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Abstract

We report a laboratory experiment that enables us to estimate
parametric models of ambiguity aversion at the level of the individ-
ual subject. We use two main specifications, a “kinked” specification
that nests Maxmin Expected Utility, Choquet Expected Utility, α-
Maxmin Expected Utility, and Contraction Expected Utility and a
“smooth” specification that nests the various theories referred to col-
lectively as Recursive Expected Utility. Our subjects solved a series
of portfolio-choice problems. The assets are Arrow securities corre-
sponding to three states of nature, where the probability of one state
is known and the remaining two are ambiguous. The sample exhibits
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considerable heterogeneity in preferences, as captured by parameter
estimates. Nonetheless, there exists a strong tendency to equalize the
demands for the securities that pay off in the ambiguous states, a fea-
ture more easily accommodated by the kinked specification than by the
smooth specification. We also find that a large number of subjects are
well described by the ambiguity-neutral Subjective Expected Utility
model.
JEL Classification Numbers: D81, C91.
Key Words: uncertainty, ambiguity aversion, Subjective Expected

Utility, Maxmin Expected Utility, α-Maxmin Expected Utility, Cho-
quet Expected Utility, Contraction Expected Utility, Recursive Ex-
pected Utility, experiment.

1 Introduction

In Savage’s (1954) celebrated theory of Subjective Expected Utility (SEU),
an individual acts as if a single probability measure governs uncertainty over
states of the world. Ellsberg (1961) proposed a thought experiment in which
aversion to ambiguity would lead to a violation of the Savage axioms. Sub-
sequent experimental work has repeatedly and robustly confirmed Ellsberg’s
conjecture. Meanwhile, a large theoretical literature has developed models
consistent with this behavior.

In this paper, we present a new experimental data set and use it to
estimate parametric models of ambiguity averse behavior. The experimen-
tal data is generated by subjects solving a series of randomly generated
portfolio-choice problems. In our preferred interpretation, there are three
states of nature, denoted by s = 1, 2, 3. For each state s, there is an Arrow
security that pays one dollar in state s and nothing in the other states. To
distinguish the effects of risk (known probabilities) and ambiguity (unknown
probabilities), state 2 is assigned an objectively known probability, whereas
states 1 and 3 have ambiguous probabilities.

More precisely, subjects are informed that state 2 occurs with probability
π2 =

1
3 , whereas states 1 and 3 occur with unknown probabilities π1 ≥ 0

and π3 ≥ 0, satisfying π1+π3 =
2
3 . By letting xs denote the demand for the

security that pays off in state s and ps denote its price, the budget constraint
can be written as p · x = 1, where x = (x1, x2, x3) and p = (p1, p2, p3).
Then the subject can choose any non-negative portfolio x ≥ 0 satisfying the
budget constraint.

Each budget set defines a corresponding portfolio-choice problem. The
budget sets are displayed on a computer screen using the graphical interface
introduced by Choi, et al. (2007a) and exploited by Choi, et al. (2007b)
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for the study of risky decisions. The data generated in this way allows
us to estimate models of ambiguity aversion for each individual subject.
Estimation at the individual level is crucial because of the possibility of
individual heterogeneity.

There is a variety of theoretical models of attitudes toward risk and am-
biguity, but they all give rise to one of two main specifications. The first is
a “kinked” specification, which can be rationalized by different utility mod-
els in the literature, including Maxmin Expected Utility (MEU), Choquet
Expected Utility (CEU), α-Maxmin Expected Utility (α-MEU), or Contrac-
tion Expected Utility.1 The second is a “smooth” specification, based on
the class of Recursive Expected Utility (REU) models.2 The standard SEU
model and the MEU model (with a maximal set of prior beliefs) are special
cases of both the kinked and smooth specifications.

Each of the two specifications, kinked and smooth, is characterized by
two parameters, one of which is associated with risk aversion and the other
with ambiguity aversion. The estimated parameters provide summary sta-
tistics of attitudes to risk and ambiguity. However, to achieve this we have to
adopt a parsimonious parameterization. Once this information is succinctly
summarized, we can compare risk and ambiguity attitudes across subjects
through their estimated individual parameters and get a broad picture of
the heterogeneity of preferences. For any given model, these parameter es-
timates range from risk neutrality with ambiguity aversion, to ambiguity
neutrality with risk aversion, to infinite risk aversion.

Although individual preferences are heterogeneous, about two-thirds of
our subjects have a positive degree of ambiguity aversion. In other words,
one-third of subjects are well described by the standard SEU model, a much
higher proportion than has been found in previous studies.3 Naive tests of
significance suggest that nearly half of subjects may be consistent with SEU.
Our estimates of risk aversion are similar to other recent estimates.

Unlike urn-based studies, in which the exposure to ambiguity is fixed
by the experimenter, in our design subjects can reduce their exposure to
ambiguity by choosing portfolios whose payoffs are less dependent on the

1See, MEU: Gilboa and Schmeidler (1989); CEU: Schmeidler (1989); a-MEU: Ghi-
rardato et al. (2004) and Olszewski (2006); Contraction Expected Utility: Gajdos et al.
(2008).

2See, Ergin and Gul (2004), Klibanoff et al. (2005), Nau (2005), Seo (2007), and related
work by Halevy and Feltkamp (2005), Giraud (2006) and Ahn (2008).

3 In variants of Ellsberg reported in Camerer (1995), subjects regularly pick the less
ambiguous urn and pay high premium to avoid ambiguity — around 10-20 percent of
expected value.
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ambiguous states. In the limit, when x1 = x3, there is no effective exposure
to ambiguity. We find there is a strong tendency for subjects to equalize
their demands for the securities that pay off in the ambiguous states. This
feature of the data can be rationalized by the kinked specification, but is
harder to reconcile with the smooth specification.

To our knowledge, this is the first study to simultaneously estimate dif-
ferent models of ambiguity preferences using experimental data. No model
appears to be a “winner” across all subjects, but some do better than others.
The absolute and relative abilities of the models to fit observed individual
data vary across subjects, suggesting that a variety of models may be needed
to explain the different choices patterns in the population. However, some
patterns appear consistently across many subjects. In particular, the ten-
dency of subjects to hedge ambiguity, i.e., to select portfolios that equalize
the demands for the securities that pay off in the ambiguous states, is more
easily explained by the kinked specification.

The rest of the paper is organized as follows. Section 2 provides a dis-
cussion of some related literature. The experimental design and procedures
are described in Section 3. Section 4 provides descriptive statistics, some
case studies of individual subjects, and preliminary consistency tests us-
ing revealed preference analysis. Section 5 describes the different theoretical
models that lie behind the two main specifications that we estimate. Section
6 contains the econometric analysis and Section 7 contains some conclud-
ing remarks. The experimental instructions and individual-level data are
contained in online appendices.

2 Related Literature

We will not attempt to review the large and growing experimental literature
on ambiguity aversion. Camerer and Weber (1992) and Camerer (1995)
provide excellent, though now somewhat dated, surveys that the reader may
wish to consult. Instead, we focus attention on some recent papers that are
particularly relevant to our study.

Halevy (2007) presents a cleverly designed experiment that allows him
to distinguish between four models of ambiguity aversion — SEU, MEU or
CEU, Recursive Nonexpected Utility (Segal, 1987, 1990), and REU. Sub-
jects are asked their reservation values for four different urns, representing
different types of ambiguity (pure risk, pure ambiguity and two types of
compound lotteries). The different models of ambiguity aversion generate
different predictions about how the urns will be ordered. For each subject,
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there will be a unique model that predicts (is consistent with) the subject’s
reservation values. Halevy (2007) concludes that no single model predicts
all the observed behaviors. In fact, all models are represented in the pool of
subjects.

Hayashi and Wada (forthcoming) examine attitudes toward imprecise
information about uncertainty. Subjects are provided with information in
the form of objective restrictions on the probability distribution of states of
nature and observe how the subjects’ reservation values vary with the ob-
jective restrictions on probabilities. Attitudes to imprecise information are
obviously closely related to ambiguity aversion. Hayashi and Wada (forth-
coming) observe that both the α-MEU model and the contraction model of
Gajdos et al. (2008) are systematically violated.

A few recent studies use variants of the Ellsberg urn problems to estimate
parameter values or functional forms for individual subjects. Abdellaoui et
al. (2008) capture attitudes towards uncertainty and ambiguity by fitting
different source functions converting subjective (choice-based) probabilities
into willingness to bet. They find considerable heterogeneity in subjects’
preferences both in an Ellsberg urn experiment and in experiments using
neutrally occurring uncertainties. Hey et al. (2007, 2008) create ambiguity
in the laboratory using a Bingo Blower. Unless the number of balls in the
Bingo Blower is small, the composition of balls of different colors is missing
information. Their results are rather discouraging for the new REU theories.

Finally, Bossaerts, et al. (2008) study the impact of ambiguity and am-
biguity aversion on portfolio holdings and asset prices in a financial market
experiment. The experimental procedures were adapted from those used by
Bossaerts, et al. (2007) to study markets with pure risk. Bossaerts, et al.
(2008) point out that there is substantial heterogeneity in ambiguity pref-
erences and that there is a positive correlation between risk aversion and
ambiguity aversion.

We share Halevy’s (2007) point of view that different models might be
needed to describe the behaviors of different subjects, but we go further.
In addition to allowing for different models of ambiguity aversion we want
to measure the degrees of ambiguity aversion exhibited by subjects who
conform to the same model. This last point is particularly important. As
the recent evidence shows, individual heterogeneity requires us to study
behavior at the individual level in order to properly understand attitudes
to risk and ambiguity. For each individual subject, our experimental design
allows us to observe a larger number of choices, in a wider variety of settings,
than the typical Ellsburg urn-based experiment. As Choi et al. (2007a)
emphasize, a choice from a convex budget set provides more information
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about preferences than a choice from a discrete set and a larger number of
independent observations gives more precise estimates of the parameters of
interest.

3 Experimental Design

The experiment was conducted at the Experimental Social Science Labora-
tory (Xlab) at the University of California, Berkeley under the Xlab Mas-
ter Human Subjects Protocol. The 154 subjects in the experiment were
recruited from all undergraduate classes and staff at UC Berkeley. After
subjects read the instructions, the instructions were read aloud by an ex-
perimenter. At the end of the instructional period subjects were asked if
they had any questions or difficulties understanding the experiment. No
subject reported difficulty understanding the procedures or using the com-
puter interface. Each experimental session lasted about one and a half hours.
Payoffs were calculated in terms of tokens and then converted into dollars,
where each token was worth $0.50. Earnings were paid in private at the end
of the experimental session.

The experimental procedures described below are identical to those de-
scribed by Choi et al. (2007a) and used by Choi et al. (2007b) to study a
portfolio choice problem with two risky assets. Each experimental session
consisted of 50 independent decision problems. These decision problems
were presented using a graphical interface. On a computer screen, subjects
saw a graphical representation of a three-dimensional budget set. An ex-
ample of one such budget set is illustrated in the experimental instructions
reproduced in Appendix I.4

There are three axes in the diagram, labeled x, y and z. The axes
are scaled from 0 to 100 tokens and are held constant throughout a given
experimental session. Each of the axes corresponds to one of three accounts,
x, y and z. The subject’s decision problem is to select an allocation from the
budget set, that is, to allocate his wealth among the three accounts while
satisfying the budget constraint. For each round, the computer selected
a budget set randomly subject to the constraints that each intercept lies
between 0 and 100 tokens and at least one intercept must be greater than
50 tokens. The budget sets selected for each subject in different decision
problems were independent of each other and of the sets selected for any of
the other subjects in their decision problems.

4Online Appendix I: http://emlab.berkeley.edu/~kariv/ACGK_I_A1.pdf.

6



The resolution compatibility of the budget sets was 0.2 tokens. At the
beginning of each decision round, the experimental program dialog window
went blank and the entire setup reappeared. The appearance and behavior
of the pointer were set to the Windows mouse default and the pointer was
automatically repositioned randomly on the budget constraint at the begin-
ning of each decision round. Subjects could use the mouse or the keyboard
arrows to move the pointer on the computer screen to the desired allocation.
Choices were restricted to allocations on the budget constraint, so that sub-
jects could not violate budget balancedness. Subjects could either left-click
or press the Enter key to record their allocation. The process was repeated
until all 50 rounds were completed.

Subjects were told that the payoff in each decision round was determined
by the number of tokens in each account and that, at the end of each round,
the computer would randomly select one of the accounts, x, y or z. Subjects
were only informed that account y was with probability πy = 1

3 and accounts
x and z were selected with unknown probabilities πx and πz such that πx+
πz =

2
3 . In practice, πx was drawn from the uniform distribution over [0, 23 ].

This distribution was not announced to the subjects. If the distribution had
been revealed to the subjects, the decision problem would have involved
compound risk rather than ambiguity.

During the course of the experiment, subjects were not provided with
any information about the account that had been selected in each round.
Instead, at the end of the experiment, the experimental program randomly
selected one decision round from each participant and used that round to
determine the subject’s payoff. Each round had an equal probability of being
chosen, and the subject was paid the amount he had earned in that round.
Note that by selecting a single decision round for the payoff we prevent
subjects from diversifying their risk across the 50 rounds.

4 Nonparametric Analysis

In this section, we take an initial look at some broad features of the ex-
perimental data as a prelude to our estimation of parametric models of
ambiguity aversion. We begin with an overview of the basic features of the
aggregate data.

4.1 Aggregate behavior

A subject can avoid ambiguity completely by demanding equal amounts of
the securities that pay off in the ambiguous states x1 = x3. The resulting
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portfolio pays an amount x2 with probability 1
3 and an amount x1 = x3

with probability 2
3 , thus eliminating any ambiguity regarding the proba-

bility distribution of payoffs. Similarly, choosing x1 close to x3 reduces
exposure to ambiguity, without eliminating it altogether. For any portfolio
x = (x1, x2, x3) and any pair of securities s and s0 6= s, we define the rela-
tive demand to be the demand for the security that pays off in state s as a
fraction of the sum of demands for securities that pay off in states s and s0

xs
xs + xs0

.

The proximity of this ratio to 1/2 measures the extent to which the demands
for securities s and s0 are equalized.

Figure 1 below depicts a kernel density estimate of x1/ (x1 + x3) and
compares it with kernel density estimates of x1/ (x1 + x2) and x3/ (x2 + x3),
which measure the extent to which subjects equalize payoffs in two states,
exactly one of which is ambiguous. Before calculating these densities, we
screen the data for safe (x1 = x2 = x3) and boundary (xs = xs0 = 0 for
some s 6= s0) portfolios using a narrow confidence interval of two tokens.5

The safe and boundary portfolios account for 20.0 and 6.5 percent of all
portfolios. Perhaps as expected, the three distributions are nearly symmetric
and concentrated near the midpoint 1/2. More interestingly, the mode is
more pronounced in the distributions of relative demands for securities that
pay off in ambiguous states, x1 and x3. This provides clear evidence of
ambiguity aversion.6

[Figure 1 here]

The percentage of portfolios for which x1/ (x1 + x3) lies between 0.45 and
0.55 is 32.4, and this increases to 41.6 percent if we consider relative demands
lying between the bounds 0.4 and 0.6. The corresponding percentages for
x1/ (x1 + x2) are 26.4 and 36.8 and for x3/ (x2 + x3) they are 28.2 and 38.4,
respectively.7 The tendency to equate x1 and x3 could, of course, result from
simple risk aversion, but this is where the unambiguous and risky state are
useful. The greater tendency to equate the demands for x1 and x3 suggests
an aversion to ambiguity rather than just risk.

5This accounts for small mistakes resulting from the slight imprecision of subjects’
handling of the mouse.

6Two-sample Kolmogorov-Smirnov tests for equality of distribution functions show that
no two relative demands have the same distribution. This is as expected, as our subjects
were given a large and rich menu of randomly detrminbed budget sets.

7We also performed the analysis for each half of the data, and found a very high
concordance in the two sets of distributions.
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4.2 Individual behavior

The aggregate data above tell us little about the choice behavior of individ-
ual subjects. For that purpose we make within-subject comparisons of the
number of unambiguous portfolios for which x1/ (x1 + x3) lies between 0.45
and 0.55 and the average number of portfolios for which x1/ (x1 + x2) or
x2/ (x2 + x3) lies between these bounds. Before calculating these numbers,
we again screen the data for safe and boundary portfolios. This results in
many fewer observations for a small number of subjects. Figure 2 presents
the data as points in a scatterplot. The most notable feature of the distrib-
ution in Figure 2 is that the data are concentrated above the diagonal and
skewed to the upper left. This provides evidence on both the prominence
and the heterogeneity of subjects’ attitudes toward ambiguity.

[Figure 2 here]

Next, Figure 3 depicts particular portfolios chosen by the individual
subjects who serve to illustrate ideal types in terms of token shares (left
panel) and budget shares (right panel) for the three securities as points in
the unit simplex. The vertices of the unit simplex correspond to portfolios
consisting of one of the three securities. Each point in the simplex represents
a portfolio as a convex combination of the extreme points. For any portfolio
x = (x1, x2, x3), we define the token share of the security that pays off in
state s to be the number of tokens payable in state s as a fraction of the
sum of tokens payable in all three states

xs
x1 + x2 + x3

.

We also define the budget share (or expenditure share) of the security that
pays off in state s to be the expenditure on tokens invested in this secu-
rity as a fraction of total expenditure. Since prices are normalized so that
total expenditure equals unity, the budget share is simply psxs. We note
that we have chosen subjects whose behavior corresponds to one of several
prototypical notions of risk or ambiguity aversion and illustrate the striking
regularity within subjects and heterogeneity across subjects that is charac-
teristic of all our data. We use the same subjects for illustrative purposes
later as well.

[Figure 3 here]

Figure 3A depicts the choices of a subject (ID 11) who always chose
nearly equal portfolios x1 = x2 = x3, suggesting infinite risk aversion. Figure
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3B shows a very different case, the choices of a subject (ID 20) who, with
a few exceptions, invested all his tokens in the cheapest security, behavior
which is consistent with pure risk neutrality. Figure 3C depicts the portfolio
choices of a subject (ID 31) who equalizes expenditures p1x1 = p2x2 = p3x3,
rather than tokens, across the three securities. This behavior is consistent
with a logarithmic von Neumann-Morgenstern utility function (with respect
to money).

A more interesting regularity is illustrated in Figure 3D, which shows the
portfolio choices of a subject (ID 23) who, with very few exceptions, invested
nearly equal amounts in the securities that pays off in the ambiguous states
x1 = x3 6= x2. Figure 3E depicts the choices of a subject (ID 12) with
a similar regularity, albeit implemented less precisely. Finally, Figure 3F
shows the choices of a subject (ID 37) who did not demand nearly equal
amounts of the securities that pay off in the ambiguous states x1 6= x3, but
these demands were much closer to each other than to the demand for the
security that pays off in the unambiguous state x2. The behaviors of these
subjects suggest ambiguity aversion, in the sense that they are trying to
reduce the sensitivity of their payoffs to states with ambiguous probabilities.

The data for the full set of subjects are available in Appendix II, where
we also show, for each subject, the relationships between the log-price ra-
tio ln (p1/p3) and the relative demand x1/(x1 + x3) and between ln (p1/p2)
and x1/(x1 + x2).8 These scatterplots illustrate the sensitivity of portfolio
decisions to changes in relative prices. We emphasize again that for most
subjects the data are much less regular and, for those subjects, it is more
difficult to see these relationships in a scatterplot. Nevertheless, the portfo-
lio choices for the full set of subjects reveal striking regularities within and
marked heterogeneity across subjects.

4.3 Testing rationality

The most basic question to ask about choice data is whether it is consistent
with individual utility maximization. In principle, the presence of ambiguity
could cause not just a departure from expected utility, but a more funda-
mental departure from rationality. Thus, before calibrating particular util-
ity functions, we first test whether choices can be utility-generated. Afriat
(1967) and Varian (1982, 1983) show that choices from a finite number of
budget sets are consistent with maximization of a well-behaved (piecewise
linear, continuous, increasing, and concave) utility function if and only if

8Online Appendix II: http://emlab.berkeley.edu/~kariv/ACGK_I_A2.pdf.
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they satisfy the Generalized Axiom of Revealed Preference (GARP). Since
GARP offers an exact test (either the data satisfy GARP or they do not),
we assess how nearly individual choice behavior complies with GARP by
using Afriat’s (1972) Critical Cost Efficiency Index (CCEI), which measures
the fraction by which each budget constraint must be shifted in order to
remove all violations of GARP. By definition, the CCEI is between 0 and
1: indices closer to 1 mean the data are closer to perfect consistency with
GARP and hence to perfect consistency with utility maximization.

Over all subjects, the CCEI scores averaged 0.945. We interpret this
number as a confirmation that subject choices are generally consistent with
utility maximization. To calibrate the CCEI, we use a test designed by
Bronars (1987). We simulate the choices of random agents whose choices
are uniformly distributed on the feasible region of the budget hyperplane.
Figure 4 shows the distribution of CCEI scores generated by 25,000 random
agents and compares this with the observed distribution. The histograms
in Figure 4 make plain that the significant majority of our subjects came
much nearer to consistency with utility maximization than random agents
would have done and that their CCEI scores were only slightly worse than
the score of a perfect utility maximizer. Note that there is no significance
threshold for the CCEI. If we follow Varian’s (1991) suggestion and choose
the 0.95 efficiency level as our critical value, we find that 93 subjects (60.4
percent) have CCEI scores above this threshold, while none of the random
agents has a CCEI score that high.

[Figure 4 here]

We refer the interested reader to Choi et al. (2007a, 2007b) for more
details on testing for consistency with GARP and other measures that have
been proposed for this purpose by Varian (1991) and Houtman and Maks
(1985). In practice, all these measures yield similar conclusions. Appendix
III lists, by subject, the number of violations GARP, and also reports the
values of the three goodness-of-fit indices.9 Choi et al. (2007a) demonstrate
that if utility maximization is not in fact the correct model, then the ex-
periment is sufficiently powerful to detect it. Finally, we note that subjects
would be unlikely to produce behavior that is consistent with utility maxi-
mization if they had any difficulties understanding the decision problem or
using the computer program.

9Online Appendix III: http://emlab.berkeley.edu/~kariv/ACGK_I_A3.pdf.
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5 Models of Ambiguity

In this section we introduce the two parametric utility specifications to be
estimated. The first is a “kinked” specification. It can be derived as a special
case of a variety of utility models: MEU, CEU, Contraction Expected Utility,
and α-MEU. The second is a “smooth” specification that can be derived from
REU. Our discussion focuses on the restrictions — in the form of specific
functional form assumptions — that we place on the general models in order
to obtain parametric versions that can be estimated.

Each of our specifications is characterized by two parameters, one of
which can be identified with risk aversion and one of which can be identified
with ambiguity aversion. The advantage of a parsimonious specification is
that we can summarize subjects’ preferences in terms of a few parameters;
the disadvantage is that it may restrict behavior compared to the most
general version. We report simple empirical distributions of the estimated
parameters.

In addition to the two main specifications, we consider two important
special cases. The first corresponds to SEU in the sense of Savage, while the
second corresponds to an extreme form of MEU. Each is derived by setting
the ambiguity parameter equal to some extreme value.

Our first parametric assumption relates to attitudes toward risk. We
assume that risk preferences are represented by a von Neumann-Morgenstern
utility function u (x) with constant absolute risk aversion (CARA),

u(x) = −e−ρx,
where x is the number of tokens and ρ is the coefficient of absolute risk aver-
sion. This specification has two advantages. First, it is independent of the
(unobservable) initial wealth level of the subjects. Second, it accommodates
portfolios where xs = 0 for some state s even when initial income is zero.

5.1 A kinked specification

The kinked utility function is so-called because the indifference curves have
a “kink” at all portfolios where x1 = x3. The parametric specification we
use has the form

U(x;α, ρ) = α
£
−23 exp{−ρmin{x1, x3}}−

1
3 exp{−ρx2}

¤
+ (1− α)

£
−23 exp{−ρmax{x1, x3}}−

1
3 exp{−ρx2}

¤
,

(1)

where α is the ambiguity parameter and ρ is the coefficient of risk aversion.
The distinguishing feature of this specification is its dependence on the min-
imum and maximum payoffs, min{x1, x3} and max{x1, x3}, between the two
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ambiguous states, 1 and 3. The agent knows that the probabilities of states
1 and 3 lie between 0 and 2

3 . In the best case scenario, the probability of
the state in which he receives max{x1, x3} is 23 ; in the worst case scenario,
it is zero. What Equation (1) says is that the agents’s utility is a weighted
average, with weights α and 1− α, of the expected utility in the worst-case
and best-case scenarios.

We now demonstrate how this kinked functional form can be generated
by different classes of preferences.

5.1.1 Maxmin Expected Utility with flexible priors

The Maxmin Expected Utility (MEU) model of Gilboa and Schmeidler
(1989) evaluates a portfolio by its minimal expected utility over a set of
subjective prior beliefs. This minimization over a non-singleton set can be
interpreted as aversion to ambiguity. The general form of the MEU model
is

U(x) = min
π∈Π

Z
S
u(xs) dπ(s),

where Π ⊆ ∆S is a closed convex set of prior beliefs over states.
Connecting the general MEU model to our kinked specification assumes

that the utility over tokens takes the CARA form and that the set of priors
is symmetric about (13 ,

1
3 ,
1
3). In particular, the set of priors is

Πδ =
©
π : π2 =

1
3 ,

1
3 − δ ≤ π1 ≤ 1

3 + δ, π3 =
2
3 − π1

ª
for some 0 ≤ δ ≤ 1

3 . Larger values of δ indicate a larger set of priors, hence
more ambiguity. This reduces the general MEU model to the following two-
parameter formula:

U(x; δ, ρ) = −
¡
1
3 + δ

¢
exp{−ρmin{x1, x3}}− 1

3 exp{−ρx2}
−
¡
1
3 − δ

¢
exp{−ρmax{x1, x3}}.

This equation is exactly Equation (1) with a change of variables, letting
α = 1

2 +
3
2δ.

5.1.2 Choquet Expected Utility with flexible capacity

The Choquet Expected Utility (CEU) model of Schmeidler (1989) is related
to MEU and takes the following general form:

U(x) =

Z
S
u(xs) dν(s),

10

10The exact formula for integration with respect to a capacity can be found in Schmeidler
(1989).
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where ν is a nonadditive capacity over the state space. Ambiguity in the
CEU model is captured by the convexity of the capacity ν.11

Any CEU representation with a convex capacity can be rewritten as an
MEU representation where the set of priors is the core of the capacity. Cor-
respondingly, if we assume CARA utility over tokens and that the capacity
is symmetric over the two ambiguous states, then the CEU model reduces
to the parameterized MEU model with symmetric priors presented in the
previous section. In particular, if the capacity obeys:

ν({1}) = ν({3}) = 1
3 − δ, ν({2}) = 1

3 ,

ν({1, 2}) = ν({2, 3}) = 2
3 − δ, ν({1, 3}) = 2

3 ,

for some 0 ≤ δ ≤ 1
3 , then the implied Choquet integral reduces to Equation

(1), via the same change of variables α = 1
2 +

3
2δ.

5.1.3 Contraction Expected Utility with fixed information

The contraction model of Gajdos et al. (2008) incorporates objective infor-
mation about the set of possible prior distributions over states. It enriches
the standard subjective setup by considering acts or portfolios paired with
some set of objectively known possible priors. The agent partially contracts
this set towards its center and then applies the MEU criterion to this smaller
set of priors. The general representation is

U(x) = min

½Z
S
u(xs) dπ(s) : π ∈ (1− �){s(Π)}+ �Π

¾
,

where s(Π) ∈ ∆S is the Steiner point (a geometric notion of the center) of
the set Π of objectively specified priors.12 Larger values of � ∈ [0, 1] place
more weight on the entire set of possible priors Π and, hence, suggest more
ambiguity.

The experimental choice problem can be represented in this form, where
every portfolio is paired with the same set of objective priors, namely Π =
{π : π2 = 1

3 and π1 + π3 =
2
3}. Its Steiner point is s(Π) =

¡
1
3 ,
1
3 ,
1
3

¢
. As

Hayashi et al. (forthcoming) mention, the contraction model with a fixed
set of possible priors is identical to a special form of the MEU model. To be
specific, maintaining the CARA form for utility over tokens, the contraction

11A capacity is convex if ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B) for any sets A and B.
12The convex combination of two sets A and B is defined as the union of their pointwise

convex combinations: λA+ (1− λ)B = {λa+ (1− λ)b : a ∈ A, b ∈ B}.
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model reduces to:

U(x; �, ρ) = −
¡
1+�
3

¢
exp{−ρmin{x1, x3}}− 1

3 exp{−ρx2}
−
¡
1−ε
3

¢
exp{−ρmax{x1, x3}}.

This is exactly the MEU model above with δ = �
3 and is the kinked specifi-

cation in Equation (1) with α = 1−�
2 .

5.1.4 α-Maxmin Expected Utility with fixed priors

A proposed generalization of MEU is α-Maxmin Expected Utility (α-MEU)
characterized by Ghirardato et al. (2004) and Olszewski (2006), which eval-
uates each portfolio by a convex combination of its minimal and maximal
expected utilities over some set of subjective prior beliefs over states.13 The
general form of the α-MEU model is

U(x) = α ·min
π∈Π

Z
u(xs) dπ(s) + (1− α) ·max

π∈Π

Z
u(xs) dπ(s),

where Π ⊆ ∆S is a closed convex set of distributions over states and α ∈
[0, 1] reflects the relative weight of the worst versus the best possible expected
utility of x given Π. Hence, α serves as a parameter reflecting ambiguity
aversion. (In the most general case, the α-MEU parameter could depend on
the portfolio under consideration α(x).)

If we assume that u has the CARA form and that the set of priors Π is
the entire set of distributions consistent with the objective information in the
experiment, Π = {π : π2 = 1

3}, this reduces to the two-parameter formula
in Equation (1). The weight α and the set of priors Π in the α-MEU model
cannot be separately identified. In fact, Siniscalchi (2006) proves that the
α-MEU and MEU models are generally confounded in the symmetric case:
any MEU representation with some fixed symmetric set of priors can be
rewritten as one of a continuum of α-MEU representations with arbitrarily
small alternative sets of priors.

In all of the models described above, the parameter α that appears in Equa-
tion (1) depends on the set Π (or the capacity ν in the case of CEU). Unless
the set Π is objectively known, knowledge of the estimated parameter α does
not allow us to characterize the degree of ambiguity aversion independently
from the degree of ambiguity in the decision problem. In any case, the lack
of identification is endemic to these theoretical models, rather than a feature
of our data. When we adopt the MEU interpretation, we are fixing α = 1

13 In the most general version, α(x) could depend on the porfolio x under consideration.
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and allowing the set of priors to vary; when we adopt the α-MEU interpre-
tation, we are fixing the set of priors and allowing α to vary. To simplify
the exposition and facilitate comparisons, we adopt the second convention
as our main interpretation in the sequel.

5.2 A smooth specification

Our second utility specification is differentiable everywhere. The utility of
a portfolio x = (x1, x2, x3) takes the form

U(x;α, ρ) =Z 2
3

0
− exp

½
−α

µ
−π1 exp{−ρx1}− 1

3 exp{−ρx2}
−
¡
2
3 − π1

¢
exp{−ρx3}

¶¾
dπ1,

(2)

This specification involves two iterated integrals. First, the formula inside
the parentheses is the expected value of the CARA utility of the portfolio
x when the probability of the first state is known to be π1. Next, the
integral ranging from 0 to 2

3 takes the expectation of these expected utilities
with respect to the uniform distribution for π1, with each expected utility
transformed using a CARA aggregator.

While the kinked specification can be interpreted using a variety of dif-
ferent models, the smooth specification is really motivated by a single model.
A recent view of ambiguity aversion (Ergin and Gul, 2004; Klibanoff et al.,
2005; Nau, 2005; and Seo, 2007; as well as related work by Halevy and
Feltkamp, 2005; Giraud, 2006; and Ahn, 2008) assumes the agent has a
subjective (second-order) distribution µ over the possible (first-order) prior
beliefs π over states. Unsure which of the possible first-order prior beliefs
actually governs the states, the agent transforms the expected utilities for
all prior beliefs π by a concave function ϕ before integrating these utilities
with respect to his second-order distribution µ. This procedure is entirely
analogous to the transformation of wealth into cardinal utility before com-
puting expected utility under risk. The concavity of this transformation
captures ambiguity aversion. We follow Halevy (2007) in referring to this
model as Recursive Expected Utility (REU), owing to its recursive double
expectation.

The general form of the REU model is

U(x) =

Z
∆S

ϕ

µZ
S
u(xs) dπ(s)

¶
dµ(π),

where µ ∈ ∆(∆ (S)) is a (second-order) distribution over possible priors π on
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S and ϕ : u(R+)→ R is a possibly nonlinear transformation over expected
utility levels.14

To facilitate comparison with the kinked specification, we reduce the
REU model to two parameters. Assuming that

ϕ(z) = −e−αz,
which replicates the constant curvature of u, and that µ is uniformly dis-
tributed over the set of priors consistent with the objective information
Π =

©
π : π2 =

1
3

ª
, this specializes to the two-parameter formula in Equation

(2). Here, α reflects the curvature of the aggregator ϕ and hence measures
the degree of ambiguity aversion.

One of the crucial features of the REU specification is its reliance on a
cardinal utility indicator. Unlike the preferences generated by SEU, MEU
and α-MEU, which are invariant to affine transformations of the utility
function u (·), the preferences generated by REU are not independent of a
change in the scale of utility. For example, if we introduce a scale parameter
and set u (x) = −Ae−ρx, the concavity of the transformation ϕ implies that
the ranking of uncertain prospects will not be invariant to changes in A.
Since the parameters α and A enter Equation (2) only in the form of the
product αA, we can estimate αA but cannot identify the values of α and A
separately. If we assume a common scale factor for all subjects, say A = 1,
interpersonal comparisons of ambiguity aversion will still be affected by risk
aversion. A higher coefficient of absolute risk aversion, ρ, will reduce the
range of the function u (x) = −e−ρx and, hence, will reduce the ambiguity
to which the agent is exposed. We can normalize the ambiguity parameters
to take into account the different ranges of expected utility for different
subjects, but the meaning of such comparisons is not clear. We will return
to this subject in the next section when we discuss the parameter estimates
of the REU model.

5.3 Restricted specifications

5.3.1 Ambiguity neutrality: Subjective Expected Utility with a
fixed prior

Subjective expected utility (SEU) is a special case of both the kinked and
smooth formulations:

U(x; ρ) = −1
3
exp{−ρx1}−

1

3
exp{−ρx2}−

1

3
exp{−ρx3}.

14Here, ∆(∆ (S)) denotes the space of all probability measures over ∆ (S), the set of all
probability distributions on S.
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This corresponds to the kinked specification in Equation (1) with α = 1
2

and to the smooth specification in Equation (2) with α = 0 and provides a
benchmark for probabilistic sophistication within these specifications.

To derive this formula directly, recall that the general SEU model of
Savage (1954) consists of a utility function u which is integrated with respect
to a single subjective probability distribution π. The general form for the
utility of a portfolio x = (x1, x2, x3) is:

U(x) =

Z
S
u(xs) dπ(s)

where π is a subjective probability over states of the world and u is a cardinal
utility index over tokens. If we assume that the agent believes the ambiguous
states in our experimental choice problem are equally probable, that is, her
prior belief over states is π = (13 ,

1
3 ,
1
3) and has CARA utility over tokens,

this specializes to the above formula.

5.3.2 Extreme ambiguity aversion: Maxmin Expected Utility
with maximal priors

The opposite special case for both the kinked and smooth specifications is
the following restricted formulation:

U(x; ρ) = −23 exp{−ρmin{x1, x3}}−
1
3 exp{−ρx2}.

This corresponds to the kinked specification in Equation (1) with α = 1
and to the smooth specification in Equation (2) as α→∞ and provides the
opposite benchmark of the most ambiguity averse subspecification within
these models.

5.4 Properties of demand

Before proceeding to the estimation of the parametric models, it is important
to understand the implications of the different models of ambiguity aversion
for individual behavior. For this reason, we first illustrate the relative de-
mand functions for the different models and different parameter values. This
exercise will allow us to see how changes in risk and ambiguity aversion af-
fect the elasticity of demands and how the kinked and smooth specifications
affect the shape of the demand curves. These differences will be important
in understanding how the models fit the data.

The simulated demand functions are illustrated in Figure 5 below. The
figure shows the relationships between the log-price ratio ln (p1/p3) and the
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optimal relative demand x∗1/(x
∗
1 + x∗3) (left panels) and between ln (p1/p2)

and x∗1/(x
∗
1 + x∗2) (right panels), for each model, using a range of parameter

values (each panel assumes a different value for α).15 Comparing the two
relative demands illustrate the differences in the tradeoffs agents make in
their ambiguity preferences and risk preferences under the two specifications.

[Figure 5 here]

Figure 5A illustrates the relative demands for the kinked specification in
Equation (1). If the prices of the securities that pay off in the ambiguous
states, p1 and p3, are similar (ln (p1/p3) is close to zero), then the optimum
portfolio choice satisfies x∗1 = x∗3 and is insensitive to ambiguity. The only
effect of increasing the level of ambiguity aversion α is to make this interme-
diate range of price ratios larger. The key feature of the kinked model is this
flat range in which the portfolio satisfies x∗1 = x∗3 and is insensitive to ambi-
guity. By contrast, the choice of a portfolio without ambiguity (x1 = x2) is
a knife-edge case in the smooth model.

Figure 5B depicts the relative demands generated by the smooth spec-
ification in Equation (2), for different values of α and ρ. The relation-
ships between the log-price ratio ln (p1/p3) and the optimal relative demand
x∗1/(x

∗
1 + x∗3) and between ln (p1/p2) and x∗1/(x

∗
1 + x∗2), which illustrate the

tradeoffs that the agent makes between the payoffs in ambiguous states and
between the the payoffs in an ambiguous state and an unambiguous state,
are smooth for all price ratios. The ambiguity aversion parameter α flattens
the x∗1/(x

∗
1+x∗3) curves in a manner qualitatively similar to having increased

risk aversion.

6 Parametric Analysis

6.1 Econometric specification

The data generated by an individual’s choices are denoted by
©¡
xi,pi

¢ª50
i=1
,

where xi =
¡
xi1, x

i
2, x

i
3

¢
is the actual portfolio chosen by the subject and

pi = (pi1, p
i
2, p

i
3) denotes the vector of security prices. For each subject n

and for each specification, we generate estimates of the ambiguity and risk
aversion parameters, α̂n and ρ̂n, using nonlinear least squares (NLLS). These

15The figures are difficult to see in the small black and white format required in the
printed version. We refer the reader to color figures which are available in the electronic
version of the paper at http://econ.berkeley.edu/~kariv/ACGK_I.pdf.
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estimates are chosen to minimize

50P
i=1

°°xi − x∗(pi;αn, ρn)°° ,
where k·k denotes the three-dimensional Euclidean norm.16

Before proceeding to estimate the parameters, we make two observations
about the econometric specification:

• First, we omit the six subjects with CCEI scores below 0.80 (ID 1,
59, 61, 81, 82 and 93) as their choices are not sufficiently consistent to
be considered utility-generated. Additionally, Afriat’s (1967) theorem
tells us that when a rationalizing utility function exists, it may be
chosen to be well-behaved (piecewise linear, continuous, increasing,
and concave). In particular, our analysis over linear budget sets does
not allow us to distinguish between risk- or ambiguity-loving behavior,
on the one hand, and risk- or ambiguity-neutral behavior, on the other.
We therefore restrict the parameters so that preferences are always
risk and ambiguity averse. This requires ρ ≥ 0 in both specifications,
1/2 ≤ α ≤ 1 in the kinked specification and 0 ≤ α in the smooth
specification.

• Secondly, when the parameter measuring risk aversion ρ is large, ambi-
guity aversion cannot be separately identified, since all of the hedging
between the securities that pay off in the ambiguous states, x1 and x3,
can be attributed to the extreme risk aversion. To avoid this identifica-
tion problem, we screen out the four subjects (ID 11, 24, 112 and 119)
who almost always chose the safe portfolio x1 = x2 = x3. The prefer-
ences of these subjects are easily identifiable from the scatterplots of
their choices. Finally, because of computational difficulties when α is
large, we also impose the restriction α ≤ 2 in the smooth specification.
This involves minimal loss in fit, since the predicted choices with such
a high levels of ambiguity aversion are virtually identical.

This leaves a set of 144 subjects (93.5 percent) with consistent non-extreme
risk preferences for whom we recover the underlying preferences by estimat-
ing both specifications. We emphasize again that our estimations will be
16For simplicity, the estimation technique for both specifications is NLLS, rather than a

structural model using maximum likelihood (ML). We favor the NLLS approach, because
it provides a good fit and offers flexibility, tractability and straightforward interpretation.
The NLLS estimation is still computationally intensive for even moderately large data
sets. We use bootstrapping to approximate standard errors.
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done for each subject n separately, generating separate estimates α̂n and
ρ̂n.

6.2 Econometric results

To economize on space, the individual-level estimates are relegated to Ap-
pendix IV.17 Table 1 provides a population-level summary of the individual-
level estimation results by reporting summary statistics and percentile val-
ues. As noted above, the smooth specification in Equation (2) is not invari-
ant to affine utility transformations. To this end, in Table 1, we present the
statistics for the estimated raw ambiguity parameter α̂, as well as the sta-
tistics for different normalized ambiguity parameters α̂t defined implicitly
as a function of α̂ as follows:

α̂t =
tα̂

1− etρ̂
.

This normalization readjusts the level of cardinal utility for t tokens to be
constant across subjects with varying degrees of risk aversion. The formula
can be obviously altered to normalize the comparison for different levels
where the parameter α̂t reflects the curvature of the second-order expected
utility index in the smooth specification, thus measuring absolute ambiguity
aversion.

[Table 1 here]

Using the kinked specification, of the 144 subjects listed in Appendix
IV, 56 subjects (38.9 percent) have non-kinky preferences α̂n ≈ 1/2 so their
choices are well approximated by SEU.18 We cannot reject the hypothesis
that α̂n = 1/2 for a total of 67 subjects (46.5 percent) at the 95 percent
significance level. The remainder appear to have significant degrees of ambi-
guity aversion α̂n > 1/2. Of those, a single subject (ID 15) displayed infinite
ambiguity aversion α̂n ≈ 1. His behavior is consistent with MEU. We reject
the hypothesis that α̂n = 1 for all other subjects.

Similarly, using the smooth specification, 44 subjects (30.6 percent) have
α̂n ≈ 0, indicating ambiguity neutrality but we cannot reject the hypothesis
that α̂n = 0 for a total of only 38 subjects (26.4 percent) at the 95 percent
significance level. The behavior of these subjects is consistent with SEU.

17Online Appendix IV: http://emlab.berkeley.edu/~kariv/ACGK_I_A4.pdf.
18 In comparison, Halevy (2007) reports that only 28 of his 142 subjects (19.7 percent)

behave as if they were ambiguity neutral.
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Additionally, seven subjects (4.9 percent) have boundary ambiguity aversion
parameter value α̂n ≈ 2. We can reject the hypothesis that α̂n = 2 for all
other subjects. Finally, in both specifications, a significant fraction of our
subjects have moderate levels of risk aversion ρ̂n, which are within the range
of estimates reported in Choi et al. (2007b).

Figure 6 presents the data from Appendix IV graphically in the form
of scatterplots of the estimates, and illustrates the heterogeneity of pref-
erences that we find in both specifications. Figure 6A shows a scatterplot
of α̂n and ρ̂n, in the kinked specification. Figure 6B shows the scatterplot
for the smooth specification. To facilitate presentation of the data, Figure
6C shows the same scatterplot after omitting 16 subjects, whose α̂n value
is higher than 1/2. Certainly, as alluded to earlier in the paper, the esti-
mated ambiguity coefficients α̂n that come out of the smooth specification
are directly comparable only across subjects with similar risk attitudes. This
comparison is more delicate when the estimated risk coefficients ρ̂n are dif-
ferent. Finally, note that in both the kinked and smooth specifications there
is considerable heterogeneity in both parameters, ân and ρ̂n, and that their
values are positively correlated (r2 = 0.157 and r2 = 0.229, respectively).

[Figure 6 here]

Finally, Figure 7 below shows the relationship between log-price ratio
ln (p1/p3) and the actual relative demand x1/(x1+x3) (blue) and estimated
relative demand x̂1/(x̂1 + x̂3) (red) in the kinked (left panels) and smooth
(right panels) specifications for the same group of subjects that we followed
in the non-parametric analysis.19 Note that x̂1/(x̂1+ x̂3) is calculated using
the individual-level estimates, α̂n and ρ̂n. We reemphasize that we carefully
selected these subjects in order to illustrate salient features of the data. The
figures for the full set of subjects and for all models are available in Appendix
V, which also depicts the relationship between the log-price ratio ln (p1/p2)
and the actual relative demand x1/(x1 + x2) (blue) and estimated relative
demand x̂1/(x̂1+ x̂2), as well as the actual and estimated portfolios in terms
of token and expenditure shares represented as points in a simplex.20

[Figure 7 here]

The first subject (ID 11) very precisely implemented infinite risk aver-
sion preferences. The ambiguity aversion parameter of this subject is thus
19Thses figures are difficult to see in a black and white format. Color figures are available

in the electronic version of the paper at http://econ.berkeley.edu/~kariv/ACGK_I.pdf.
20Online Appendix V: http://emlab.berkeley.edu/~kariv/ACGK_I_A5.pdf.
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unidentified. Figure 7A is therefore omitted. Figure 7B shows the relation-
ship between ln (p1/p3) and the estimated relative demand x1/(x1 + x3) for
the subject (ID 20) who most closely approximated risk neutral preferences
with (α̂, ρ̂)kinked = (0.521, 0.000) and (α̂, ρ̂)smooth = (0.009, 0.001). Both the
kinked and smooth specifications suggest a nontrivial degree of ambiguity
aversion, which is driven by a few exceptional choices where this subject
chose nearly unambiguous portfolios x1 = x3. Notice that both models do
a very good job of predicting his boundary portfolios, but perform less well
in predicting the “outliers.” This subject appears to be very close to risk
neutrality, but perhaps reveals some degree of ambiguity aversion through
his outlying portfolios.

Figure 7C shows the subject (ID 31) who precisely implemented log-
arithmic preferences with (α̂, ρ̂)kinked = (0.500, 0.076) and (α̂, ρ̂)smooth =
(0.000, 0.076). Nonetheless, the exponential form performs quite well in
terms of fit. More interestingly, Figure 7D shows the relationship for a sub-
ject (ID 23) with (α̂, ρ̂)kinked = (0.728, 0.419) and (α̂, ρ̂)smooth = (0.004, 0.487),
who quite precisely chose unambiguous portfolios x1 = x3. The estimated
ambiguity parameter for the kinked specification is among the highest in the
sample. This subject thus closely approximates MEU preferences.

Figure 7E shows the fitted relationships for a subject (ID 12) with
(α̂, ρ̂)kinked = (0.569, 0.054) and (α̂, ρ̂)smooth = (0.000, 0.059), who with few
exceptions chose unambiguous portfolios (x1 = x3). This subject’s depar-
tures from unambiguous portfolios are precipitated by extreme log-price
ratios ln(p1/p3). This is entirely consistent with α-MEU. Furthermore, the
kinked specification provides an improved fit over the restricted MEU speci-
fication, especially in picking up the few extremely ambiguous portfolios. On
the other hand, the smooth specification fails to pick up this subject’s aver-
sion to ambiguity. Clearly, it cannot accommodate both the large interval
of intermediate log-price ratios ln(p1/p3) in which unambiguous portfolios
x1 = x3 are chosen and the extremely ambiguous portfolios x1 = 0 or x3 = 0
chosen for low and high price ratios, respectively. The estimated relationship
for the smooth specification makes clear that the model gives up the former
to improve its fit for the latter. A review of the full set of subjects shows,
in many cases, a substantial number of unambiguous portfolios (x1 = x3),
which can only be accommodated by the kinked specification.

Finally, Figure 7F shows the fitted relationship for a subject (ID 37)
with (α̂, ρ̂)kinked = (0.880, 0.075) and (α̂, ρ̂)smooth = (2.000, 0.074). This
subject chose portfolios with smaller differences between x1 and x3 than
between any other pair of securities, but did not usually move to the extreme
of choosing unambiguous portfolios (x1 = x3). Although this subject is
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averse to ambiguity, the fit of the kinked specification barely improves on the
restricted MEU specification. On the other hand, the smooth specification
improves the fit considerably over either restricted specifications MEU or
SEU. This is especially true for extreme log-price ratios ln(p1/p3), where
MEU predicts values for x1 far too close to x3, while SEU predicts values
far too distant.

7 Conclusion

The presence of ambiguity aversion in human subjects has been repeatedly
demonstrated in the laboratory. Recent theoretical developments have given
greater precision to the concept of ambiguity aversion, but there have been
few systematic empirical studies of these models. In this paper, we have
used a rich data set, containing a relatively large number of choices for each
subject, to estimate two classes of parametric utility functions.

In addition to identifying the existence of ambiguity aversion and the
type of model that is capable of explaining it, we simultaneously estimate
measures of risk and ambiguity aversion. This is the first step in answering
an important series of questions: How important is ambiguity aversion?
How well do different specifications fit the data? How important are the
differences between the general functional forms, i.e., the kinked or smooth
specification, and special cases such as SEU and MEU?

Our study confirms the heterogeneity of individual attitudes toward am-
biguity that have been found in previous studies. This heterogeneity takes
two forms. First, some subjects are better described by one or other of the
models we estimate. Second, within a given model, the estimated measures
of risk and ambiguity aversion are heterogeneous. We are able to provide
a more precise description of this heterogeneity than previous studies be-
cause we have estimated the parameters of the different specifications at the
individual level.

Our individual-level analyses show that preferences vary widely across
subjects and range from risk neutrality with ambiguity aversion, to ambigu-
ity neutrality with risk aversion, to infinite risk aversion. Although in both
the kinked and smooth specifications there is considerable heterogeneity in
both parameters, α̂n and ρ̂n, approximately two-third of our subjects have
a positive degree of ambiguity aversion. The remaining one-third are well
approximated by preferences consistent with SEU, a much higher propor-
tion than found in previous experimental studies. There is also considerable
heterogeneity in subjects’ risk preferences in both the ambiguity-averse and
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ambiguity-neutral subsamples but they are within the range of recent esti-
mates of risk aversion.

One of the most striking features of the data is the strong tendency to
equate the demand for the securities that pay off in the ambiguous states.
This feature of the data is accommodated by the kinked specification, but
is hard to reconcile with the smooth specification. An additional problem
with the smooth specification is the difficulty of interpreting the parameters,
which are not truly identified without some auxiliary assumption about car-
dinal utility. While it is not our intention to run a horse race between the
different specifications, these observations may provide food for thought to
decision theorists interested in developing more empirically relevant models.
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Figure 1: The distribution of relative demands 
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Figure 2: The number of diagonal portfolios by subject 
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and boundary portfolios using a narrow confidence interval of two tokens. We indicate the IDs of the subjects with many 
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Figure 3: Individual-level data 
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Figure 3 (cont.) 
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Figure 4: The distribution of CCEI scores 
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Figure 5: An illustration of the relationships between log-price ratio )/ln( 31 pp and optimal token share )/( 3
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A: Kinked specification (Equation 1) 

 
 

 



Figure 5 (cont.) 
 
 

 
 

 
 



Figure 5 (cont.) 
 

B: Smooth specification (Equation 2) 

 
 

 
 



Figure 5 (cont.) 
 
 

 
 

 
 



Figure 6: Scatterplot of the estimated parameters nα̂  and nρ̂  
A: Kinked specification (Equation 1) 
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Figure 6 (cont.) 
B: Smooth specification (Equation 2) 2ˆ ≤nα  
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Figure 6 (cont.) 
C: Smooth specification (Equation 2) 2/1ˆ ≤nα  
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Figure 7: The relationship between log-price ratio )/ln( 31 pp and estimated token share )ˆˆ/(ˆ 311 xxx +  
B: ID 20 
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Figure 7 (cont.) 
D: ID 23 
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Figure 7 (cont.) 
F: ID 37 
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