in Stata
• Period length over 2210

• Wichman-Hill PRNG: a sum of 3 LCGs
• Was previously the only PRNG in Excel
• Faulty implementation didn’t allow seeding and sometimes

produced negative values (McCullough [2008])



Linear Congruential Generators

• Fast to compute and requires little memory

• Some LCGs are more random than others – depends on
choosing good constants

• Not unpredictable. We only need 2 values to determine the
constants.

• Possible to do jump ahead using mathematical formulas.



Mersenne Twister (Matsumoto and Nishimura
[1998])

x2x1x0 x622 x623

Tempering

Output

GLFSR

• Mersenne Twister (MT) is a “twisted” generalized linear
feedback shift register: a complex sequence of bitwise and
linear operations

• Enormous period of 219937 − 1, a Mersenne prime

• k-distributed to 32-bit accuracy for k ≤ 623, i.e. tuples of up
to length 623 occur with equal frequency over the period

• Integer seed is used to set the state, a 624× 32 binary matrix



Mersenne Twister

• Fast to compute but has a large state space, not the most
memory efficient

• Fails some TestU01 tests but has been generally considered
“random” enough for Statistics... (but stay tuned)

• Completely predictable after we’ve seen 624 values

• No good jump ahead feature



A better alternative

One solution to the pigeonhole problem:

A class of PRNGs with infinite state space



Hash function PRNGs

Hash functions take in a message x of arbitrary length and return
a value h(x) of fixed size (e.g. 256 bits)

IV f f f f g h(x)

x1 x2 xn−1 xn

x

Cryptographic hash functions:

• computationally infeasible to invert

• difficult to find two inputs that map to the same output

• small input changes produce large, unpredictable changes to
output

• resulting bits are uniformly distributed



Hash function PRNGs

Hash function PRNGs are a subset of a wide range of
cryptographically secure PRNGs:

• NIST gives guidelines on using hash functions and stream
ciphers for cryptographically secure PRNGs (Barker and
Kelsey [2015])

• The OpenBSD OS uses the ChaCha20 stream cipher to
generate PRNs (OpenBSD [2014], Bernstein [2008])

• Hash function PRNGs have been recommended for random
selection of committees and election auditing (Laboratories
[2004], Rivest [2011])

These PRNGs are usually written in low level languages, not in
widely used statistical software.



Hash function PRNGs

Procedure for using a cryptographic hash function as PRNG:

Algorithm 5 Hash function PRNG

1: seed ← a large random integer
2: counter ← 0
3: for the number of PRNs desired do
4: internal state ← “seed,counter”
5: Hash the internal state value. This is your random number

(expressed in hexadecimal).
6: counter ← counter+1

We use the SHA256 hash function:

• tested against a reference implementation (Rivest [2011])

• passes the tests described earlier. see appendix



Hash function PRNGs

• Efficient: based on fast, pre-existing hash function code.
Some cryptographic hash primitives are even built into
hardware (e.g. AES block cipher is on current Intel processors)

• Memory efficient: only need to store the seed and counter

• Unpredictable: small changes to input produce large
unpredictable changes to output. The only way to figure out
the sequence is to know the seed.

• Jump ahead: add the desired number of steps to the counter



Sampling tests

k = 3 k = 10
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Sampling tests

• None of the 3 good PRNGs is best overall – results vary by
seed value
• SHA256 PRNG should behave like “random oracle” and results

should not vary by seed
• Next step: run tests for many seeds; p-values should be

uniform under the null

• Results vary by sample size k
• Sampling k from n is complementary to sampling n− k from n
• Resulting samples are not equally uniform – a difference

between theory and practice

• Other tests
• Results are similarly indeterminate for the chi-squared test
• Working towards implementing the sequential probability ratio

test



Sampling tests

• None of the 3 good PRNGs is best overall – results vary by
seed value
• SHA256 PRNG should behave like “random oracle” and results

should not vary by seed
• Next step: run tests for many seeds; p-values should be

uniform under the null

• Results vary by sample size k
• Sampling k from n is complementary to sampling n− k from n
• Resulting samples are not equally uniform – a difference

between theory and practice

• Other tests
• Results are similarly indeterminate for the chi-squared test
• Working towards implementing the sequential probability ratio

test



Sampling tests

• None of the 3 good PRNGs is best overall – results vary by
seed value
• SHA256 PRNG should behave like “random oracle” and results

should not vary by seed
• Next step: run tests for many seeds; p-values should be

uniform under the null

• Results vary by sample size k
• Sampling k from n is complementary to sampling n− k from n
• Resulting samples are not equally uniform – a difference

between theory and practice

• Other tests
• Results are similarly indeterminate for the chi-squared test
• Working towards implementing the sequential probability ratio

test



Next steps

Practical:

• Find examples where results of a study would change from
using a better sampling algorithm/PRNG

• Add the proposed statistical tests to a more thorough test
battery for PRNGs for Statistics

• Create plug-in hash function PRNGs for R and Python
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Impossibility bounds

Let F be the uniform distribution on all samples of size k from a
population of n. For some subset of samples S, define
G = {G : G(S) = 0, S ∈ S} and ν = |S|.

Lemma

For any G ∈ G, ‖F −G‖1 ≥ 2ν

(nk)

For any bounded function ψ : Ω→ R and for any G ∈ G,∣∣∣∣∫ ψdG−
∫
ψdF

∣∣∣∣ ≤ ‖F −G‖1‖ψ‖∞
Corollary

There exists a statistic ψ such that

|EF (ψ)− EG(ψ)| ≥ 2ν‖ψ‖∞(
n
k

)
back



Proof of Lemma.
Fix S and choose G ∈ G such that G(S) = 0, G(ω) > 0 for ω ∈ Sc.

‖F −G‖1 =
∑
ω∈Ω

|F (ω)−G(ω)|

=
∑
ω∈S
|F (ω)−G(ω)| +

∑
ω∈Sc

|F (ω)−G(ω)|

=
∑
ω∈S
|F (ω)| +

∑
ω∈Sc

|F (ω)−G(ω)|

=
|S|(
n
k

) +
∑

ω∈Sc

|F (ω)− (F (ω) + εω)|

where εω ∈ [−
(
n
k

)−1
, 1−

(
n
k

)−1
] and

∑
ω∈Sc εω =

∑
ω∈S F (ω) =

|S|(
n
k

) . NB this must be the case to

ensure that
∑

ω G(ω) = 1, since∑
ω

G(ω) =
∑

ω∈Sc

G(ω) =
∑

ω∈Sc

F (ω) + εω =
∑

ω∈Sc

F (ω) +
∑
ω∈S

F (ω) = 1.

Therefore,

‖F −G‖1 =
|S|(
n
k

) +
∑

ω∈Sc

|εω|

=
|S|(
n
k

) +
∑
ω∈S
|F (ω)

=
2|S|(
n
k

)

back



Fisher-Yates-Knuth-Durstenfeld Shuffle.
We prove by induction that the FYKD the algorithm gives all possible
permutations of {1, . . . , n} with equal probability, and thus all possible
orderings of the first k have equal probability too. When n = 2, this is trivial.
We sample J = 1 with probability 1

2
to get the ordered pair (2, 1) or sample

J = 2 with probability 1
2

to get the ordered pair (1, 2).

Suppose the algorithm works for n = 1, . . . , j and we’re at the j + 1st step.
There are two possibilities:

1 J = j + 1 with probability 1
j+1

. Then we don’t swap anything and we
simply append j + 1 to the other permutations. This enumerates j!
permutations.

2 J = i < j + 1 with probability 1
j+1

. Then we swap i with j + 1. There
are j! equally likely ways that the first j items may be arranged, and j
possible choices for J . This enumerates j(j!) permutations.

Therefore, at the j + 1st step there are (j + 1)(j!) = (j + 1)! equally likely
permutations we could construct.

back



Non-uniform random sampling probabilities.
Define Y = bmXc + 1 and X̃ to be a uniform random integer on {0, 1, . . . , 2w − 1} (while X has the same

distribution scaled by 2−w). The selection probability for a particular integer value is

P (Y = y) = P (1 + bmXc = y)

= P (y − 1 ≤ mX < y)

= P
(
X̃ <

y2w

m

)
− P

(
X̃ <

(y − 1)2w

m

)

= P
(
X̃ <

⌈
y2w

m

⌉)
− P

(
X̃ ≤

⌈
(y − 1)2w

m

⌉)

= 2
−w

(
k
−
(y)− k

−
(y − 1) + 1

)
= 2
−w

(
k

+
(y − 1)− k

−
(y − 1)

)
where, for fixed m, we define k−(i) ≡ min{k : k2−w ≥ i/m} for all i,

k+(i) ≡ max{k : k2−w < i/m} = k−(i + 1)− 1 for i = 0, . . . ,m− 1 and k+(m) ≡ 2w . The
maximum ratio of selection probabilities is

max
i,j∈{0,...,m−1}

k+(i)− k−(i)

k+(j)− k−(j)
=

maxm−1
i=0 (k+(i)− k−(i))

minm−1
i=0 (k+(i)− k−(i))

=
maxm−1

i=0 (k+(i)− k+(i + 1) + 1)

minm−1
i=0 (k−(i + 1)− k−(i)− 1)

=
d2w/me + 1

b2w/mc − 1

= 1 + 2
−w

m + ...

back



Power of the χ2 vs. Range test

Estimate the power for different B (number of samples drawn) and
N (multinomial categories,

(
n
k

)
) under the following alternative

hypothesis:
• All samples but two have probability 1/N
• One sample has probability 0.95/N , the other has probability

1.05/N
• Reject the null hypothesis at level 1%
• Power is the observed rejection rate

back
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Table: p-values from selected tests on the SHA256 PRNG

Seed Samples χ2 Range KS KS Diffs Gaps

100 1e4 0.295 0.797 0.630 0.748 0.964
100 5.6e5 0.814 0.183 0.863 0.623 0.090
100 1e6 0.805 0.516 0.816 0.833 0.103

233424280 1e4 0.245 0.543 0.066 0.573 0.217
233424280 5.6e5 0.232 0.006 0.788 0.982 0.476
233424280 1e6 0.210 0.857 0.561 0.988 0.544

429496729 1e4 0.914 0.952 0.019 0.869 0.882
429496729 5.6e5 0.461 0.674 0.348 0.820 0.145
429496729 1e6 0.781 0.906 0.714 0.393 0.222

See https://github.com/kellieotto/prng-slides/blob/master/

code/sha256-tests.ipynb for details.
back
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