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Abstract

A nonparametric analysis of player plate appearances (PA) in the 2018 Major League
Baseball (MLB) season provides no evidence of a batter hot hand. Players with more
than 100 PAs in the 2018 season are analyzed using one-sided permutation tests strat-
ified by player. Based on recent literature, we use the correlation between lagged
on-base percentage (OBP)and a binary indicator of on-base performance. We discuss
the strengths and weaknesses of this test statistic as well as others in the literature.
A common criticism of no-hot-hand findings for individual players is low power, and
a frequently proposed remedy is pooling data across players. Through simulation, we
show that pooling data conflates long-term ability and recent performance. Another
common criticism of no-hot-hand findings is emphasis on recent performance. We show
that long lags, which de-emphasize recent performance, can lead to counter intuitive
results. In contrast to much of the recent literature, which uses parametric methods,
we argue that our nonparametric method is the most appropriate way to analyze the
existence of the hot hand in baseball as well as numerous other inference questions.

I never blame myself when I’'m not hitting. I just blame the bat and
if it keeps up, I change bats. After all, if I know it isn’t my fault that
I'm not hitting, how can I get mad at myself?

- Yogi Berra

1 Introduction

Streaks of hits and misses are familiar to everyone who plays or watches sports. Performance
seems to be dictated by magical streaky periods in which players appear to be "hot" or "cold."
Are we to believe in these streaky periods, or should we believe Yogi Berra that there is no
one to blame for strings of hits and misses, and they are especially not the fault of the players
themselves?



The hot hand in sports is the idea that a player who has recently been successful has
an elevated probability of success in the near future. The hot hand has been a hot topic
since Gilovitch, Vallone, and Tversky’s 1985 study [7| found no statistical evidence of a hot
hand in basketball. They argued that, perceptions notwithstanding, a basketball player’s
chance of making a shot showed no dependence on whether it followed a hit or a miss [7].
This classical study examined the difference in player i’s shooting percentage conditional on
having made the last k shots and missed the last k shots (with k = 1,2, 3):

P'(hit|k hits) — P’ (hit|k misses)

Paired t-tests indicate that there is no significant difference in the chance that a player makes
the next shot based on whether they missed or hit the last k shots.

The findings in the original study were widely debated, with many players and sports
enthusiasts refusing to believe that the hot hand did not exist. Thirty years after its pub-
lication, this study was found to contain a small sample bias that some argue led to the
incorrect conclusion [4]. There is no consensus on whether the hot hand exists or not in
basketball.

The original study and much of the literature since, including recent studies on baseball,
have largely focused on parametric models to test for the hot hand [3, 2|. These parametric
models rely on a significant p-value of the coefficient of interest (generally in a linear model)
to conclude that a hot hand exists. They usually control for a number of factors, such as
ballpark characteristics and ability of the pitcher.

In order to delve more deeply into the question of whether the hot hand exists in baseball,
we must clearly formulate our question. In analyzing whether the hot hand exists, researchers
tend to focus their attention on one of the following two questions:

1. Does a player perform better if they have performed well recently (e.g., in the last L
plate appearances or shots), outside of the effects of all other factors?

2. Does fan’s perception of the hot hand, players that have performed well recently will
continue to do so, exist?

The key difference in these questions is whether we think it is important to control for
all other factors when searching for the existence of the hot hand. We argue that most fans
and players perceiving a hot hand are not mentally adjusting for factors. Rather, they are
reacting to a streak. Generally, someone does not think, "LeBron James has been making
a higher number of shots then you would expect given the opposing team, level of defense,
arena, day of the week, etc." A more realistic formulation centers around a fan’s heart rate
increasing because LeBron James just made his tenth basket in a row. While question 1 is
interesting and has its own merits and challenges (e.g., it is difficult to take into account all
factors that could affect performance), for this paper we will consider question 2 because we
believe it is a more realistic formulation of the hot hand phenomenon.

In trying to sort out the hot hand issue outlined in question 2, some previous research
in basketball has considered a nonparametric approach stratified by player. For example, in
Daks, Desai and Goldberg (2018), strings of hits (1) and misses (0) were considered (e.g.,
“100101110”) for Steph Curry, Klay Thompson, and Kevin Durant. The proportion of “11”



followed by “1” minus the proportion of “00” followed by “1” was used as a test statistic in
a permutation test. This study found no evidence that the Golden State Warriors players
exhibited hot hands [1].

Relative to a parametric analysis, a nonparametric approach is based on fewer assump-
tions and is conceptually clearer. For example, the p-value of a permutation test is based on
the proportion of random shufflings of a variable that result in a test statistic larger than
or equal to the test statistic calculated on the actual data. The core assumption is that if
we believe that the shuffled variable does not make a difference, then we should be able to
scramble its realizations without significantly changing the test statistic.

While most researchers have not found evidence of the hot hand in baseball, those that
have found evidence have relied on data pooled across players rather than considering them
individually; see, for example, |2, 6]. While the motivation for pooling data in order to
increase statistical power is understandable, pooling data leads to a large type I error rate
and erroneous conclusions. We demonstrate this with a simple simulation.

In this paper, we adopt permutation tests, a nonparametric method, stratified by player,
to examine whether or not the hot hand exists in baseball. This analysis is inspired by Daks,
Desai and Goldberg’s 2018 study (although using a different test statistic) [1]. We illustrate
the benefits of a nonparametric approach over a parametric approach, demonstrate the perils
of pooling data, and compare various test statistics. Finally, we illustrate the potential use
of nonparametric analysis for a variety of inference questions in baseball.

2 Data and Methodology

2.1 Data

We used play by play Major League Baseball (MLB) data from all 30 teams in the 2018
season. The data is publicly available from Retrosheet.org. We analyzed all 447 players with
more than 100 plate appearances in the 2018 season. Table 1 gives summary statistics about
the OBP and number of PAs for the 2018 players included in the analysis.

Max Mean Minimum

OBP 0.460 0.315 0.162
PA 745 387 101

Table 1: Summary statistics about the 447 players from 2018 included in the analysis.

2.2 Defining the batter hot hand in baseball

As discussed in the introduction, we consider the following question:

Is a batter with a higher on base percentage (OBP) over the last L plate appear-
ances (PAs) more likely to get on base at their next PA?



OBP is approximately equal to the number of times on base divided by PAs. If the batter
hot hand exists, the answer to this question would be yes, higher OBPs over the last L PAs
should be positively correlated with whether the batter gets on base in the next PA. In order
to investigate this, we used permutation tests stratified by player and season.

The binary on-base vector OBy, has jth entry equal to 1 if player k got on base at the jth
PA and 0 if not. Following Green and Zwiebel (2018)[2], we define player state to be OBP
for the last L PAs, where the lag L can take on different values. Let statey; be the state of
player k just prior to plate appearance j,

1 &
statekj = Z Z OB]W,

i=j—L

and let state, denote the player k’s vector of states.

2.3 Test Statistic

Our test statistic T} is the correlation between OB, and statey:

Ty, = corr(O By, statey).

If there is a batter hot hand, we would expect higher state values to correlate with a
higher likelihood of reaching base. Thus, we would expect that a batter hot hand would lead
to larger test statistic values relative to random shufflings of player PAs. This test statistic
is similar to Green and Zwiebel (2018)’s use of the state coefficient, in the logistic regression
regressing on base indicator on state as well as other controls, as a measure of the batter hot
hand.

In Section 3 we consider other possible test statistics, autocorrelation and the test statistic
in the Gillovich et al. study [7], but find that T, has the highest power among the test
statistics we consider.

2.4 Permutation Tests

For each player in our data set, we ran a one-sided permutation test. The null hypothesis is
that state has no effect on outcome of the next PA.

If the null hypothesis is true, then shuffling the PAs, recalculating state, and calculating
the correlation between state and OB should lead to a correlation that is not too different
from our original value for player k. The p-value is the proportion of shufflings that result
in a correlation as large or larger than the correlation we observed.

Advantages of permutation tests over parametric methods are that permutation tests
make fewer assumptions, and those assumptions they do make are conceptually very clear.
For example, permutation tests do not make assumptions about the distributions from which
data are drawn. Instead, the p-value in a permutation test is derived from the assumption
that under the null hypothesis, you should be able to shuffle, for example, player PAs and
not see a large difference in the test statistic if the hot hand does not exist.

We must acknowledge and correct for the fact that we are running multiple hypothesis
tests, and some will show significance purely by chance. The same is true for running
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numerous regression models. Under the null hypothesis, we expect, for a significance level
a, that a fraction « of the tests will lead to a false rejection (i.e., an indication of a hot hand
when it is not there). In other words, if there is no hot hand, we expect nevertheless to see
significance at level « in a fraction « of the tests.

2.5 Choice of Lag

There is no clear choice for the lag L. Green and Zwiebel (2018) used lags of length 10, 25
and 40. In streaky data, counter-intuitive results can occur when the lag length is longer
than the streak length. We ran several simple simulations to illustrate potential issues with
certain lag lengths.

Consider a string of plate appearances composed of 24 1s followed by 24 0s followed by
24 1s and so on for the entire season. We would hope that our test would pick up on the
extreme streakiness in this sequence. However, a lag 25 results in a negative correlation
of -0.136 between OB and state. On the other hand, lag 10 and lag 5 result in positive
correlations. A rule of thumb is that our test statistic will miss a streak that is shorter than
the lag used to compute state.

For this reason, lags of length 10 or 5 seem more appropriate as they seem more likely to
pick up on a variety of streak lengths. In our hot hand analysis, we used values of 5, 10 and
25 for L to evaluate if results are sensitive to the length of history used to calculate state.

3 Type I Error and Power

Previous studies have pooled data across players to increase power in parametric tests for
the hot hand in baseball |2, 6]. But pooling data can lead to erroneous significant results. If
we do not pool data, however, we might be concerned about the ability of our permutation
tests to correctly identify a hot hand if it does exist. Simulations can give us a general sense
of the power of permutation tests in this setting.

3.1 Pooling Data

Pooling data can inflate the type I error rate. Consider, for example the simple simulation
where we generate 400 baseball players, each of which has a different OBP p evenly spaced
from .250 to .450. For each player, we generated on base indicators for 500 PAs from the
binomial distribution: Binom(500,p). There is no hot hand because data is generated at
random from this binomial distribution.

We follow the same set up as in Green and Zwiebel (2018) [2]. Ability is defined as
the OBP of a player outside of the 50 PAs before and after the current PA. If we regress
the current plate appearance on state (as defined in the previous section with L = 25) and
ability, we would hope that state would not be significant because there is no hot hand in this
simulation. However, over 1000 simulations, we find that 99% of the time, state is significant
(at the 0.05 level). In other words, the type I error rate (or false positive rate) is 99%.

The source of the significance is differences in player OBP and not a hot hand. How-
ever, the linear regression conflates differences in OBP with differences in state, even when



we account for an ability variable. We must be cautious about drawing conclusions from
regressions that pool data across players with varied abilities.

3.2 Power

Since we are concerned with the hot hand at the player level, and since pooling data can
lead to high type I error, it makes sense to consider tests for streakiness at the player level.
However, previous research has expressed concern about the potential loss of power due to
the smaller sample size when considering players individually rather than in aggregate [2, 6].

Before we run permutation tests that are stratified by player, we investigate and address
power concerns. There is no closed form formula for power in permutation tests. However we
can use simulation to assess power is in various situations. There are lots of ways that binary
sequences can deviate from random. We consider two different ways of creating correlated
binary strings and evaluate the power of our stratified permutation tests in each.

3.2.1 Autocorrelated Binary Strings

There is no precise level of autocorrelation in a binary string that corresponds to a hot hand,
the two concepts are loosely connected. By generating binary strings with different levels
of autocorrelation, we can get a better sense of what level of autocorrelation our method is
able to detect.

We simulate correlated binary variables with specified marginal means and correlations.
Then, we calculate the probability that we can detect a hot hand (with lag equal to 5,
10 and 25), as characterized by correlation between state and on base performance, using
a permutation test. We simulate binary variables Yi,...,Y,) with correlation p using the
conditional linear family method as outlined in [5]:

1. Generate Y; ~ Bern(p)

2. Generate Ys, ..., Y, each with mean E(Y;|Y;_1) = p+ p(y;—1 — p)

We set p = 0.318, the average OBP for the 2018 MLB season (for all players), and
n = 500. We consider several different values of the correlation, p, which gives us an idea of
what the power (for significance level 0.05) would be for our permutation tests with lag 5, 10
and 25. Results are reported in Table 2. Power is smallest for L = 25 and largest for L = 5.
Both L = 5,10 have fairly reasonable power for autocorrelation greater than or equal to 0.4.

3.2.2 Markov Model

Next, we consider a two-state Markov model with transition probability 0.05. The two states
are hot and cold. We consider hot OBP /cold OBP of 0.6/0.2, 0.55/0.25 and 0.5/0.3. When
a player is in a hot (cold) state whether he makes it on base will be a Bernoulli draw with
probability equal to the hot (cold) OBP. According to this model we generate binary strings
of length 500 and over 1000 simulations calculate the proportion of time that our permutation
test methodology with various test statistics will detect a hot hand.



Lag p
02 04 06
5 0635 0991 1

10 0.343 0.841 0.994
25  0.139 0.478 0.761

Table 2: Power (significance level is 0.05) over 1000 simulations for permutation tests de-
fined in section 2 for various lag lengths and correlated binary variables with correlation p.
Marginal mean is set to 0.318 and n is set to 500.

Test Statistic Hot/Cold OBP
0.6/0.2 0.55/0.25 0.5/0.3
Lag 5 Correlation 1 0.88 0.32
Lag 10 Correlation 0.99 0.85 0.34
Autocorrelation 0.9 0.51 0.18

Gilovich et al. Statistic  0.97 0.65 0.23

Table 3: Power (significance level is 0.05) over 1000 simulations for four different test statis-
tics for a two-state markov chain with transition probability 0.05 and various hot/cold OBPs.
Binary strings of length 500 were generated.

The results in Table 3 show that in our two-state Markov model simulations, power
dropped off steeply as the difference between hot and cold states gets smaller. The Lag 5
and 10 correlation test statistics perform the best.

Results from both of our power simulations indicate that smaller lags have higher power.
Therefore, we believe that lag 5 and 10 are more reasonable lags to consider in our tests.
Not only can larger lags such as 25 and 40 produce counter-intuitive results, but larger lags
also appear to have lower power.

4 Hot Hand Results

We found no evidence of a hot hand in the 2018 MLB season. Table 4 shows the proportion
of player p-values that were significant at level o for a equal to 0.05 and 0.1, with state
calculated using lags 5, 10 and 25. Under the null hypothesis that there is no streakiness:
we would expect the proportion of p-values that are significant at level a to be close to a.

Figure 1 shows CDFs for player p-values from the permutation tests with state calculated
using lags 5, 10 and 25. Under the null hypothesis that there is no streakiness, we expect
the CDF to look similar to the uniform distribution.

Our results are in line with what we would expect for the type I error rate, if there
were no hot hand. Results from the 2012 season (see Appendix A) show similar results.
Our analysis yields no evidence of the batter hot hand in baseball. Other permutation test



Q Lag
5 10 25

0.05 0.087 0.067 0.076
0.01 0.018 0.020 0.025

Table 4: Proportion of p-values for player permutation tests significant at level « for state
calculated with various lag lengths.
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Figure 1: CDFs for player p-values for permutation tests with L = 5, 10 and 25

statistics, such as autocorrelation and the state coefficient in a linear regression, also show
similar results.

5 Other Nonparametric Formulations of the Hot Hand
in Baseball

In the previous section, we looked for streakiness in strings of player plate appearances with
no attention to clustering by game. In this section, we consider other formulations of the
hot hand in baseball, and we analyze them with non-parametric methods.

To analyze streakiness at the game level, we formulate the hot hand as whether a player
exhibits cross-game streakiness. In other words, do games in which a batter has above average
performance cluster? This clustering is a necessary (but perhaps not sufficient) condition
for cross-game hot hand. There are challenges to this formulation. For example, the game
OBPs will be very noisy due to the relatively small number of plate appearances in a game.
However, it will give us a sense of whether a player exhibits cross-game streakiness or not.

Consider, for example, Mike Trout’s 2019 season. His OBP for the 2019 was 0.438, and



we calculate his OBP for each game. For his plate appearances in a game, we calculate the
proportions of hits (H), walks (BB) and hits by pitch (HBP, Trout’s game OBP). We then
create an indicator variable, called above average indicator, that is 1 when the game OBP is
above his season average and 0 when it is below his season average. If Trout were to exhibit
streaky playing, we would expect that the autocorrelation of his above average indicator to
be high relative to random shufflings of his game OBPs.

We run a permutation test in order to evaluate this claim. We randomly shuffle the game
level OBP and calculate the autocorrelation of the above average indicator. The p-value is
the proportion of random shuffles or permutations that have autocorrelation greater than
or equal to the observed autocorrelation. The p-value is 0.743, providing no evidence that
above and below average OBP games are clustered together.

Mike Trout 2019: Hot or Not?
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Figure 2: Game OBP for Mike Trout’s 2019 season

From Figure 2, it is clear that there are many game OBPs that are close to his season
average. It is not necessarily true that a streak of 0.5 game OBPs would feel like a hot hand
to a fan. However, since we observe an insignificant p-value, there is no reason to believe
that even that level of streakiness exists.

6 Other Applications of Nonparametric Analysis in Base-
ball

Permutation tests are the ideal methodology for many inference questions in baseball. Since
permutation tests are nonparametric, they make minimal assumptions about the data, as
opposed to parametric methods such as linear or logistic regression, which make numerous
assumptions. In this section, we sketch examples of other uses of permutation tests to answer
inference questions in baseball.

Suppose we want to evaluate the dependence of a batter’s OBP on the number of outs
prior to plate appearance. Consider Mike Trout’s 2019 season as an example.

If the number of outs do not make a difference in the likelihood that Trout will get on
base or not, then we should be able to shuffle the columns that indicates the number of



Outs 0 1 2

OBP .430 .449 .431
PA 200 247 153

Table 5: Mike Trout’s OBP and PA based on number of outs for the 2019 season.

outs for a PA and not see much of a difference. Using a chi-squared test statistic in the
permutation test, we get a p-value of 0.90. There is no evidence that Trout’s OBP depends
on the number of outs at the time of his plate appearance.

We use similar analysis to evaluate whether Trout’s OBP is significantly different for
home versus away games. In 2019 Trout had an OBP of .450 for home games (280 PA) and
428 for away games (320 PA). Running a permutation test with difference in OBP between
home and away games as the test statistic yields a p-value of 0.326. There is no evidence of
a significant difference between Trout’s 2019 OBP at home versus away games.

A similar method could be used to evaluate whether OBP (or any other statistic) varies
depending on whether or not it is a clutch situation.

7 Conclusion

Nonparametric tests of player on base performance showed no evidence of the hot hand
phenomenon, despite its perception by sports enthusiasts. We ran permutation tests on all
MLB players with more than 100 plate appearances in the 2018 season. We used lags of 5,
10 and 25 plate appearance to determine hot and cold states, and we asked whether these
states were correlated with the subsequent plate appearance. The proportion of tests that
were significant aligned with the type I error rate, providing no evidence that the hot hand
as formulated exists.

Crucially, the permutation tests are stratified by player, so the results are not corrupted
by the conflation of state and ability, which plagued the results in Green and Zwiebel 2018
[2]. Through simulation, we show that if there is no hot hand but players with varying OBP
are pooled together then linear regression will reveal a hot hand effect when there is not one.
Since permutation tests stratified by player adequately control for the type I error rate at
the cost of statistical power. It is clear that this is the proper tradeoff.

In general, nonparametric tests are the ideal methodology for answering many inference
questions in baseball because they rely on relatively few assumptions, and the assumptions
they do make are conceptually very clear. If we believe that a factor should not make a
difference in outcome, then we should be able to shuffle the realizations of that factor and
not see much difference in our chosen test statistic. There are no assumptions about the
distribution of our data which could lead to erroneous results. We advocate for the use of
permutation tests for inference questions in baseball.
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A Appendix

A.1 2012 Results
We also ran our permutation test analysis on players with more than 100 plate appearances
in the 2012 season (459 players). Our results are in line with our 2018 results: we find no

evidence of a batter hot hand.

2012 p-values
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Figure 3: CDFs for player p-values for permutation tests for lags L = 5,10, 25 for the 2012
season

o} Lag
5 10 25

0.05 0.052 0.059 0.059
0.01 0.009 0.004 0.002

Table 6: Proportion of p-values for player permutation tests significant at level o for state

calculated with various lag lengths for all players with more than 100 PAs in the 2012 MLB
season.
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