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Quantitative investors rely on factor 
models of portfolio risk to make 
decisions. Factor models generate 
forecasts of volatility, expected tail 

loss, and other measures used for risk man-
agement, regulatory reporting, and portfolio 
construction. Factor models also forecast 
portfolios’ exposures to risk factors, which 
are used to construct hedges and tilts and to 
control unintended bets.

Although their importance to quanti-
tative investors cannot be overstated, factor 
models are not foolproof. They are estimated 
from data, so their forecasts are inevitably 
affected by estimation error. How much 
data are required to effectively control esti-
mation error? We address this question by 
measuring the impact of estimation error on 
investment decisions in simulated markets 
in which security returns follow a known 
return-generating process. This allows us to 
assess minimal data requirements for a model 
that is accurate enough to be useful.

In the experiments described in the 
following sections, we evaluate latent factor 
models that make minimal assumptions about 
market structure and allow data to “speak.” 
We concentrate on portfolios whose returns 
depend linearly on returns to the risk fac-
tors, and we focus on volatility forecasts and 
factor exposures. Although this is a narrow 
program, it provides salient, clean assessments 
of the impact of model-estimation error on 

metrics that guide investment decisions. 
The restriction to linear portfolios allows us 
to express model forecasts as simple functions 
of model parameters and to construct optimal 
portfolios with simple programs.1

RETURN-GENERATING PROCESS

A standard assumption in financial eco-
nomics is that returns to securities are driven 
by a relatively small number of risk factors, 
plus security-specific returns. In general, the 
relationship between security returns and 
factor returns is nonlinear. However, to iden-
tify the factors and measure estimation error, 
we rely on a universe of securities whose 
returns depend linearly on factor returns. 
The security return-generating process is

 R Yψ + ε, (1)

where R is a T × N matrix of security 
returns, ψ is a T × K matrix of simulation 
factor returns, Y is a K × N matrix of simula-
tion factor exposures, and ε is a T × N matrix 
of security-specific returns. The simulation 
factor returns ψ and specific returns ε have a 
mean of zero and are uncorrelated over time. 
The specific returns ε are pairwise uncorre-
lated over time. Under these assumptions, the 
security covariance matrix can be expressed as

 Y FYΣ = + Δ� , (2)
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where F is a K × K factor covariance matrix and Δ is an 
N × N diagonal specific risk matrix.

SIMULATION FACTORS 
AND LATENT FACTORS

Equation 1 is useful for generating simulation 
data because the factors can be calibrated to known 
features that drive markets. For example, in simulating 
an equity market, we may want to make the first factor 
“marketlike” and then add factors that represent indus-
tries, countries, currencies, or investment styles. The 
returns on these factors may be correlated. In contrast, 
the output of our estimation process is a set of latent 
factors, whose security exposure vectors are orthogonal 
and whose covariance matrix is the identity.

The estimated latent risk factors are computation-
ally convenient, but they may not have a ready inter-
pretation and they cannot be compared directly to the 
simulation factors specified in Equation 1. This is not a 
serious issue, however, but rather a matter of presenta-
tion. It is always possible to transform the simulation 
returns ψ to latent returns φ whose covariance matrix 
is the identity. This transformation maps the simulation 
factor exposures Y to latent factor exposures X that are 
pairwise orthogonal.

Specifically, there is an invertible K × K matrix 
M for which the covariance matrix of φ = ψM −1 is the 
identity, and the rows of

 =M X− Y1  (3)

are pairwise orthogonal. Then,

 
R M MY

X

ψMM +
= φ +

− ε

ε.

1

 
(4)

The matrix M is unique provided that a technical 
condition is satisfied. Specifically, if F1/2 is the symmetric 
square root of F, the eigenvalues of F YY F�1/2 1YY F� /2 must 
be distinct. The uniqueness allows direct comparison 
of estimated latent factors to the true latent factors, 
thereby facilitating the measurement of estimation error. 
A precise expression for M is in Appendix B.

Equation 3 provides a two-way translation between 
the more intuitive presentation of risk in terms of simu-
lation factor exposures Y and the more computationally 

convenient presentation in terms of latent factor 
exposures X. In the latent factor basis, Equation 2 
simplifies to

 X XΣ = + Δ� . (5)

LATENT FACTOR MODEL ESTIMATION

Many latent factor model estimation algorithms 
have their roots in principal component analysis (PCA). 
We estimate factors with a modified PCA, principal 
factor analysis (PFA), which iterates PCA weighted by 
the inverse of an estimated specific variance matrix. The 
process continues until the factors and specific variance 
estimates stabilize.2

RISK FORECASTING 
AND PORTFOLIO CONSTRUCTION

Quantitative investment management relies 
heavily on two measures of risk. Volatility (Vol) is the 
standard deviation of portfolio return and is used for 
portfolio construction. Expected tail loss (ETL) is 
the average loss given that a specif ied value at risk 
is breached;3 its applications include risk management 
and regulatory reporting.4 Quantitative investment also 
relies heavily on factor exposures—which are used to 
make controlled bets, to avoid unintended bets, and 
to hedge.

As we discuss in Appendix A, if the dependence of 
security returns on factor returns is nonlinear, simula-
tion is generally required to forecast volatility. And if 
security returns are not Gaussian, simulation is gener-
ally required to forecast expected tail loss even if the 
relationship between security returns and factor returns 
is linear. In the special case in which portfolio returns 
depend linearly on factor returns, volatility estimates 
and factor exposures can be expressed in terms of simple 
formulas that depend on the factor model parameters. 
This focus allows a clean assessment of error arising from 
factor estimation and specific variances, because it is not 
corrupted by estimation error arising from simulated 
factor return distributions.

Next, we outline simple metrics for the impact of 
estimation error on forecasts of risk and factor expo-
sures. Throughout, we specify a portfolio by its vector 
of weights w.
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Forecasting the Volatility and Variance 
of a Linear Portfolio

For transparent statistical interpretation and consis-
tency with other studies (such as Bender et al. [2009]), 
we work with variance (the square of volatility) instead 
of volatility. If the returns to the securities in a port-
folio with weights w are linear in the sense that they 
follow Equation 1, the true variance of that portfolio 
is given by

 
w w= Σw�

Var( ) (Vol( ))2

 
(6)

 w w= w Δ� �( )Y FY +Y FY Δ�YY  (7)

 w w

w w w w

= w Δ

+w= w Δ

� �

� � �

( )X XX X Δ�XX

( )X X )XX X�XX
 (8)

 CFV( ) SV( ).= CFV( )w w) SV()  (9)

In the array of equations shown above, Equation 8 
follows from Equation 7 because (1) Equations 2 and 5 
give expressions for Σ, (2) CFV( ) ( ) | |2( )� �(w) X X� X| wXX  

is the common factor variance of w, and (3) w w= Δw�SV( )w  
is the specific variance of w. If we assume that the factor 
returns φ and specific returns ε in Equation 1 are jointly 
Gaussian, we can calculate expected tail loss at quan-
tile α by scaling volatility with a known constant,5 
ETLα = C(α)Vol. It follows that expected tail loss can 
be calculated directly from volatility, so a single set of 
experiments can be used to assess estimation error in the 
two risk measures.

Forecasting the Factor Exposures 
of a Linear Portfolio

Using the transformation in Equation 3, the 
K-vectors of exposures of a portfolio with weights 
w to simulation factors Y and latent factors X are 
related by

 ,=Xw MYwYY  (10)

so that

 .1=Yw M X1− wXX  (11)

Constructing a Long-Only 
Minimum-Variance Portfolio

Modern portfolio theory began when Markowitz 
[1952] framed portfolio construction as a trade-off 
between mean return and variance (volatility squared).6 
More than 60 years later, mean–variance optimization 
is still a standard tool for portfolio construction, but we 
are just beginning to understand the impact of model-
estimation error on risk forecasts on optimized portfolios.

Although there is a wide spectrum of portfolios 
constructed with mean–variance optimization, we 
focus on minimum-variance equity portfolios in the 
United States for several reasons. First, minimum-vari-
ance portfolios are popular with investors.7 Second, the 
construction of minimum-variance portfolios does not 
require estimates of mean return, so analysis based on 
minimum variance is not corrupted by estimation error 
in mean return. Finally, minimum-variance portfolios 
are extremely sensitive to model-estimation error, as 
discussed in Menchero, Wang, and Orr [2008]. In the 
following analysis, we consider a long-only minimum-
variance portfolio, which is obtained by solving the fol-
lowing optimization problem:

 
min

subject to 1 , 0.

Σ

≥1,�

w wΣ

w 1 ,= 1,

w

T

 
(12)

USING SIMULATION TO GAUGE 
THE IMPACT OF ESTIMATION ERROR

To gauge the impact on estimation error on a latent 
factor model, we repeat the following steps over many 
simulations:

• Use a known process to generate a data set of secu-
rity returns over a fixed estimation period.

• Use the data set of security returns to estimate a 
latent factor model.

• Use the estimated latent factor model to forecast 
portfolio risk and factor exposures of both unop-
timized and optimized portfolios.

• Compute statistics that measure the difference 
between risk and factor exposure forecasts from the 
estimated model with the true values, which can 
be calculated using the parameters of the return-
generating process.
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The distributions of these statistics over many sim-
ulations provide metrics for the impact of estimation 
error on forecasts of risk and factor exposures.

In the following studies, we impart the estimation 
process with knowledge of the number of factors, K, 
used to generate the data set. In practice, however, the 
true numbers are not known. Because estimation error 
can only increase if the algorithm is given the extra 
burden of determining the number of factors, the results 
shown here must be regarded as optimistic.

Sample Simulation of 
an Estimation Universe

Our analysis relies on a parametric simulation 
based on a known return-generating process. This 
facilitates a precise comparison of estimated and true 
quantities.8 A prescription for simulating a stationary 
Gaussian model that follows Equation 1 is given here.

• Choose the number of factors K, the number of 
securities N, and the number of days T.

• Specify the following:

– a K × N factor exposure matrix Y
– a diagonal K × K factor covariance matrix F
– a diagonal N × N specific covariance matrix Δ.

• Draw T (K + N ) vectors (ψt, εt) with a mean of 
zero and a covariance matrix equal to the diagonal 
matrix generated by F and Δ.9

• Compute T simulated returns:

r Yt trr t+ ε .

• Use the T simulated returns to estimate a sample 
covariance matrix Ŝ.

• Use a latent factor methodology to generate the 
following:

– estimates φ̂ of factor returns whose covariance 
matrix is equal to the identity

– estimates X̂  of (pairwise orthogonal) factor 
exposures

– an estimated specific risk matrix ˆ .Δ

• Find M as o utlined in Appendix B.
• Set ˆ ˆ .–1Y M= X
• Assess the impact of using the estimated factor 

exposures Ŷ  or X̂  and the estimated covariance 

matrix X XΣ = + Δ�ˆ ˆ ˆ� ˆ  on the forecasts of risk and 
factor exposures.

Even in this simple setting, it is possible to include 
some empirically observed features of financial markets, 
such as a dominant first factor to which most securities 
in the estimation universe are positively exposed. In 
practice, it is desirable to consider more realistic simula-
tions that take account of market regimes and memory, 
as well as industries, currencies, and countries.

Estimates of Latent Factor Model 
Parameters and Applications

The goal of latent factor estimation is to recover 
the unobservable components of a factor model from 
observable data using purely statistical methods.10 In our 
framework, the elements of the latent factor model 
are estimated from data simulated with the return-
generating process given in Equation 1.

Next, we use PFA to find X̂ , an estimate of latent 
factor exposures X, and Δ̂, an estimate of the specific 
variance matrix Δ. Substituting these estimated quanti-
ties for the true quantities in Equation 5, we can generate 
portfolio volatility and variance forecasts, as well the 
breakdown of forecast variance into common factor and 
specific components. Substituting the estimate of latent 
factor exposures X into Equation 3 gives Ŷ , an estimate 
of the simulation factor exposures Y.

ESTIMATION ERROR METRICS

As previously indicated, we specify a portfolio by 
its vector of weights w, and we assume that the returns 
to the securities depend linearly on the returns to the 
factors, as in Equation 1. Because we do not know 
the true factor exposures X, the true specific covari-
ance matrix Δ, or the true security covariance matrix 
Σ, we base our risk forecasts, factor exposure forecasts, 
and portfolio construction routines on the latent factor 
estimates X̂, Δ̂, and Σ̂, as described earlier in this article.

Errors in Volatility and Variance Forecasts

Substituting the latent factor estimate Σ̂ of the 
covariance matrix Σ into Equation 6 gives estimated 
variance w w w= Σw�Var( ) ˆ , while the true variance is 
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.Var( ) = Σ�w w) = w  The quotient of estimated variance by 
true variance is the Variance Forecasting Ratio (VFR),11

 w
w
w

=VFR( )
VAR( )

VAR( )
. (13)

Equation 9 expresses the true variance of port-
folio w as the sum of the common factor and specific 
components. Substituting estimates X̂ for X and Δ̂ for 
Δ in Equation 9 decomposes the estimated variance of 
portfolio w as the sum of two components, CFV and SV. 
This allows us to define the Factor Variance Forecasting 
Ratio (FVFR) as

 
w
w

=FVFR( )w
CFV( )

CFV( )
 (14)

and the Specific Variance Forecasting Ratio (SVFR) as

 =SVFR( )w
SV( )w
SV( )w

. (15)

Values of VFR, FVFR, and SVFR that are closer 
to 1 indicate greater accuracy.

Errors in Factor Exposures

The Latent Factor Exposure Error (LFEE) of a 
portfolio w is given by

 LFEE( ) ( ˆ ) ,−w X) (( X )  (16)

where LFEE(w) is a K-vector whose kth entry is the 
error in the exposure of portfolio w to latent factor k.12

Because the latent factor exposures may not be easy 
to interpret, we use the transformation M to transform 
the true and estimated latent factor exposures to the intu-
itive setting used to simulate the data. The Simulation 
Factor Exposure Error (SFEE) of a portfolio w is given by

 SFEE( ) ( ˆ )−Y) (= ( Y w)  (17)

 M= ( )w .1  (18)

SFEE(w) is a K-vector whose kth entry is the error 
in the exposure of portfolio w to simulation factor k. 
We are interested in the L2 lengths, as well as individual 
components of these error vectors. Values of LFEE(w) 

and SFEE(w) that are closer to zero indicate greater accu-
racy. In the experiments outlined in the next section, we 
report SFEE(w) because it is easier to interpret.

EMPIRICAL EXPERIMENTS

In each of the four experiments presented here, we 
simulate 1,000 data sets, each composed of time series 
of returns to 500 securities. We assume these returns 
follow the linear process in Equation 1, and we apply 
PFA to each simulated data set to estimate a latent factor 
model. Next, we use the latent factor model to fore-
cast risk and factor exposures for a particular portfolio. 
Because the data sets are simulated, we know the true 
risk and the true factor exposures of equally weighted 
and minimum-variance portfolios. Thus, we can com-
pare true risk and factor exposures to their counterparts 
generated by models estimated from the data sets. We 
measure errors using VFR, FVFR, SVFR, and SFEE, 
which are averaged over simulations.

The experiments are designed to measure the 
extent to which increasing the observations used to 
estimate a latent factor model lowers estimation error. 
We consider both an equally weighted portfolio, which 
is constructed without reference to the estimated factor 
model, and a minimum-variance portfolio, whose con-
struction relies on the estimated factor model. Exhibit 1 
shows summary of our four experiments.

Model Calibration

Following the data simulation prescription 
outlined, we assume N = 500 securities, K = 2 factors, 
and either T = 250 or T = 1,000 days. The simulation 

E X H I B I T  1
Parameters of the Four Experiments

Note: These are the parameters of the four experiments used to gauge the 
impact of model-estimation error on forecasts of risk and factor exposures.
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• At T = 250, latent factor variance forecasts are 
accurate, while specif ic variance forecasts are 
somewhat high.

factor returns ψ are normal and uncorrelated, and they 
have a mean of zero. Further,

• Factor 1 is marketlike, meaning that most securi-
ties have positive exposure and the factor has an 
annualized volatility of 16%.

• Factor 2 is long/short with an annualized 
volatility of 8%.

Specif ically, factor exposures are drawn from a 
normal distribution with mean �(1,0)� and covariance 
matrix

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠
0.25 0

0 0.75
.

Note that factor exposures (unlike factor returns) 
are not random in our model. Here, we are using the 
normal distribution as a convenient means of con-
structing securities’ exposures to factors.

The specific variance matrix Δ is diagonal, and 
annualized specific volatilities are drawn from a uniform 
distribution on [32%, 64%].

Equally Weighted Portfolio Results

Exhibit 2 shows the impact of estimation error on 
forecasts of variance and factor exposures for the equally 
weighted portfolio. Panel A of Exhibit 2 shows the 
VFR, the FVFR, and the SVFR for 1,000 latent factor 
models estimated from simulated data. We consider both 
T = 250 and T = 1,000 daily observations, and the results 
are materially similar in the two cases. VFR and FVFR 
are close to 1, while SVFR indicates that specific risk is 
overforecasted by roughly 12%. Additional observations 
do not improve results.

Panel B of Exhibit 2 shows the SFEE for the equally 
weighted portfolio. Factor exposures are underforecasted. 
The dominant “market” factor exposure is underfore-
casted by roughly 1.0% of the exposure, and the second 
long/short factor exposure is underforecasted by roughly 
9.7% when T = 250. When we increase the size of the 
data set to T = 1,000 daily observations, the factors were 
underforecasted by 1.0% and 4.1%.

Tentative conclusions about latent model forecasts 
of risk and factor exposures for the equally weighted 
portfolio are as follows:

E X H I B I T  2
Forecasting Errors for an Equally Weighted Portfolio

Notes: Panel A displays errors in risk forecasts for models estimated from 
T = 250 and T = 1,000 daily observations. The first column (Mean) 
shows the average of VFR(w), FVFR(w), and SVFR(w) over the 
1,000 simulated data sets; the second column (Std/Mean) shows the 
absolute value of the standard deviation divided by the mean (larger values 
indicate more uncertainty in the estimate of the mean); the third column 
(True Vol) shows the true (annualized) volatility of the equally weighted 
portfolio, as well as the true common factor volatility and true specific 
volatility. Panel B displays errors in factor exposures. The first column 
(Mean) shows the average of SFEE(w) over the 1,000 simulated data 
sets; the second column (Std/Mean) shows the absolute value of the stan-
dard deviation divided by the mean; the third column (True Exp) shows 
the true factor exposures of the equally weighted portfolio.
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• Additional observations do not improve specific 
variance forecasts. There may be some systematic 
bias in the estimation method.

• The latent factor model underforecasts factor expo-
sures, but an increase in the number of observa-
tions mitigates the problem.

Minimum-Variance Portfolio Results

Exhibit 3 shows the impact of estimation error on 
variance and factor exposures for the minimum-variance 
portfolio constructed by solving the optimization problem 
given by Equation 12. There are material differences 
between the results for the minimum-variance portfolio, 
which is constructed with an estimated risk model, and 
the results for the equally weighted portfolio, whose 
weights do not depend on the estimated risk model.

When we forecast with a latent factor model esti-
mated from 250 observations, we find that VFR ≈ 0.62, 
which means that the variance forecast of the minimum-
variance portfolio is roughly 62% of the true variance on 
average. An increase to 1,000 observations raises VFR 
to 88%. When we disaggregate, we find that specific 
variance forecasts are accurate on average, but common 
factor variance is severely underforecasted. For T = 250, 
forecast common factor variance is 49% of true common 
factor variance on average, but that increases to 82% 
when the model is estimated from 1,000 observations.

Panel B of Exhibit 2 shows the SFEE for the 
minimum-variance portfolio. Factor exposures are also 
consistently and materially underforecasted by our latent 
factor model. The dominant “market” factor exposure is 
underforecasted by roughly 31%, and the second long/
short factor exposure is underforecasted by roughly 41% 
when T = 250. When we increase the size of the data 
set to T = 1,000 daily observations, the factor exposures 
were underforecasted by 10% and 14%.

Tentative conclusions about latent model forecasts 
of risk and factor exposures for the minimum-variance 
portfolio are as follows:

• When T = 250 observations are used to estimate 
the latent factor model, it underforecasts vari-
ance by 40% on average. When the number of 
observations is increased to T = 1,000, the model 
underforecasts variance by 12%.

• Risk underforecasts are attributable to common 
factors.

• Factor exposures are underforecasted by 31%–41% 
when T = 250. When the number of observations 
was increased to T = 1,000, factor exposure errors 
were substantially diminished.

E X H I B I T  3
Forecasting Errors for a Minimum-Variance Portfolio

Notes: Panel A displays errors in risk forecasts for models estimated from 
T = 250 and T = 1,000 daily observations. The first column (Mean) 
shows the average of VFR(w((ŵ), FVFR(w((ŵ), and SVFR(w(( ˆ ) over the 1,000 
simulated data sets; the second column (Std/Mean) shows the absolute 
value of the standard deviation divided by the mean (larger values indicate 
more uncertainty in the estimated mean); the third column E[True Vol] 
shows the average true (annualized) volatility of the equally weighted port-
folio, average true common factor volatility, and average true specific vola-
tility. Panel B displays errors in factor exposures. The first column (Mean) 
shows the SFEE(w(( ˆ ) averaged over the 1,000 simulated data sets; the 
second column (Std/Mean) shows the absolute value of the standard devia-
tion divided by the mean; the third column E[True Exp] shows the average 
true factor exposures of the minimum-variance portfolio.
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CONCLUSIONS

Factor models of portfolio risk are estimated from 
data, so factor model forecasts are affected by estimation 
error. In this article, we develop methods to gauge the 
impact of estimation error on forecasts of portfolio vari-
ance and on portfolios’ exposures to factors. Our method 
relies on three measures of error in risk forecasts: the 
Variance Forecasting Ratio, the Factor Variance Fore-
casting Ratio, and the Specif ic Variance Forecasting 
Ratio, as well as a measure of error in factor exposures, 
the Simulated Factor Exposure Error. We apply these 
measures to data sets composed of 500 security returns 
simulated from a Gaussian two-factor model. In each 
simulated data set, we use principal factor analysis to 
estimate the factor model and then compare the true to 
the estimated forecasts for an equally weighted portfolio 
and a long-only minimum-variance portfolio.

The results for the two portfolios are qualita-
tively different. Forecasts of variance and factor expo-
sures are reasonably accurate for the equally weighted 
portfolio. In addition, common factor risk is estimated 
more accurately than specific risk. For the long-only 
minimum-variance portfolio, however, both the 
common factor component of risk and the factor expo-
sures are consistently underforecasted.

The difference in results for the two portfolios 
stems from the fact that the estimated risk model is used 
to construct a long-only minimum-variance portfolio. 
In contrast, an equally weighted portfolio does not 
require a risk model. Our study is consistent with results 
in Marčenko and Pastur [1967] and El Karoui [2013], 
and it underscores the importance of testing factor risk 
models on optimized portfolios, which have the most 
severe model weaknesses.

A P P E N D I X  A

ESTIMATING THE RISK OF EMPIRICAL 
PORTFOLIOS: RETURN DISTRIBUTION 
SIMULATION

For the purpose of estimating the risk of empirical 
portfolios, more realistic situations occur when (1) security 
returns depend in a nonlinear way on factor returns (in par-
ticular, when securities include derivatives or credit instru-
ments) or (2) factor return distributions are non-Gaussian.13 
In either case, parametric formulas for risk may be unavailable 
and simulation of a portfolio return distribution is a practical 

way to estimate both portfolio volatility and expected tail 
loss. The simulation of a portfolio return distribution for the 
purpose of estimating risk is not the same as the factor model 
simulations described in this article. The latter are used to 
gauge the impact of estimation error on model forecasts.

To estimate risk with simulation, we specify future 
states of the world by drawing factor returns and specif ic 
returns that follow a specified generating process.14 In each 
state of the world, portfolio returns are estimated using secu-
rity-pricing formulas. The resulting distribution of portfolio 
returns is used to estimate volatility and expected tail loss 
with sample statistics.

Although the complexity of empirical portfolios 
demands that portfolio return simulation be used to estimate 
risk in practice, this complicates the problem of assessing 
model error. When we estimate risk with a simulated return 
distribution, there are two sources of model error in the fore-
casts of Vol and ETL: errors in the simulation parameter 
estimates and errors introduced through the simulation of 
the return distribution. The latter would affect risk forecasts 
even if we were to use the true simulation parameters. The 
magnitude of the error from simulating a return distribution 
depends on the number of sample paths, and it can be miti-
gated by using enough paths such that error due to portfolio 
simulation is small compared to estimation error in the cova-
riance matrix. Additional corruption arising from the imper-
fect nature of security-pricing formulas can be mitigated (to 
some extent) by calibrating pricing formulas to the market.15

In view of these difficulties, it is essential to establish 
baseline estimates of estimation error in the volatility of port-
folios whose returns depend linearly on factors. The baseline 
relies on Equation 6. Nested simulations are required to quan-
tify the impact of estimation error on the volatility of port-
folios that depend nonlinearly on factors or to quantify the 
impact of estimation error on tail risk measures such as ETL. 
These important topics should be addressed in future studies.

A P P E N D I X  B

TRANSFORMING SIMULATION FACTORS 
TO LATENT FACTORS

Equation 1 specifies security returns in terms of linear 
factors, which we can calibrate to known market factors. To 
compare the true and estimated factors, however, we need 
to change basis. This is done as follows. Given the return-
generating process

R Yψ + ε

specified in Equation 1, there is a K × K invertible matrix M 
so that the covariance matrix F of φ = ψM −1 is the identity, and 
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the rows of X = MY are pairwise orthogonal. The matrix M is 
unique, provided that the eigenvalues of 1/2 1/2�F Y1/2 Y F  are distinct.

The proof is as follows. Let F1/2 be its symmetric square 
root of the K × K factor covariance matrix F. The matrix 

1/2 1/2�F Y1/2 Y F  is symmetric, so it can be diagonalized with 
an orthogonal matrix O. This orthogonal matrix is unique 
up to order of factors if the eigenvalues of F YY F�1/2 1YY F� /2 are 
distinct. Set M = OF1/2 and check that the covariance matrix 
of φ = ψM −1 is the identity and the rows of X = MY are 
orthogonal.

ENDNOTES

GX Labs and GX Journal Disclaimer (GXN-1829):
The material presented is for informational purposes 

only. The views expressed in this material are those of 
S. Bianchi, L. Goldberg, and A. Rosenberg and are subject 
to change based on market and other conditions and factors; 
moreover, they do not necessarily represent the official views 
of State Street Global ExchangeSM and/or State Street Cor-
poration and its affiliates.

1Many risk management systems use simulated return 
distributions to forecast and attribute risk. Errors stemming 
from a simulated return distribution adversely affect risk 
forecasts even if the risk model driving the simulation of 
the return distribution is perfectly specified. In practice, risk 
models are never perfectly specified, and it is one aspect of 
imperfect model specification that is the subject of this note. 
Specifically, we are concerned with errors in forecasts of risk 
and factor exposures that arise from model-estimation error. 
To isolate the impact of model-estimation error on risk fore-
casts, we restrict our attention to a single risk measure, vola-
tility (or equivalently, its square, variance), and we consider 
only portfolios whose returns are linear functions of factor 
returns. When portfolio return depends linearly on factor 
return, volatility forecasts and factor exposures are simple 
functions of model parameters, so simulated return distribu-
tions are not required to forecast volatility. Consequently, our 
measures of estimation error are not confounded by errors 
arising from a simulated return distribution.

2Details are in Stroyny and Rowe [2002].
3Value at risk is a quantile of a portfolio return 

distribution.
4Historically, value at risk, and not expected tail loss, 

has played a central role in risk management and regulation. 
However, expected tail loss is preferred on both mathematical 
and economic grounds, and it is becoming the new standard 
for extreme risk measurement. More information is in Acerbi 
and Tasche [2002] and Acerbi and Székely [2014].

5Formulas for the relationship between volatility and 
ETL at different quantiles can be found in Goldberg, Miller, 
and Weinstein [2008].

6More recently, methods to use expected tail loss fore-
casts in portfolio construction have been developed. Further 
information is in Rockafellar and Uryasev [2000], Bertsimas, 
Lauprete, and Samarov [2004], and Goldberg, Hayes, and 
Mahmoud [2013].

7Minimum-variance portfolios have outperformed the 
market on the basis of absolute return and on a volatility-
adjusted basis over the past four decades, as discussed in 
Goldberg, Leshem, and Geddes [2014].

8There is inevitably a discrepancy between the data-
generating process that drives the simulation and the process 
that drives empirical data. Complementary to a parametric 
simulation is an empirical simulation, also known as an empir-
ical bootstrap. In this case, the empirical estimate plays the 
role of the truth and the bootstrap leads to confidence inter-
vals around estimated quantities. Here, there is an implicit 
assumption that the daily observations are independent and 
identically distributed.

9It is a common assumption that the vectors (ψt, εt) 
are independent, identical, and jointly Gaussian. However, 
this assumption is at odds with empirical f indings, which 
should be considered when interpreting the results of this 
experiment.

10For a multiasset class risk model, the observables may 
include security prices, yield curves, capitalization weights, 
trading volume, and previous model estimates.

11A similar metric is used in Bender et al. [2009].
12PFA simultaneously estimates a set of factor returns 

(columns of φ̂) and a set of factor exposures (rows of X̂). To 
the extent that the columns of φ̂ span the same space as the 
columns of φ, Equation 16 is a reasonable estimate of the error 
in the latent factor exposures. The columns of φ̂ approach 
the columns of φ as T goes to infinity. For a finite sample, 
however, estimation error can cause the columns of φ̂ to span 
a different space than the columns of φ.

13When factor return distributions are non-Gaussian, 
empirical, or parametric assumptions are required to proceed. 
Examples of this approach are described in Dubikovsky et al. 
[2010] and Goldberg et al. [2013].

14The return-generated function can be empirical or 
parametric.

15In some cases, the security-pricing formulas are, 
themselves, simulations.
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