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An abundance of information

v

An era of massive amounts of information that need to be organized.
A famous example: The World Wide Web.

» Organize webpages based on their “popularity”, “relevance”, etc.
» Search engines based on ranking algorithms.

Google bing Yamoo!

Other important examples: Twitter, healthcare networks, scientific
citations, customer reviews, etc.

v

v

v

Information represented by graphs: nodes, edges, and node attributes.

v

Different types of graphs require different ranking schemes.
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The problem to solve

» We want to analyze the “typical” behavior of ranking algorithms on large
directed graphs.
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The problem to solve

» We want to analyze the “typical” behavior of ranking algorithms on large
directed graphs.

» Can we characterize nodes with very high ranks?
» Can we determine the distribution of the ranks?
» Our approach:

STeEP 1: Start with an appropriate random graph model.
STeP 2:  Show that we can analyze the rank via a fixed-point equation.
STEP 3: Characterize the solutions to this fixed-point equation.
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The WWW graph

» WWW seen as a directed graph (webpages = nodes, links = edges).
» For ranking purposes we can think of it as being a simple graph.

» Empirical observations:

fraction pages > k in-links oc k™, a=1.1
fraction pages > k out-links oc k7, =172

» We want a directed random graph model that matches the degree
distributions.
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The WWW graph

v

WWW seen as a directed graph (webpages = nodes, links = edges).

v

For ranking purposes we can think of it as being a simple graph.

v

Empirical observations:

fraction pages > k in-links oc k™, a=1.1

fraction pages > k out-links oc k7, =172

v

We want a directed random graph model that matches the degree
distributions.

v

The power-law hypothesis for PageRank:

fraction pages with rank >k oc k¢
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Model 1: The directed configuration model

v

Directed graph on n nodes V,, = {1,2,...,n}.
In-degree and out-degree:
> dj' = in-degree of node i = number of edges pointing to .
> d; = out-degree of node i = number of edges pointing out from .

We call (d*,d™) = ({d]},{d; }) a bi-degree-sequence if

Zd+ Zd‘

Target joint degree distribution:

v

v

v

F(z,y)=P(2" <2,9™ <y)

with (27, 27) € N2.

:
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Model 1: The directed configuration model

v

By adding some randomness into the bi-degree sequence we can obtain
(D*,D7) such that

1 n
N UDF <2,D; <y) D Fr,y),  n— oo,
n
i=1
see, e.g., the algorithm proposed in (Chen-OC '12).
» Given the bi-degree sequence, assign to each node ¢ a number of inbound
and outbound half edges according to the sequence.

» We obtain a graph by randomly pairing the inbound half edges with the
outbound ones.

> The result is a multigraph (e.g., with self-loops and multiple edges in the
same direction) on the nodes V,.

» Conditionally on the resulting graph being simple, it is uniformly chosen
among all graphs having (D", D) as their bi-degree sequence.
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Model 2: The inhomogeneous random digraph

» Consider a directed graph on the set of vertices V,, = {1,2,...,n} having
edges in F,,.

» Each vertex i is assigned a type x; € S.

» Types are distributed according to some measure L.

» Let k(x,y) : 82 — R, and construct the graph by independently drawing
an edge from ¢ to j with probability
K(Xi, %) (1 + ¢n (%, X))

P =Pu((i,f) € Bn) =11 C1<itj<n,
n

where P, () = P(-|{x; : 1 <i < n}) and |y (xi,%x;)| = 0.
» The limiting degree joint distribution is given by mixed Poisson r.v.s with
mixing distributions determined by the types.
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Model 2: The inhomogeneous random digraph
» Examples with x = (27, 27) and k(x,y) = 0 1z y™:

> Directed Erdés-Rényi model:

(n) _ A
P;j; —H

» Directed Chung-Lu model:

-+ n

" T, T _
P = AL =) (] ta)
n

> Directed generalized random graph:

() _ Ty

J
Pi; = 7——— T
Y In+z;af

» Directed Poissonian random graph or Norros-Reittu model:

(n) _

pij — 1 _ e—:ci_:c;'/ln
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Google's PageRank

» PageRank computes the rank of a vertex as:

i = (1—0)%‘-1-02

J—i

rj
-
D;

where the sum is taken over all vertices pointing to vertex ¢, D> is the
number of outbound links of page j, 9 = (¢1,...,¢n) is a probability
vector, known as personalization, n is the total number of vertices in the
graph, and c is a damping factor, usually ¢ = 0.85.

» Multiply both sides by n to obtain a “scale free” rank.
» |n matrix notation,

R=(1-¢)q+RM, M = matrix of weights.
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Matrix iterations

» Since MF — 0 as k — oo, R admits the representation

oo

R=(1 —c)qZMi.

i=0
> Hence, we can approximate R with finitely many matrix iterations

k
R® =(1-c)q) M.

=0
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Matrix iterations

» Since MF — 0 as k — oo, R admits the representation

oo

R=(1 —c)qZMi.

=0

> Hence, we can approximate R with finitely many matrix iterations

k
R® =(1-c)q) M.
=0

» Remark: R(*) contains only the “local” behavior of the graph.
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Random graph approximation

» Many random graph models have a /ocal tree-like behavior.
» Both the DCM and the IRD do.

Randomly chosen node

/'\.///'/T\\l.é
I

Tree structure up to distance clogn
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Connection to the fixed point equation

» Consider the more general setting where

RizQiJrZ%-Rj.

i

» PageRank corresponds to Q); = ¢;(1 — ¢)n and ¢; = c.
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Connection to the fixed point equation

v

Consider the more general setting where

Ri:Qi‘FZ%-Rj.

i

v

PageRank corresponds to Q; = ¢;(1 —¢)n and {; = c.

v

A stochastic approximation (independent in-degree and out-degree):

N
REZQ+Y R,

j=1

where C; = (;/D;j, |(j| <ec<1forall j, N €N, and {R;} are i.i.d.
copies of R independent of (Q, N, {C;}).

» R = rank, N = in-degree, D; = neighbors’ size-biased out-degree,
R; = neighbors’ ranks.
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In the presence of degree-degree correlations

» If the in-degree and out-degree of the same vertex are dependent, then
C; = (;/D; and R; are too.
> By setting X; = C;R; we obtain a new fixed-point equation:

Ny N
R =Qo+Y X;, XZ20Q+) CX,
j=1 j=1

where (Q, N, C) are arbitrarily dependent, with C' = /D as before,
(Qo, No) are the attributes of a vertex chosen uniformly at random, and
R* is the rank of this randomly chosen vertex.
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Assumptions for the DCM

> Let ¢ be uniformly chosen from {1,2,...,n}, and set

Fn(maka7x) :]P)n(Dg_ < m7Dg_ < kaQE < %Cﬁ < :E)

and
F(m,k,q,) :P(@Jr <z,9" <k Q<q(<1),

> Let d; denote the Wasserstein metric of order 1.

> Assume:
> di(Fp, F) 250, as n — oco.
» E[2F] = E[27).

v

E(2)' T +(27 )+ 272 +1Q| +1Q|2 ] < o for some § > 0 and
[{|<e<1as.
Some other technical conditions.

v
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Assumptions for the IRD

» Suppose types are of the form X; = (W;",W,”,Q;,¢;) and the kernel
K,(Xi,Xj) = WZ_WJ+/9
> Let ¢ be uniformly chosen from {1,2,...,n}, and set

F,(u,v,q,2) = ]P’n(W; Su,We <0,Q¢ ¢, < x)

and
F(u,v,q,2) = PWt <u, W~ <v,Q <¢,( <x),

» Assume:
> di(Fn, F) £50, as n — 0.
lpn (X, X ;)] £ 0 for each i,].
E(WH'™ 4+ (W) + WTW™ +|Q| + |Q|W ] < oo for some § > 0
and [(| <ec<1as.
Some other technical conditions.

v

v

v
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The limiting distribution for PageRank

» Theorem: (OC '18) Let R, denote the rank of a uniformly chosen vertex
in either the DCM or the IRD. Then, under the assumptions for each
model, there exists a r.v. R* such that

Re =R  E,[R] D E[RY], n— oo,
with
No
R*=Qo+ ) X,

Jj=1

where the {X} are i.i.d. copies of the attracting endogenous solution to

N
xZ2co+) cx;, (1)

Jj=1

and are independent of (Qg, Np).
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Some remarks

» The convergence in distribution was first proved in (Chen-Litvak-OC '17)
for the DCM and in (Lee-OC '17) for the IRD, both under independence
between the in-degree and out-degree.

> (Qp,Np) correspond to the limiting personalization and in-degree,
respectively, of a randomly chosen vertex.

» The distribution of (Qg, Np) is directly related to distribution F', whereas
the distribution of (Q, N, C) is size-biased.

» The endogenous solution to (1) can be constructed on a weighted
branching process.
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The weighted branching process

» Number of offspring N, mark (Q,C4,Cs,...).

e Mooy ey ey ez Haes
[ ] [ ] [ ] [ ] [ ] [ ]
» Each node in the tree has a weight I1;, ;) defined via the recursion
Hil = Cil’ H(i17~-vin) = C(il7---7in)H(i17---7in—1)’ n 2 27
and IT = 1 is the weight of the root node.
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The attracting endogenous solution

» Consider the SFPE N
REY CiRi +Q
i=1

where {R;} are i.i.d., independent of (Q, N,C4,Cs,...), having the same
distribution as R, @, {C;} real-valued random variables, N € NU {oo}.
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The attracting endogenous solution

» Consider the SFPE N
REY CiRi +Q
i=1
where {R;} are i.i.d., independent of (Q, N,C4,Cs,...), having the same
distribution as R, @, {C;} real-valued random variables, N € NU {oo}.

» The attracting endogenous solution is given by

R=> Q.

ieT
> It is well defined provided F [Efil |Ci|5} <1 for some 0 < 3 <1, or if
E[2Y, 2| <1and E[Q] =0,
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Our particular SFPE

» For the stochastic fixed point equation

x2S
= Cxi+CQ

i=1

describing PageRank, we have (Q,N,C,Cs,...) = (CQ,N,C,C,...),
and the stability condition is satisfied since E [N|C|] < c < 1.
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Asymptotic behavior of the solution

> The results in (OC '12) for linear SFPEs give:

» Theorem: Suppose C > 0 and define p, = E[NC?%] for a > 0. Then,

> If PINC > ) € R_q with a > 1, E[|QC|*"¢] < 0o and pate < oo for

some € > 0, E[QC] > 0, and p1 V po < 1, then

(E[Qc)
(1= p1)(1 = pa)

> If P(QC > ) € R with a > 1, E[|QC|?] < oo forall 0 < 8 < a,
p1V pa < 1 and E[(NC)*T] < oo for some € > 0, then

P(X >zx)~ P(NC > z), T — 00.

P(X >z)~(1—ps) ' P(QC > z), T — 00.

» Note: NC = N/|¢|/D, where (N, D, () are the size-biased in-degree,
out-degree, and weight, respectively.
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Asymptotic behavior of PageRank
» Recall the limiting PageRank:
No
R* = :g:::ini + Qo
i=1

» Suppose that P(Ny > z) € R_,, for some o > 1 and E[|Qg|*T¢] < o0
for some € > 0. Then,

» If P(X >z) € R_q and E[X] >0,

P(R* >z) ~ P( max_ X; > :c) + P(M > z/E[X]), T — 00.

1<i<NG
> If E[|X|*"] < oo for some a > 0,
P(R* > z) ~ P(Ny > z/E[X]), T — 00.

The power-law hypothesis for PageRank holds!
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The impact of degree-degree correlations

» When the in-degree and out-degree are independent Nj 2 N and
P(NC > z) ~ E[C*]P(N > 1),

which leads to a heavy-tailed X.

» When the in-degree and out-degree are positively correlated we may have
E[(NC)**€] < oo, which in turn may lead to E[|X|*"¢] < oo (provided
Q is light enough).

» |In other words,

The contribution of the neighbors to the rank disappears!
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Thank you for your attention.
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