PageRank on directed complex networks

Mariana Olvera-Cravioto

UC Berkeley molvera@berkeley.edu

January 25th, 2018

An abundance of information

- An era of massive amounts of information that need to be organized.
- A famous example: The World Wide Web.
 - Organize webpages based on their "popularity", "relevance", etc.
 - Search engines based on ranking algorithms.

Google bing YAHOO!

- Other important examples: Twitter, healthcare networks, scientific citations, customer reviews, etc.
- Information represented by graphs: nodes, edges, and node attributes.
- Different types of graphs require different ranking schemes.

We want to analyze the "typical" behavior of ranking algorithms on large directed graphs.

- We want to analyze the "typical" behavior of ranking algorithms on large directed graphs.
 - Can we characterize nodes with very high ranks?

- We want to analyze the "typical" behavior of ranking algorithms on large directed graphs.
 - Can we characterize nodes with very high ranks?
 - Can we determine the distribution of the ranks?

- We want to analyze the "typical" behavior of ranking algorithms on large directed graphs.
 - Can we characterize nodes with very high ranks?
 - Can we determine the distribution of the ranks?
- Our approach:
 - **STEP 1**: Start with an appropriate random graph model.
 - STEP 2: Show that we can analyze the rank via a fixed-point equation.
 - **STEP 3**: Characterize the solutions to this fixed-point equation.

The WWW graph

- ▶ WWW seen as a directed graph (webpages = nodes, links = edges).
- For ranking purposes we can think of it as being a *simple* graph.
- Empirical observations:

fraction pages > k in-links $\propto k^{-\alpha}$, $\alpha = 1.1$

fraction pages > k out-links $\propto k^{-\beta}$, $\beta = 1.72$

 We want a directed random graph model that matches the degree distributions.

The WWW graph

- ▶ WWW seen as a directed graph (webpages = nodes, links = edges).
- For ranking purposes we can think of it as being a *simple* graph.
- Empirical observations:

fraction pages > k in-links $\propto k^{-\alpha}$, $\alpha = 1.1$

fraction pages > k out-links $\propto k^{-\beta}$, $\beta = 1.72$

- We want a directed random graph model that matches the degree distributions.
- The power-law hypothesis for PageRank:

fraction pages with rank $> k \propto k^{-lpha}$

Model 1: The directed configuration model

- Directed graph on n nodes $V_n = \{1, 2, \dots, n\}$.
- In-degree and out-degree:
 - $d_i^+ =$ in-degree of node i = number of edges pointing to i.
 - ▶ d_i^- = out-degree of node i = number of edges pointing out from i.
- \blacktriangleright We call $(\mathbf{d}^+,\mathbf{d}^-)=(\{d_i^+\},\{d_i^-\})$ a bi-degree-sequence if

$$\sum_{i=1}^n d_i^+ = \sum_{i=1}^n d_i^-$$

Target joint degree distribution:

$$F(x,y) = P(\mathscr{D}^+ \le x, \mathscr{D}^- \le y)$$

with $(\mathscr{D}^+, \mathscr{D}^-) \in \mathbb{N}^2$.

Model 1: The directed configuration model

 \blacktriangleright By adding some randomness into the bi-degree sequence we can obtain $({\bf D}^+, {\bf D}^-)$ such that

$$\frac{1}{n}\sum_{i=1}^{n} \mathbb{1}(D_{i}^{+} \leq x, D_{i}^{-} \leq y) \xrightarrow{P} F(x, y), \qquad n \to \infty,$$

see, e.g., the algorithm proposed in (Chen-OC '12).

- ▶ Given the bi-degree sequence, assign to each node *i* a number of inbound and outbound half edges according to the sequence.
- We obtain a graph by randomly pairing the inbound half edges with the outbound ones.
- ▶ The result is a *multigraph* (e.g., with self-loops and multiple edges in the same direction) on the nodes V_n.
- ► Conditionally on the resulting graph being simple, it is uniformly chosen among all graphs having (D⁺, D⁻) as their bi-degree sequence.

Model 2: The inhomogeneous random digraph

- ► Consider a directed graph on the set of vertices V_n = {1, 2, ..., n} having edges in E_n.
- Each vertex i is assigned a *type* $\mathbf{x}_i \in \mathcal{S}$.
- Types are distributed according to some measure μ .
- ▶ Let $\kappa(\mathbf{x}, \mathbf{y}) : S^2 \to \mathbb{R}_+$ and construct the graph by independently drawing an edge from *i* to *j* with probability

$$p_{ij}^{(n)} = \mathbb{P}_n((i,j) \in E_n) = 1 \land \frac{\kappa(\mathbf{x}_i, \mathbf{x}_j)(1 + \varphi_n(\mathbf{x}_i, \mathbf{x}_j))}{n}, \quad 1 \le i \ne j \le n,$$

where $\mathbb{P}_n(\cdot) = P(\cdot | \{\mathbf{x}_i : 1 \leq i \leq n\})$ and $|\varphi_n(\mathbf{x}_i, \mathbf{x}_j)| \to 0$.

The limiting degree joint distribution is given by mixed Poisson r.v.s with mixing distributions determined by the types.

Model 2: The inhomogeneous random digraph

- Examples with $\mathbf{x} = (x^+, x^-)$ and $\kappa(\mathbf{x}, \mathbf{y}) = \theta^{-1} x^- y^+$:
 - Directed Erdős-Rényi model:

$$p_{ij}^{(n)} = \frac{\lambda}{n}$$

Directed Chung-Lu model:

$$p_{ij}^{(n)} = \frac{x_i^- x_j^+}{l_n} \wedge 1, \qquad l_n = \sum_{i=1}^n (x_i^+ + x_i^-)$$

Directed generalized random graph:

$$p_{ij}^{(n)} = \frac{x_i^- x_j^+}{l_n + x_i^- x_j^+}$$

Directed Poissonian random graph or Norros-Reittu model:

$$p_{ij}^{(n)} = 1 - e^{-x_i^- x_j^+ / l_n}$$

Google's PageRank

PageRank computes the rank of a vertex as:

$$r_i = (1-c)q_i + c\sum_{j \to i} \frac{r_j}{D_j^-},$$

where the sum is taken over all vertices pointing to vertex i, D_j^- is the number of outbound links of page j, $\mathbf{q} = (q_1, \ldots, q_n)$ is a probability vector, known as personalization, n is the total number of vertices in the graph, and c is a damping factor, usually c = 0.85.

- ▶ Multiply both sides by *n* to obtain a "scale free" rank.
- In matrix notation,

$$\mathbf{R} = (1 - c)\mathbf{q} + \mathbf{R}\mathbf{M}, \qquad \mathbf{M} = \mathsf{matrix} \text{ of weights.}$$

Matrix iterations

 \blacktriangleright Since $\mathbf{M}^k \rightarrow 0$ as $k \rightarrow \infty, \, \mathbf{R}$ admits the representation

$$\mathbf{R} = (1-c)\mathbf{q}\sum_{i=0}^{\infty}\mathbf{M}^{i}.$$

▶ Hence, we can approximate **R** with finitely many matrix iterations

$$\mathbf{R}^{(k)} = (1-c)\mathbf{q}\sum_{i=0}^{k}\mathbf{M}^{i}.$$

Matrix iterations

• Since $\mathbf{M}^k \to 0$ as $k \to \infty$, \mathbf{R} admits the representation

$$\mathbf{R} = (1-c)\mathbf{q}\sum_{i=0}^{\infty}\mathbf{M}^i.$$

 \blacktriangleright Hence, we can approximate ${f R}$ with finitely many matrix iterations

$$\mathbf{R}^{(k)} = (1-c)\mathbf{q}\sum_{i=0}^{k}\mathbf{M}^{i}.$$

Remark: $\mathbf{R}^{(k)}$ contains only the "local" behavior of the graph.

Random graph approximation

- Many random graph models have a *local tree-like* behavior.
- Both the DCM and the IRD do.

Connection to the fixed point equation

Consider the more general setting where

$$R_i = Q_i + \sum_{j \to i} \frac{\zeta_j}{D_j} \cdot R_j.$$

▶ PageRank corresponds to $Q_i = q_i(1-c)n$ and $\zeta_j = c$.

Connection to the fixed point equation

Consider the more general setting where

$$R_i = Q_i + \sum_{j \to i} \frac{\zeta_j}{D_j} \cdot R_j.$$

- PageRank corresponds to $Q_i = q_i(1-c)n$ and $\zeta_j = c$.
- ► A stochastic approximation (independent in-degree and out-degree):

$$R \stackrel{\mathcal{D}}{=} Q + \sum_{j=1}^{N} C_j R_j,$$

where $C_j = \zeta_j / \mathcal{D}_j$, $|\zeta_j| \le c < 1$ for all $j, N \in \mathbb{N}$, and $\{R_j\}$ are i.i.d. copies of R independent of $(Q, N, \{C_j\})$.

▶ R = rank, N = in-degree, $D_i = \text{neighbors' size-biased out-degree}$, $R_i = \text{neighbors' ranks}$.

In the presence of degree-degree correlations

- ▶ If the in-degree and out-degree of the same vertex are dependent, then $C_j = \zeta_j / D_j$ and R_j are too.
- By setting $X_j = C_j R_j$ we obtain a new fixed-point equation:

$$R^* = Q_0 + \sum_{j=1}^{N_0} X_j, \qquad X \stackrel{\mathcal{D}}{=} CQ + \sum_{j=1}^{N} CX_j,$$

where (Q, N, C) are arbitrarily dependent, with $C = \zeta/\mathcal{D}$ as before, (Q_0, N_0) are the attributes of a vertex chosen uniformly at random, and R^* is the rank of this randomly chosen vertex.

Assumptions for the DCM

 \blacktriangleright Let ξ be uniformly chosen from $\{1,2,\ldots,n\},$ and set

$$F_n(m,k,q,x) = \mathbb{P}_n(D_{\xi}^+ \le m, D_{\xi}^- \le k, Q_{\xi} \le q, \zeta_{\xi} \le x)$$

and

$$F(m,k,q,x) = P(\mathscr{D}^+ \le x, \mathscr{D}^- \le k, Q \le q, \zeta \le x),$$

• Let d_1 denote the Wasserstein metric of order 1.

Assume:

•
$$d_1(F_n, F) \xrightarrow{P} 0$$
, as $n \to \infty$.

- $\blacktriangleright E[\mathscr{D}^+] = E[\mathscr{D}^-].$
- $E[(\mathscr{D}^+)^{1+\delta} + (\mathscr{D}^-)^2 + \mathscr{D}^+ \mathscr{D}^- + |Q| + |Q|\mathscr{D}^-] < \infty$ for some $\delta > 0$ and $|\zeta| \le c < 1$ a.s.
- Some other technical conditions.

Assumptions for the IRD

- Suppose types are of the form $\mathbf{X}_i = (W_i^+, W_i^-, Q_i, \zeta_i)$ and the kernel $\kappa(\mathbf{X}_i, \mathbf{X}_j) = W_i^- W_j^+ / \theta$.
- Let ξ be uniformly chosen from $\{1, 2, \ldots, n\}$, and set

$$F_n(u, v, q, x) = \mathbb{P}_n(W_{\xi}^+ \le u, W_{\xi}^- \le v, Q_{\xi} \le q, \zeta_{\xi} \le x)$$

and

$$F(u, v, q, x) = P(W^+ \le u, W^- \le v, Q \le q, \zeta \le x),$$

Assume:

•
$$d_1(F_n, F) \xrightarrow{P} 0$$
, as $n \to \infty$.

•
$$|\varphi_n(\mathbf{X}_i, \mathbf{X}_j)| \xrightarrow{P} 0$$
 for each i, j .

- ► $E[(W^+)^{1+\delta} + (W^-)^2 + W^+W^- + |Q| + |Q|W^-] < \infty$ for some $\delta > 0$ and $|\zeta| \le c < 1$ a.s.
- Some other technical conditions.

The limiting distribution for PageRank

Theorem: (OC '18) Let R_ξ denote the rank of a uniformly chosen vertex in either the DCM or the IRD. Then, under the assumptions for each model, there exists a r.v. R^{*} such that

$$R_{\xi} \Rightarrow \mathcal{R}^* \qquad \mathbb{E}_n[R_{\xi}] \xrightarrow{P} E[\mathcal{R}^*], \qquad n \to \infty,$$

with

$$\mathcal{R}^* = \mathcal{Q}_0 + \sum_{j=1}^{\mathcal{N}_0} X_j,$$

where the $\{X_j\}$ are i.i.d. copies of the attracting endogenous solution to

$$X \stackrel{\mathcal{D}}{=} \mathcal{CQ} + \sum_{j=1}^{\mathcal{N}} \mathcal{C}X_j, \tag{1}$$

and are independent of $(\mathcal{Q}_0, \mathcal{N}_0)$.

Some remarks

- The convergence in distribution was first proved in (Chen-Litvak-OC '17) for the DCM and in (Lee-OC '17) for the IRD, both under independence between the in-degree and out-degree.
- ► (Q₀, N₀) correspond to the limiting personalization and in-degree, respectively, of a randomly chosen vertex.
- ► The distribution of (Q₀, N₀) is directly related to distribution F, whereas the distribution of (Q, N, C) is size-biased.
- The endogenous solution to (1) can be constructed on a weighted branching process.

The weighted branching process

• Number of offspring N, mark $(Q, C_1, C_2, ...)$.

• Each node in the tree has a weight $\Pi_{(i_1,...,i_n)}$ defined via the recursion

$$\Pi_{i_1} = C_{i_1}, \qquad \Pi_{(i_1, \dots, i_n)} = C_{(i_1, \dots, i_n)} \Pi_{(i_1, \dots, i_{n-1})}, \qquad n \ge 2,$$

and $\Pi = 1$ is the weight of the root node.

The attracting endogenous solution

Consider the SFPE

$$R \stackrel{\mathcal{D}}{=} \sum_{i=1}^{N} C_i R_i + Q$$

where $\{R_i\}$ are i.i.d., independent of $(Q, N, C_1, C_2, ...)$, having the same distribution as $R, Q, \{C_i\}$ real-valued random variables, $N \in \mathbb{N} \cup \{\infty\}$.

The attracting endogenous solution

Consider the SFPE

$$R \stackrel{\mathcal{D}}{=} \sum_{i=1}^{N} C_i R_i + Q$$

where $\{R_i\}$ are i.i.d., independent of $(Q, N, C_1, C_2, ...)$, having the same distribution as $R, Q, \{C_i\}$ real-valued random variables, $N \in \mathbb{N} \cup \{\infty\}$.

The attracting endogenous solution is given by

$$R = \sum_{\mathbf{i}\in\mathcal{T}} Q_{\mathbf{i}} \Pi_{\mathbf{i}}.$$

▶ It is well defined provided $E\left[\sum_{i=1}^{N} |C_i|^{\beta}\right] < 1$ for some $0 < \beta \le 1$, or if $E\left[\sum_{i=1}^{N} C_i^2\right] < 1$ and E[Q] = 0.

For the stochastic fixed point equation

$$X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\mathcal{N}} \mathcal{C}X_i + \mathcal{C}\mathcal{Q}$$

describing PageRank, we have $(Q, N, C_1, C_2, ...) = (CQ, N, C, C, ...)$, and the stability condition is satisfied since $E[N|C|] \leq c < 1$.

Asymptotic behavior of the solution

- ▶ The results in (OC '12) for linear SFPEs give:
- ▶ Theorem: Suppose $C \ge 0$ and define $\rho_{\alpha} = E[\mathcal{NC}^{\alpha}]$ for $\alpha > 0$. Then,
 - ▶ If $P(\mathcal{NC} > x) \in \mathcal{R}_{-\alpha}$ with $\alpha > 1$, $E[|\mathcal{QC}|^{\alpha+\epsilon}] < \infty$ and $\rho_{\alpha+\epsilon} < \infty$ for some $\epsilon > 0$, $E[\mathcal{QC}] > 0$, and $\rho_1 \lor \rho_\alpha < 1$, then

$$P(X > x) \sim \frac{(E[\mathcal{QC}])^{\alpha}}{(1 - \rho_1)(1 - \rho_{\alpha})} P(\mathcal{NC} > x), \qquad x \to \infty.$$

▶ If $P(\mathcal{QC} > x) \in \mathcal{R}_{-\alpha}$ with $\alpha > 1$, $E[|\mathcal{QC}|^{\beta}] < \infty$ for all $0 < \beta < \alpha$, $\rho_1 \lor \rho_{\alpha} < 1$ and $E[(\mathcal{NC})^{\alpha+\epsilon}] < \infty$ for some $\epsilon > 0$, then

$$P(X > x) \sim (1 - \rho_{\alpha})^{-1} P(\mathcal{QC} > x), \qquad x \to \infty.$$

Note: NC = N|ζ|/D, where (N, D, ζ) are the size-biased in-degree, out-degree, and weight, respectively.

Asymptotic behavior of PageRank

Recall the limiting PageRank:

$$\mathcal{R}^* = \sum_{i=1}^{\mathcal{N}_0} X_i + \mathcal{Q}_0$$

- ▶ Suppose that $P(N_0 > x) \in \mathcal{R}_{-\alpha}$ for some $\alpha > 1$ and $E[|Q_0|^{\alpha+\epsilon}] < \infty$ for some $\epsilon > 0$. Then,
 - If $P(X > x) \in \mathcal{R}_{-\alpha}$ and E[X] > 0,

$$P(\mathcal{R}^* > x) \sim P\left(\max_{1 \le i \le \mathcal{N}_0} X_i > x\right) + P(\mathcal{N}_0 > x/E[X]), \quad x \to \infty.$$

 $\bullet \ \, {\rm If} \ E[|X|^{\alpha+\epsilon}]<\infty \ \, {\rm for \ some } \ \alpha>0,$

$$P(\mathcal{R}^* > x) \sim P(\mathcal{N}_0 > x/E[X]), \qquad x \to \infty.$$

The power-law hypothesis for PageRank holds!

The impact of degree-degree correlations

▶ When the in-degree and out-degree are independent $\mathcal{N}_0 \stackrel{\mathcal{D}}{=} \mathcal{N}$ and

$$P(\mathcal{NC} > x) \sim E[\mathcal{C}^{\alpha}]P(\mathcal{N} > x),$$

which leads to a heavy-tailed X.

- ▶ When the in-degree and out-degree are positively correlated we may have $E[(\mathcal{NC})^{\alpha+\epsilon}] < \infty$, which in turn may lead to $E[|X|^{\alpha+\epsilon}] < \infty$ (provided Q is light enough).
- In other words,

The contribution of the neighbors to the rank disappears!

Thank you for your attention.