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Motivation

Motivation: What are the factors?

Statistical Factor Analysis

Factor models are widely used in big data settings
Reduce data dimensionality
Factors are traded extensively
Problem: Which factors should be used?

Statistical (latent) factors perform well
Factors estimated from principle component analysis (PCA)
Weighted averages of all features/assets
Problem: Hard to interpret

Goals of this paper:

Create interpretable proximate factors

Shrink most assets’ weights to zero to get proximate factors

⇒ More interpretable

⇒ Significantly lower transaction costs when trading factors
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Motivation

Contribution of this paper

Contribution

This Paper: Estimation of interpretable proximate factors

Key elements of estimator:

1 Statistical factors instead of pre-specified (and potentially
miss-specified) factors

2 Uses information from large panel data sets: Many assets with
many time observations

3 Proximate factors approximate latent factors very well with a
few assets without sparse structure in population factors

4 Only 5-10% of the cross-sectional observations with the largest
exposure are needed for proximate factors
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Motivation

Contribution

Theoretical Results

Asymptotic probabilistic lower bound for generalized correlations of
proximate factors with population factors

Guidance on how to construct proximate factors

Empirical Results

Very good approximation to population factors with 5-10%
portfolios, measured by generalized correlation, variance explained,
pricing error and Sharpe-ratio

Interpret statistical latent factors for

Double-sorted portfolio data
370 single-sorted anomaly portfolios
High-frequency returns of S&P 500 companies
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Motivation

Literature (partial list)

Large-dimensional factor models with PCA

Bai (2003): Distribution theory
Fan et al. (2013): Sparse matrices in factor modeling
Fan et al. (2016): Projected PCA for time-varying loadings
Pelger (2016), Äıt-Sahalia and Xiu (2015): High-frequency

Large-dimensional factor models with penalty term

Bai and Ng (2017): Robust PCA with ridge shrinkage
Lettau and Pelger (2017): Risk-Premium PCA with pricing
penalty
Zhou et al. (2006): Sparse PCA
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Illustration

Empirical example: Double-sorted portfolios

Daily data of 25 double-sorted Fama-French portfolios

(a) Size and Book-to-Market (b) Size and Investment

Figure: Sum of generalized correlation ρ̂ between estimated 3 PCA
factors and 3 proximate factors

Problem in interpreting factors: Factors only identified up to
invertible linear transformations.

Generalized correlation measures how many factors two sets have in
common.

⇒ Proximate factors approximate statistical factors very well.
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Illustration

Empirical Application: Size and Book-to-market Portfolios

25 portfolios formed on size and book-to-market
(07/1963-10/2017, 3 factors, daily data)

(a) Generalized correlation (b) Variance explained

(c) RMS pricing error (d) Max Sharpe Ratio
6
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Illustration

Empirical Application: Size and Book-to-market Portfolios

Figure: Portfolio weights of 1. statistical factor

⇒ Equally weighted market factor
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Illustration

Empirical Application: Size and Book-to-market Portfolios

Figure: Portfolio weights of 2. statistical factor

⇒ Small-minus-big size factor

⇒ Proximate factor with 4 largest weights correlation 0.88 with size
factor
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Illustration

Empirical Application: Size and Book-to-market Portfolios

Figure: Portfolio weights of 3. statistical factor

⇒ High-minus-low value factor

⇒ Proximate factor with 4 largest weights correlation 0.91 with value
factor
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Illustration

Empirical Application: Size and Investment Portfolios

25 portfolios formed on size and investment
(07/1963-10/2017, 3 factors, daily data)

(a) Generalized correlation (b) Variance explained

(c) RMS pricing error (d) Max Sharpe Ratio
10
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Illustration

Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 1. statistical factor

⇒ Equally weighted market factor
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Illustration

Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 2. statistical factor

⇒ Small-minus-big size factor

⇒ Proximate factor with 4 largest weights correlation 0.97 with size
factor
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Illustration

Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 3. statistical factor

⇒ High-minus-low value factor

⇒ Proximate factor with 4 largest weights correlation 0.79 with
investment factor
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Model

The Model

Approximate Factor Model

Observe excess returns of N assets over T time periods:

Xt,i = Ft
1×K

>︸ ︷︷ ︸
factors

Λi
K×1︸︷︷︸

loadings

+ et,i︸︷︷︸
idiosyncratic

i = 1, ...,N t = 1, ...,T

Matrix notation

X︸︷︷︸
T×N

= F︸︷︷︸
T×K

Λ>︸︷︷︸
K×N

+ e︸︷︷︸
T×N

N assets (large)
T time-series observation (large)
K systematic factors (fixed)

F , Λ and e are unknown
14
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Model

The Model

Approximate Factor Model

Systematic and non-systematic risk (F and e uncorrelated):

Var(X ) = ΛVar(F )Λ>︸ ︷︷ ︸
systematic

+ Var(e)︸ ︷︷ ︸
non−systematic

⇒ Systematic factors should explain a large portion of the
variance

⇒ Idiosyncratic risk can be weakly correlated

Estimation: PCA (Principal component analysis)

Apply PCA to the sample covariance matrix: 1
T X>X − X̄ X̄> with

X̄ = sample mean of asset excess returns

Eigenvectors of largest eigenvalues estimate loadings Λ̂.

F̂ estimator for factors: F̂ = 1
NX Λ̂ = X Λ̂>(Λ̂>Λ̂)−1.
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Model

The Model

Proximate Factors

Sparse loadings Λ̃ are obtained from

Select finitely many mN loadings with largest absolute value
from Λ̂k

Shrink estimated loadings Λ̂ to 0 except for mN largest values
Divide by column norms, i.e. λ̃>k λ̃k = 1

Proximate factors F̃ = XT Λ̃
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Model

The Model

Closeness measure

For 1-factor model: Correlation between F̃ and F .

Problem for multiple factors: Factors are only identified up to
invertible linear transformations ⇒ Need measure for closeness
between span of two vector spaces

For multi-factor model: The ”closeness” between F̃ and F is
measured by generalized correlation:

Total generalized correlation measure:

ρ = trace
(

(FTF/T )−1(FT F̃/T )(F̃T F̃/T )−1(F̃TF/T )
)

ρ = 0: F̃ and F are orthogonal
ρ = K : F̃ and F are span the same space

Alternative measure: Element-wise generalized correlations are
eigenvalues instead of trace of above matrix

Element-wise generalized correlations close to 1 measure how
many factors are well approximated
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Intuition

Intuition: Why picking largest elements in Λ̂ works?

Consider one factor and one nonzero element in Λ̃:
F = [f1t ] ∈ RT×1, Λ = [λ1,i ] ∈ RN×1

Λ̃ = [λ̃1,i ] is sparse. Assume nonzero element in λ̃1,i is λ̃1,1.

F̃ = XT Λ̃ = FΛT Λ̃ + eT Λ̃

= f1λ1,1 + e1

Assume
f1,t ∼ (0, σ2

f ), e1,t
iid∼ (0, σ2

e )

f T1 f1
T
→ σ2

f ,
eT1 e1

T
→ σ2

e

Define signal-to-noise ratio s = σf
σe

18
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Intuition

Intuition: Why pick the largest elements in Λ̂?

ρ = tr
(

(FTF/T )−1(FT F̃/T )(F̃T F̃/T )−1(F̃TF/T )
)

=

(
f T1 (f1λ1,1 + e1)/T

(f T1 f1/T )1/2((f1λ1,1 + e1)T (f1λ1,1 + e1)/T )1/2

)2

→
λ2

1,1

λ2
1,1 + 1/s2

(Generalized) correlation increases in size of loading |λ1,1|.
(Generalized) correlation increases in signal-to-noise ratio s.

No sparsity in population loadings assumed!
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Asymptotic results

Asymptotic results

Proximate factors F̃ are in general not consistent.

F̃ = XT Λ̃ = FΛT Λ̃ + eT Λ̃

Idiosyncratic component not diversified away

Assume ei,l
iid∼ (0, σ2

e·,l ), then each element in eT Λ̃ has

Var

(
mN∑
i=1

λ̃j,ji eji ,l

)
=

mN∑
i=1

λ̃2
j,jiσ

2
e·,l = σ2

e·,l 6→ 0

Instead we provide probabilistic lower bound for (generalized)
correlation ρ given a target correlation level ρ0:

P(ρ > ρ0)
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Asymptotic results

Assumptions

Assumptions

1 Factors: Uncorrelated and demeaned factors:

E [F ] = 0
F>F

T
→ ΣF = diag(σ2

f1 , σ
2
f2 , · · · , σ

2
fr )

2 Loadings: Random variables λi,j = Op(1) and Λ>Λ→ ΣΛ

3 Systematic factors: Eigenvalues of ΣΛΣF bounded away from 0.

4 Residuals: Weak Dependency

E [ei,l ] = 0 and Var(ei,l) ≤ σ2
e ∀i , l

e independent from F and Λ
1√
T
eT(i)e(k) = Op(1) ∀i , k and i 6= k

5 Consistent estimator:

f̂j − Hfj = Op

(
1√
N

)
λ̂i − H−1λi = Op

(
1√
T

)
N,T →∞

Sufficient conditions in Bai (2003) and Bai and Ng (2002)
21
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One Factor Case

One factor case

Theorem

Assume K = 1 factor and population loadings λ1,i are i.i.d for all i .
For any ρ0 we have for N,T →∞

P(ρ > ρ0) ≥ 1−
mN−1∑
j=0

(
N

j

)
(1−F|λ1,i |(ymN

))jF|λ1,i |(ymN
)N−j (1)

where

ymN
=

√
1

mN

σ2
e

σ2
f1

ρ0

1− ρ0

F|λ1,i |(y) = P(|λ1,i | ≤ y)
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One Factor Case

One factor case

Denote the lower probability bound for P(ρ > ρ0) by
p = 1−

∑mN−1
j=0

(N
j

)
(1−F|λ1,i |(ymN

))jF|λ1,i |(ymN
)N−j

It holds,

∂p

∂F|λ1,i |(ymN
)
< 0

p is decreasing in F|λ1,i |(ymN
). Hence p is

decreasing in ρ0

increasing in s = σf1/σe
increasing in mN

increasing in the dispersion of the distribution of |λ1,i |

23
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One Factor Case

Multiple Factors

Multiple Factor: Simple Case

Denote by {j1, j2, · · · , jmN
} indexes of nonzero entries in λ̃j (i.e.

largest mN entries in λ̂j in absolute value).

Let U be the “sparse” rotated population loadings ΛH ∈ RN×k with
non-zero entries {j1, j2, · · · , jmN

}.

Assume U columns do not overlap

Let vj,(mN ) = min(|uj,j1 |, |uj,j2 |, · · · , |uj,jmN
|) to be the mN -th order

statistic of |uj |

For any threshold ρ0 and for N,T →∞ we have

P(ρ > ρ0) ≥ P

 k∑
j=1

1

sjv2
j,(mN )

≤ mN(K − ρ0)

σ2
e


24
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One Factor Case

Multiple Factors

Multiple Factor: Threshold and then rotate

Denote by {j1, j2, · · · , jmN } indices of nonzero entries in λ̃j

Let Λ̆ be the “sparse” population loadings ΛH with non-zero entries
{j1, j2, · · · , jmN }.
Assume there exists orthonormal matrix P s.t. Λ̆P columns do not overlap

Signal matrix S is diagonal matrix of the eigenvalues of ΣΛΣF in
decreasing order

Define [wP
M,1,w

P
M,2, · · · ,wP

M,k ] as normalized elements of Λ̆S1/2P

Let wP
j,(mN ) = min(|wP

j,j1 |, |w
P
j,j2 |, · · · , |w

P
j,jmN
|) to be the mN -th order

statistic of |wP
j |

For any threshold ρ0 and for N,T →∞ we have

P(ρ > ρ0) ≥ P

(
K∑
j=1

1

(wP
j,(mN ))

2
≤ mN(1− γ)(K − ρ0)

σ2
e (1 + ε)4

)

with known constants c and ε and γ.
25



Intro Illustration Model Simulation Empirical Results Conclusion Appendix

One Factor Case

Multiple Factors

Multiple Factor: Rotate and threshold

Similar to previous theorem, but first find a rotation of the data and then
threshold such that columns of sparse loadings to not overlap

For any threshold ρ0 and for N,T →∞ we have

P(ρ > ρ0) ≥ P

(
K∑
j=1

1

(wP
j,(mN ))

2
≤ mN(1− γ)(K − ρ0)

σ2
e

)

with known constants c and ε and γ.
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One Factor Case

Multiple Factors

Denote the lower probability bound for P(ρ > ρ0) by p

It holds (very similar to the one factor case) that p is

decreasing in ρ0

increasing in s = σf1/σe
increasing in mN

increasing in the dispersion of the distribution of |λ1,i |

27
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Lasso

Relationship with Lasso

Alternative approach with Lasso:

1 Estimate factors by PCA, i.e XTXF̂ = F̂V with V matrix of
eigenvalues.

2 Estimate loadings by
∥∥∥X − ΛF̂T

∥∥∥2

F
+ α ‖Λ‖1. Divide the

minimizer by its column norm (standardize each loading) to
obtain Λ̄

3 Proximate factors from Lasso approach are F̄ = XT Λ̄(Λ̄T Λ̄)−1

⇒ Same selection of non-zero elements (for one factor case) but
different weighting

⇒ Under certain conditions worse performance than thresholding
approach

Tuning parameter less transparent
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Simulation

Simulation: One Factor (σe = 1, λ ∼ N(0, 1), 500 MCs)

(a) N=50 (b) N=100

(c) N=200 (d) N=500

Figure: σf = 1.5, ρ0 = 0.95
29
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Simulation

Simulation: One Factor (σe = 1, λ ∼ N(0, 1), 500 MCs)

(a) N=50 (b) N=100

(c) N=200 (d) N=500

Figure: σf = 1.0, ρ0 = 0.95
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Simulation

Simulation: One Factor (σe = 1, λ ∼ N(0, 1), 500 MCs)

(a) N=250 (b) N=500

(c) N=750 (d) N=1000

Figure: σf = 0.5, ρ0 = 0.95
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Simulation

Simulation: Two Factors (σe = 1, λ ∼ N(0, 1), 500 MCs)

(a) N=50 (b) N=100

(c) N=200 (d) N=500

Figure: σf = 2.0, ρ0 = 1.8
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Simulation

Simulation: Two Factors (σe = 1, λ ∼ N(0, 1), 500 MCs)

(a) N=100 (b) N=200

(c) N=300 (d) N=500

Figure: σf = 1.5, ρ0 = 1.7
33
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Simulation

Simulation: Two Factors (σe = 1, λ ∼ N(0, 1), 500 MCs)

(a) N=100 (b) N=200

(c) N=300 (d) N=500

Figure: σf = 1.0, ρ0 = 1.6
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Empirical Results

Extreme deciles of single-sorted portfolios

Portfolio Data

Kozak, Nagel and Santosh (2017) data: 370 decile portfolios sorted
according to 37 anomalies

Monthly return data from 07/1963 to 12/2016 (T = 638)

First only lowest and highest decile portfolio for each anomaly
(N = 74).

Risk-Premium PCA (RP-PCA) from Lettau and Pelger (2017)
applies PCA to 1

T X>X + γX̄ X̄> ⇒ penalty for pricing error

Factors:

1 RP-PCA: K = 6 and γ = 100.
2 PCA: K = 6
3 Fama-French 5: The five factor model of Fama-French

(market, size, value, investment and operating profitability).
4 Proxy factors: RP-PCA and PCA factors approximated with 8

largest positions. 35
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Empirical Results

Extreme Deciles

In-sample Out-of-sample
SR RMS α Idio. Var. SR RMS α Idio. Var.

RP-PCA 0.64 0.18 3.59 0.53 0.15 4.23
PCA 0.35 0.22 3.57 0.28 0.19 4.24

RP-PCA Proxy 0.62 0.19 4.08 0.48 0.17 4.19
PCA Proxy 0.37 0.22 3.77 0.315 0.18 4.20

Fama-French 5 0.32 0.30 7.31 0.31 0.262 6.40

Table: First and last decile of 37 single-sorted portfolios from 07/1963 to
12/2016 (N = 74 and T = 638): Maximal Sharpe-ratios,
root-mean-squared pricing errors and unexplained idiosyncratic variation.
K = 6 statistical factors.

Proximate factors approximate latent factors very well

Results hold out-of-sample.
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Empirical Results

Interpreting factors: Generalized correlations with proxies

RP-PCA PCA

1. Gen. Corr. 1.00 1.00
2. Gen. Corr. 1.00 1.00
3. Gen. Corr. 0.98 0.99
4. Gen. Corr. 0.96 0.97
5. Gen. Corr. 0.88 0.95
6. Gen. Corr. 0.72 0.89

Table: Generalized correlations of statistical factors with proxy factors
(portfolios of 8 assets).

Generalized correlations close to 1 measure of how many factors two
sets have in common.

Total generalized correlation ρ sum of element-wise generalized
correlations

⇒ Proxy factors approximate statistical factors well.
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Empirical Results

Extreme Deciles: Maximal Sharpe-ratio

SR (In-sample)

RP-PCA

RP-PCA Proxy
PCA

PCA Proxy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
3 factors
4 factors
5 factors
6 factors
7 factors

SR (Out-of-sample)

RP-PCA

RP-PCA Proxy
PCA

PCA Proxy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure: Maximal Sharpe-ratios.

⇒ Spike in Sharpe-ratio for 6 factors

⇒ Proximate factors capture similar Sharpe-ratio pattern
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Empirical Results

Extreme Deciles: Pricing error

RMS  (In-sample)

RP-PCA

RP-PCA Proxy
PCA

PCA Proxy
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

3 factors
4 factors
5 factors
6 factors
7 factors

RMS  (Out-of-sample)

RP-PCA

RP-PCA Proxy
PCA

PCA Proxy
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure: Root-mean-squared pricing errors.

⇒ RP-PCA has smaller out-of-sample pricing errors

⇒ Proximate factors have similar pricing errors
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Empirical Results

Extreme Deciles: Idiosyncratic Variation

Idiosyncratic Variation (In-sample)

RP-PCA

RP-PCA Proxy
PCA

PCA Proxy
0

1

2

3

4

5

6

7

3 factors
4 factors
5 factors
6 factors
7 factors

Idiosyncratic Variation (Out-of-sample)

RP-PCA

RP-PCA Proxy
PCA

PCA Proxy
0

1

2

3

4

5

6

7

Figure: Unexplained idiosyncratic variation.

⇒ Unexplained variation similar for RP-PCA and PCA

⇒ Proximate factors explain the same variation
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Empirical Results

Interpreting factors: Composition of proxies

2. Proxy (RP-PCA) 3. Proxy (RP-PCA) 4. Proxy (RP-PCA) 5. Proxy (RP-PCA) 6. Proxy (RP-PCA)

indrrevlv10 0.54 valmomprof10 0.17 mom1210 0.28 mom1210 -0.28 price1 0.38
indmomrev10 0.52 indmomrev10 -0.20 mom10 0.26 mom10 -0.28 mom1 0.36

ivol10 0.24 ivol10 -0.21 valuem1 0.25 valmomprof10 -0.29 valuem10 0.34
Accrual1 -0.21 mom121 -0.23 lrrev10 -0.24 roea1 -0.32 indrrev10 0.32

shvol1 -0.22 indrrevlv10 -0.26 mom1 -0.30 shvol1 -0.33 indrrev1 -0.26
ep1 -0.22 indmomrev1 -0.40 valuem10 -0.44 price1 -0.37 valmom10 -0.27

indrrev1 -0.25 indrrevlv1 -0.41 price1 -0.45 size10 -0.42 indmom10 -0.29
mom121 -0.42 ivol1 -0.67 mom121 -0.49 noa10 -0.47 ivol1 -0.53

2. Proxy (PCA) 3. Proxy (PCA) 4. Proxy (PCA) 5. Proxy (PCA) 6. Proxy (PCA)

ivol1 0.59 valuem10 0.46 mom10 0.36 divp10 0.30 valprof10 0.33
indrrevlv10 0.43 price1 0.38 indmom10 0.35 roea1 -0.25 Aturnover10 0.32

indmomrev10 0.37 divp10 0.37 mom1210 0.34 shvol1 -0.27 sp10 0.27
indrrevlv1 0.36 value10 0.36 valmomprof10 0.33 size10 -0.28 prof10 0.24

indmomrev1 0.36 sp10 0.32 valmom1 -0.31 mom1 -0.29 valprof1 -0.25
ivol10 0.27 lrrev10 0.31 indmom1 -0.35 noa10 -0.37 prof1 -0.40

mom121 0.03 cfp10 0.31 mom121 -0.39 mom121 -0.38 ivol1 -0.42
indmom1 0.03 valuem1 -0.29 mom1 -0.39 price1 -0.57 Aturnover1 -0.51

Table: Portfolio-composition of proxy factors for first and last decile of 37
single-sorted portfolios: First proxy factors is an equally-weighted
portfolio.
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Empirical Results

Interpreting factors: Cumulative absolute proxy weights

RP-PCA Proxy PCA Proxy

Momentum (12m) 1.70 Idiosyncratic Volatility 1.28
Idiosyncratic Volatility 1.65 Momentum (12m) 1.14
Industry Rel. Rev. (L.V.) 1.21 Momentum (6m) 1.04
Momentum (6m) 1.21 Price 0.95
Price 1.21 Asset Turnover 0.83
Industry Mom. Reversals 1.11 Industry Rel. Rev. (L.V.) 0.79
Value (M) 1.03 Value (M) 0.75
Industry Rel. Reversals 0.84 Industry Momentum 0.73
Share Volume 0.55 Industry Mom. Reversals 0.73
Net Operating Assets 0.47 Dividend/Price 0.67
Value-Momentum-Prof. 0.46 Gross Profitability 0.64
Size 0.42 Sales/Price 0.58
Return on Book Equity (A) 0.32 Value-Profitability 0.58
Industry Momentum 0.29 Net Operating Assets 0.37
Value-Momentum 0.27 Value (A) 0.36
Long Run Reversals 0.24 Value-Momentum-Prof. 0.33
Earnings/Price 0.22 Cash Flows/Price 0.31

Table: Composition of proxy factors: Anomaly categories and the sum of
absolute values of the portfolio weights of the K = 6 proxy factors.
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Empirical Results

Single-sorted portfolios

Portfolio Data

Monthly return data from 07/1963 to 12/2016 (T = 638) for
N = 370 portfolios

Kozak, Nagel and Santosh (2017) data: 370 decile portfolios sorted
according to 37 anomalies

Risk-Premium PCA (RP-PCA) from Lettau and Pelger (2017)
applies PCA to 1

T X>X + γX̄ X̄> ⇒ penalty for pricing error

Factors:

1 RP-PCA: K = 6 and γ = 100.
2 PCA: K = 6
3 Fama-French 5: The five factor model of Fama-French

(market, size, value, investment and operating profitability, all
from Kenneth French’s website).

4 Proxy factors: RP-PCA and PCA factors approximated with
5% of largest position.
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Empirical Results

Single-sorted portfolios

In-sample Out-of-sample
SR RMS α Idio. Var. SR RMS α Idio. Var.

RP-PCA 0.66 0.15 2.73 0.53 0.11 3.19
PCA 0.28 0.15 2.70 0.22 0.14 3.19

Fama-French 5 0.32 0.23 4.97 0.31 0.21 4.62
RP-PCA Proxy 6 0.57 0.16 2.84 0.46 0.13 3.15

PCA Proxy 6 0.34 0.14 2.80 0.28 0.13 3.12

Table: Deciles of 37 single-sorted portfolios from 07/1963 to 12/2016
(N = 370 and T = 638): Maximal Sharpe-ratios, root-mean-squared
pricing errors and unexplained idiosyncratic variation. K = 6 statistical
factors.

Proximate factors approximate latent factors very well

Results hold out-of-sample.
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Empirical Results

Interpreting factors: Generalized correlations with proxies

RP-PCA PCA

1. Gen. Corr. 1.00 1.00
2. Gen. Corr. 1.00 1.00
3. Gen. Corr. 0.99 0.99
4. Gen. Corr. 0.98 0.99
5. Gen. Corr. 0.92 0.94
6. Gen. Corr. 0.78 0.89

Table: Generalized correlations of statistical factors with proxy factors
(portfolios of 5% of assets).

Generalized correlations close to 1 measure of how many factors two
sets have in common.

Total generalized correlation ρ sum of element-wise generalized
correlations

⇒ Proxy factors approximate statistical factors well.
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Empirical Results

Single-sorted portfolios: Maximal Sharpe-ratio
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Figure: Maximal Sharpe-ratios.

⇒ Spike in Sharpe-ratio for 6 factors

⇒ Proximate factors capture similar Sharpe-ratio pattern
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Empirical Results

Single-sorted portfolios: Pricing error

RMS  (In-sample)
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Figure: Root-mean-squared pricing errors.

⇒ RP-PCA has smaller out-of-sample pricing errors

⇒ Proximate factors have similar pricing errors
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Empirical Results

Single-sorted portfolios: Idiosyncratic Variation

Idiosyncratic Variation (In-sample)
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Figure: Unexplained idiosyncratic variation.

⇒ Unexplained variation similar for RP-PCA and PCA

⇒ Proximate factors explain the same variation
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Empirical Results

Interpreting factors: 6th proxy factor

6. Proxy RP-PCA Weights 6. Proxy PCA Weights

Momentum (6m) 1 0.28 Leverage 10 0.33
Momentum (6m) 2 0.25 Asset Turnover 10 0.25
Value (M) 10 0.25 Value-Profitability 10 0.25
Value-Momentum 1 0.23 Profitability 10 0.22
Industry Momentum 1 0.20 Asset Turnover 9 0.22
Industry Reversals 9 0.19 Sales/Price 10 0.20
Industry Momentum 2 0.19 Sales/Price 9 0.18
Momentum (6m) 3 0.18 Size 10 0.17
Idiosyncratic Volatility 2 -0.18 Value-Momentum-Profitability 1 -0.19
Industry Mom. Reversals -0.18 Profitability 2 -0.19
Value-Momentum 8 -0.20 Value-Profitability 1 -0.20
Momentum (6m) 10 -0.21 Profitability 4 -0.20
Value-Momentum 9 -0.23 Value-Profitability 2 -0.20
Value-Momentum 10 -0.23 Profitability 1 -0.23
Short-Term Reversals 1 -0.24 Idiosyncratic Volatility 1 -0.24
Industry-Momentum 10 -0.24 Profitability 3 -0.25
Industry Rel. Reversals 1 -0.28 Asset Turnover 2 -0.28
Idiosyncratic Volatility 1 -0.38 Asset Turnover 1 -0.35
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Empirical Results

Interpreting factors: Cumulative absolute proxy weights

RP-PCA Proxy PCA Proxy

Idiosyncratic Volatility 3.23 Idiosyncratic Volatility 2.35
Momentum (12m) 1.64 Momentum (12m) 1.47
Industry Mom. Reversals 1.56 Asset Turnover 1.11
Industry Rel. Reversals (L.V.) 1.50 Gross Profitability 1.09
Price 1.45 Industry Rel. Rev. (L.V.) 1.07
Momentum (6m) 1.44 Size 1.04
Value-Momentum 1.25 Industry Mom. Reversals 1.01
Size 1.09 Net Operating Assets 1.00
Industry Momentum 1.00 Momentum (6m) 0.99
Net Operating Assets 0.95 Price 0.92
Industry Rel. Reversals 0.88 Value-Momentum 0.86
Value (M) 0.75 Value-Profitability 0.82
Value-Momentum-Prof. 0.51 Value-Momentum-Prof. 0.80
Share Volume 0.46 Industry Momentum 0.73
Investment/Capital 0.41 Value (M) 0.67
Earnings/Price 0.40 Sales/Price 0.56
Short-Term Reversals 0.40 Dividend/Price 0.45

Table: Composition of proxy factors: Anomaly categories and the sum of
absolute values of the portfolio weights of the K = 6 proxy factors.
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Empirical Results

High-Frequency price data

Data

High-frequency factor analysis from Pelger (2017)

Time period: 2003 to 2012

Xi (t) is the log-return from the TAQ database

N between 500 and 600 firms from the S&P 500

5-min sampling: on average 250 days with 77 increments each

Estimator for number of factors indicate 4 latent factors

Create factors for continuous (normal) movements and for jumps
(rare large) movements

Question: What are the factors?
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Empirical Results

Identification of factors

Interpretation of continuous factors

Approach: Rotate and threshold

Non-zero elements are almost all in specific industries

4 economic candidate factors:

Market (equally weighted)
Oil and gas (40 equally weighted assets)
Banking and Insurance (60 equally weighted assets)
Electricity (24 equally weighted assets)
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Empirical Results

Main result: Interpretation of factors

4 continuous factors with industry continuous factors
1.00 0.98 0.95 0.80

4 jump factors with industry jump factors
0.99 0.75 0.29 0.05

4 continuous factors with Fama-French Carhart Factors
0.95 0.74 0.60 0.00

Table: Generalized correlations of first four largest statistical factors for
2007-2012 with economic factors

Element-wise generalized correlations close to 1 measure of how
many factors two sets have in common

Economic industry factors: Market, oil, finance, electricity

⇒ Jump structure different from continuous structure

⇒ Size, value, momentum do not explain factors
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Empirical Results

Interpretation of continuous factors

2007-2012 2007 2008 2009 2010 2011 2012

1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.98 0.98 0.97 0.99 0.97 0.98 0.93
0.95 0.91 0.95 0.95 0.93 0.94 0.90
0.80 0.87 0.78 0.75 0.75 0.80 0.76

Generalized correlation of market, oil, finance and energy factors with
first four largest statistical factors for 2007-2012

⇒ Stable continuous factor structure

⇒ Proximate factors approximate latent factors well
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Empirical Results

Interpretation of continuous factors

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.97 0.99 1.00 1.00 0.99 0.97 0.98 0.96 0.98 0.95
0.57 0.75 0.77 0.89 0.85 0.92 0.95 0.92 0.93 0.83
0.10 0.23 0.16 0.35 0.82 0.74 0.72 0.68 0.78 0.78

Generalized correlation of market, oil, finance and energy factors with
first four largest statistical factors for 2003-2012

⇒ Finance factor disappears in 2003-2006
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Conclusion

Conclusion

Methodology

Proximate factors (portfolios of a few assets) for latent population
factors (portfolios of all assets)

Simple thresholding estimator based on largest loadings

Proximate factors approximate population factors well without
sparsity assumption

Asymptotic probabilistic lower bound for (generalized) correlation

Future work: Sharpen bounds based on extreme value theory

⇒ Few observations summarize most of the information

Empirical Results

Good approximation to population factors with 5-10% portfolios

Interpretation of RP-PCA and high-frequency PCA factors
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Extreme Deciles

Anomaly Mean SD Sharpe-ratio Anomaly Mean SD Sharpe-ratio

Accruals - accrual 0.37 3.20 0.12 Momentum (12m) - mom12 1.28 6.91 0.19
Asset Turnover - aturnover 0.40 3.84 0.10 Momentum-Reversals - momrev 0.47 4.82 0.10
Cash Flows/Price - cfp 0.44 4.38 0.10 Net Operating Assets - noa 0.15 5.44 0.03
Composite Issuance - ciss 0.46 3.31 0.14 Price - price 0.03 6.82 0.00
Dividend/Price - divp 0.2 5.11 0.04 Gross Profitability - prof 0.36 3.41 0.11
Earnings/Price - ep 0.57 4.76 0.12 Return on Assets (A) - roaa 0.21 4.07 0.05
Gross Margins - gmargins 0.02 3.34 0.01 Return on Book Equity (A) - roea 0.08 4.40 0.02
Asset Growth - growth 0.33 3.46 0.10 Seasonality - season 0.81 3.94 0.21
Investment Growth - igrowth 0.37 2.69 0.14 Sales Growth - sgrowth 0.05 3.59 0.01
Industry Momentum - indmom 0.49 6.17 0.08 Share Volume - shvol 0.00 6.00 0.00
Industry Mom. Reversals - indmomrev 1.18 3.48 0.34 Size - size 0.29 4.81 0.06
Industry Rel. Reversals - indrrev 1.00 4.11 0.24 Sales/Price sp 0.53 4.26 0.13
Industry Rel. Rev. (L.V.) - indrrevlv 1.34 3.01 0.44 Short-Term Reversals - strev 0.36 5.27 0.07
Investment/Assets - inv 0.49 3.09 0.16 Value-Momentum - valmom 0.51 5.05 0.10
Investment/Capital - invcap 0.13 5.02 0.03 Value-Momentum-Prof. - valmomprof 0.84 4.85 0.17
Idiosyncratic Volatility - ivol 0.56 7.22 0.08 Value-Profitability - valprof 0.76 3.84 0.20
Leverage - lev 0.24 4.58 0.05 Value (A) - value 0.50 4.57 0.11
Long Run Reversals - lrrev 0.46 5.02 0.09 Value (M) - valuem 0.43 5.89 0.07
Momentum (6m) - mom 0.35 6.27 0.06

Table: Long-Short Portfolios of extreme deciles of 37 single-sorted
portfolios from 07/1963 to 12/2016: Mean, standard deviation and
Sharpe-ratio.
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