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An abundance of information

I An era of massive amounts of information that need to be organized.

I A famous example: The World Wide Web.
I Organize webpages based on their “popularity”, “relevance”, etc.
I Search engines based on ranking algorithms.

I Other important examples: Twitter, healthcare networks, scientific
citations, customer reviews, etc.

I Information represented by graphs: nodes, edges, and node attributes.

I Different types of graphs require different ranking schemes.
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The problem to solve

I We want to analyze the “typical” behavior of ranking algorithms on large
directed graphs.

I Can we characterize nodes with very high ranks?
I Can we determine the distribution of the ranks?

I Our approach:

Step 1: Start with an appropriate random graph model.
Step 2: Show that we can analyze the rank via a fixed-point equation.
Step 3: Characterize the solutions to this fixed-point equation.
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The WWW graph

I WWW seen as a directed graph (webpages = nodes, links = edges).

I For ranking purposes we can think of it as being a simple graph.

I Empirical observations:

fraction pages > k in-links ∝ k−α, α = 1.1

fraction pages > k out-links ∝ k−β , β = 1.72

I We want a directed random graph model that matches the degree
distributions.

I The power-law hypothesis for PageRank:

fraction pages with rank > k ∝ k−α
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Model 1: The directed configuration model

I Directed graph on n nodes Vn = {1, 2, . . . , n}.
I In-degree and out-degree:

I d+i = in-degree of node i = number of edges pointing to i.
I d−i = out-degree of node i = number of edges pointing out from i.

I We call (d+,d−) = ({d+i }, {d
−
i }) a bi-degree-sequence if

n∑
i=1

d+i =

n∑
i=1

d−i

I Target joint degree distribution:

F (x, y) = P (D+ ≤ x,D− ≤ y)

with (D+,D−) ∈ N2.
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Model 1: The directed configuration model

I By adding some randomness into the bi-degree sequence we can obtain
(D+,D−) such that

1

n

n∑
i=1

1(D+
i ≤ x,D

−
i ≤ y)

P−→ F (x, y), n→∞,

see, e.g., the algorithm proposed in (Chen-OC ’12).

I Given the bi-degree sequence, assign to each node i a number of inbound
and outbound half edges according to the sequence.

I We obtain a graph by randomly pairing the inbound half edges with the
outbound ones.

I The result is a multigraph (e.g., with self-loops and multiple edges in the
same direction) on the nodes Vn.

I Conditionally on the resulting graph being simple, it is uniformly chosen
among all graphs having (D+,D−) as their bi-degree sequence.
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Model 2: The inhomogeneous random digraph

I Consider a directed graph on the set of vertices Vn = {1, 2, . . . , n} having
edges in En.

I Each vertex i is assigned a type xi ∈ S.

I Types are distributed according to some measure µ.

I Let κ(x,y) : S2 → R+ and construct the graph by independently drawing
an edge from i to j with probability

p
(n)
ij = Pn((i, j) ∈ En) = 1 ∧ κ(xi,xj)(1 + ϕn(xi,xj))

n
, 1 ≤ i 6= j ≤ n,

where Pn(·) = P (·|{xi : 1 ≤ i ≤ n}) and |ϕn(xi,xj)| → 0.

I The limiting degree joint distribution is given by mixed Poisson r.v.s with
mixing distributions determined by the types.
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Model 2: The inhomogeneous random digraph

I Examples with x = (x+, x−) and κ(x,y) = θ−1x−y+:

I Directed Erdős-Rényi model:

p
(n)
ij =

λ

n

I Directed Chung-Lu model:

p
(n)
ij =

x−i x
+
j

ln
∧ 1, ln =

n∑
i=1

(x+i + x−i )

I Directed generalized random graph:

p
(n)
ij =

x−i x
+
j

ln + x−i x
+
j

I Directed Poissonian random graph or Norros-Reittu model:

p
(n)
ij = 1− e−x

−
i x

+
j /ln
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Google’s PageRank

I PageRank computes the rank of a vertex as:

ri = (1− c)qi + c
∑
j→i

rj

D−j
,

where the sum is taken over all vertices pointing to vertex i, D−j is the
number of outbound links of page j, q = (q1, . . . , qn) is a probability
vector, known as personalization, n is the total number of vertices in the
graph, and c is a damping factor, usually c = 0.85.

I Multiply both sides by n to obtain a “scale free” rank.

I In matrix notation,

R = (1− c)q + RM, M = matrix of weights.
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Matrix iterations

I Since Mk → 0 as k →∞, R admits the representation

R = (1− c)q
∞∑
i=0

Mi.

I Hence, we can approximate R with finitely many matrix iterations

R(k) = (1− c)q
k∑
i=0

Mi.

I Remark: R(k) contains only the “local” behavior of the graph.
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Random graph approximation

I Many random graph models have a local tree-like behavior.

I Both the DCM and the IRD do.

Randomly chosen node

Tree structure up to distance c logn
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Connection to the fixed point equation

I Consider the more general setting where

Ri = Qi +
∑
j→i

ζj
Dj
·Rj .

I PageRank corresponds to Qi = qi(1− c)n and ζj = c.

I A stochastic approximation (independent in-degree and out-degree):

R
D
= Q+

N∑
j=1

CjRj ,

where Cj = ζj/Dj , |ζj | ≤ c < 1 for all j, N ∈ N, and {Rj} are i.i.d.
copies of R independent of (Q,N, {Cj}).

I R = rank, N = in-degree, Di = neighbors’ size-biased out-degree,
Ri = neighbors’ ranks.
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In the presence of degree-degree correlations

I If the in-degree and out-degree of the same vertex are dependent, then
Cj = ζj/Dj and Rj are too.

I By setting Xj = CjRj we obtain a new fixed-point equation:

R∗ = Q0 +

N0∑
j=1

Xj , X
D
= CQ+

N∑
j=1

CXj ,

where (Q,N,C) are arbitrarily dependent, with C = ζ/D as before,
(Q0, N0) are the attributes of a vertex chosen uniformly at random, and
R∗ is the rank of this randomly chosen vertex.
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Assumptions for the DCM

I Let ξ be uniformly chosen from {1, 2, . . . , n}, and set

Fn(m, k, q, x) = Pn(D+
ξ ≤ m,D

−
ξ ≤ k,Qξ ≤ q, ζξ ≤ x)

and
F (m, k, q, x) = P (D+ ≤ x,D− ≤ k,Q ≤ q, ζ ≤ x),

I Let d1 denote the Wasserstein metric of order 1.

I Assume:
I d1(Fn, F )

P−→ 0, as n→∞.
I E[D+] = E[D−].
I E[(D+)1+δ + (D−)2 + D+D− + |Q|+ |Q|D−] <∞ for some δ > 0 and
|ζ| ≤ c < 1 a.s.

I Some other technical conditions.
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Assumptions for the IRD

I Suppose types are of the form Xi = (W+
i ,W

−
i , Qi, ζi) and the kernel

κ(Xi,Xj) = W−i W
+
j /θ.

I Let ξ be uniformly chosen from {1, 2, . . . , n}, and set

Fn(u, v, q, x) = Pn(W+
ξ ≤ u,W

−
ξ ≤ v,Qξ ≤ q, ζξ ≤ x)

and
F (u, v, q, x) = P (W+ ≤ u,W− ≤ v,Q ≤ q, ζ ≤ x),

I Assume:
I d1(Fn, F )

P−→ 0, as n→∞.
I |ϕn(Xi,Xj)|

P−→ 0 for each i, j.
I E[(W+)1+δ + (W−)2 +W+W− + |Q|+ |Q|W−] <∞ for some δ > 0

and |ζ| ≤ c < 1 a.s.
I Some other technical conditions.

UC Berkeley, Department of Statistics PageRank on directed complex networks 16/25



The limiting distribution for PageRank

I Theorem: (OC ‘18) Let Rξ denote the rank of a uniformly chosen vertex
in either the DCM or the IRD. Then, under the assumptions for each
model, there exists a r.v. R∗ such that

Rξ ⇒ R∗ En[Rξ]
P−→ E[R∗], n→∞,

with

R∗ = Q0 +

N0∑
j=1

Xj ,

where the {Xj} are i.i.d. copies of the attracting endogenous solution to

X
D
= CQ+

N∑
j=1

CXj , (1)

and are independent of (Q0,N0).
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Some remarks

I The convergence in distribution was first proved in (Chen-Litvak-OC ’17)
for the DCM and in (Lee-OC ’17) for the IRD, both under independence
between the in-degree and out-degree.

I (Q0,N0) correspond to the limiting personalization and in-degree,
respectively, of a randomly chosen vertex.

I The distribution of (Q0,N0) is directly related to distribution F , whereas
the distribution of (Q,N , C) is size-biased.

I The endogenous solution to (1) can be constructed on a weighted
branching process.
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The weighted branching process

I Number of offspring N , mark (Q,C1, C2, . . . ).

Π∅ = 1

Π1 Π2 Π3

Π(1,1) Π(1,2) Π(2,1) Π(3,1) Π(3,2) Π(3,3)

Z0 = 1

Z1 = 3

Z2 = 6I Each node in the tree has a weight Π(i1,...,in) defined via the recursion

Πi1 = Ci1 , Π(i1,...,in) = C(i1,...,in)Π(i1,...,in−1), n ≥ 2,

and Π = 1 is the weight of the root node.
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The attracting endogenous solution

I Consider the SFPE

R
D
=

N∑
i=1

CiRi +Q

where {Ri} are i.i.d., independent of (Q,N,C1, C2, . . . ), having the same
distribution as R, Q, {Ci} real-valued random variables, N ∈ N ∪ {∞}.

I The attracting endogenous solution is given by

R =
∑
i∈T

QiΠi.

I It is well defined provided E
[∑N

i=1 |Ci|β
]
< 1 for some 0 < β ≤ 1, or if

E
[∑N

i=1 C
2
i

]
< 1 and E[Q] = 0.
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Our particular SFPE

I For the stochastic fixed point equation

X
D
=

N∑
i=1

CXi + CQ

describing PageRank, we have (Q,N,C1, C2, . . . ) = (CQ,N , C, C, . . . ),
and the stability condition is satisfied since E [N|C|] ≤ c < 1.
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Asymptotic behavior of the solution

I The results in (OC ’12) for linear SFPEs give:

I Theorem: Suppose C ≥ 0 and define ρα = E[NCα] for α > 0. Then,
I If P (NC > x) ∈ R−α with α > 1, E[|QC|α+ε] <∞ and ρα+ε <∞ for

some ε > 0, E[QC] > 0, and ρ1 ∨ ρα < 1, then

P (X > x) ∼ (E[QC])α

(1− ρ1)(1− ρα)
P (NC > x), x→∞.

I If P (QC > x) ∈ R−α with α > 1, E[|QC|β ] <∞ for all 0 < β < α,
ρ1 ∨ ρα < 1 and E[(NC)α+ε] <∞ for some ε > 0, then

P (X > x) ∼ (1− ρα)−1P (QC > x), x→∞.

I Note: NC = N|ζ|/D, where (N ,D, ζ) are the size-biased in-degree,
out-degree, and weight, respectively.

UC Berkeley, Department of Statistics PageRank on directed complex networks 22/25



Asymptotic behavior of PageRank

I Recall the limiting PageRank:

R∗ =

N0∑
i=1

Xi +Q0

I Suppose that P (N0 > x) ∈ R−α for some α > 1 and E[|Q0|α+ε] <∞
for some ε > 0. Then,

I If P (X > x) ∈ R−α and E[X] > 0,

P (R∗ > x) ∼ P
(

max
1≤i≤N0

Xi > x

)
+ P (N0 > x/E[X]), x→∞.

I If E[|X|α+ε] <∞ for some α > 0,

P (R∗ > x) ∼ P (N0 > x/E[X]), x→∞.

The power-law hypothesis for PageRank holds!
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The impact of degree-degree correlations

I When the in-degree and out-degree are independent N0
D
= N and

P (NC > x) ∼ E[Cα]P (N > x),

which leads to a heavy-tailed X.

I When the in-degree and out-degree are positively correlated we may have
E[(NC)α+ε] <∞, which in turn may lead to E[|X|α+ε] <∞ (provided
Q is light enough).

I In other words,

The contribution of the neighbors to the rank disappears!
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Thank you for your attention.
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