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Abstract

We consider a firm facing random demand at the end of a single period of random
length. At any time during the period, the firm can either increase or decrease inventory
by buying or selling on a spot market where price fluctuates randomly over time, and
the revenue the firm gets by meeting demand at the end of the period is a function of
the spot market price at that time. We first demonstrate that this control problem is
equivalent to a singular control problem of higher dimensions. We then use this insight
combined with a novel control-theoretic approach to show that the optimal policy is
completely characterized by a simple price-dependent two threshold policy. In a series
of computational experiments, we explore the value of actively managing inventory
during the period rather than making a purchase decision at the start of the period,
and then waiting for demand.
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1 Introduction

Spot market supply purchases are increasingly considered an important operational tool

for firms facing the risk of higher than anticipated demand for goods (see, e.g., [29] and

the references therein). For example, Hewlett-Packard manages the risks associated with

electronic component procurement by utilizing a portfolio of long term and option contracts

to cover likely demand, and procurement on the spot market if demand is higher than

expected [5]. Indeed, there has been a recent stream of research focusing on determining an

optimal mix of long term fixed commitment and options procurement contracts, given that

after demand is realized, firms can if necessary procure on the spot market to meet demand.

In these models, the spot market is typically employed if supply requirements exceed the

contracted amount of the fixed commitment contract (or if the spot price happens to be

lower than the exercise price of the procurement options).

In this paper, we argue that if effectively utilized, the spot market can be used to hedge

against much more than just excess demand. In many cases, the spot market can be a

powerful tool for hedging against both supply cost uncertainty and demand price uncertainty

in the supply chain, even without an accompanying portfolio of supply contracts. To explore

this concept, we develop a stylized model of a firm that has a random period of time to

increase or decrease inventory by purchasing or selling on the spot market before facing a

single demand of random magnitude, the revenue of which is a function of the spot market

price at the time that the demand is realized. We demonstrate that in many cases, the firm

can use purchases and sales on the supply spot market both to guard against low prices for

its products, and high prices for the components that go into its products.

1.1 Literature Review and Our Work

There is a long history of research focusing on inventory strategies when the cost of the

inventory is random, typically with the objective of minimizing inventory cost. Various

researchers ([20],[27],[8],[7]), for example, considered versions of periodic review models where

component costs (and sometimes other problem parameters) are Markov-modulated, usually

demonstrating the optimality of state dependent basestock or (s,S) policies. Another stream

of literature modeled deterministic demand and characterized optimal policies, either in a

periodic model with random raw material prices([15],[4]), increasing ([12]), or decreasing

([33]) prices, or with one or two different levels of constant continuous time demand and

occasional supply price discounts ([25],[13],[6]).

Finally, a growing stream of research considers the impact of a spot market on supply

chain operations. [17] divided this work into two sets, one having to do with contract

valuation (see references in [17]), and another with optimal procurement from the spot
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market. This category of work can be further subdivided into single and multi-period models.

[28] considered a single period model where a supply contract is signed at the start of the

period, demand is realized, and then the buyer can either make purchases on the spot market

to meet demand, or salvage excess inventory. Optimal purchasing quantities were determined

for this setting. [1] considered a similar setting, and focused on reserving an appropriate

capacity level to meet demand. [34] studied a single period optimal procurement contract

model in the presence of a spot market, and [14] considered a single period model designed

to determine how the spot market impacts supply chain coordination. [11] investigated a

single period model in which the firm must first select from a set of supply contracts, and

then random demand is realized and the firm must meet that demand by utilizing either

supply contracts or the spot market. Optimal contract selection and utilization policies were

characterized. In [21], deterministic demand must be met after a deterministic time period,

but the firm has a contract to procure supply on the spot market at some point before

demand is realized, where spot market price is a continuous random process. The optimal

purchase time was derived numerically. [35] considered a discrete time multi-period model

in which the firm can either buy at a fixed price from a long-term supplier or buy from a

spot market incurring variable purchasing cost and a fixed cost of using the spot market,

and characterized the optimal purchasing policy. In [9], an optimal long term contract

was compared to utilizing the spot market for a series of periods, where each period was

essentially an independent news-vendor problem. [23] proposed a multi-period model in

which a portfolio of supply contracts must be selected at the start of the horizon, and then

in each period after demand is realized and the spot market price is observed, the decision

to utilized contracts or buy on the spot market to meet demand must be made.

Other than the few exceptions noted above, these papers modeled the spot market with

a single spot market price or a discretely realized series of spot market prices, and typically

allowed one opportunity to buy or sell on the spot market following each demand realiza-

tion. In contrast, we consider a continuous time model of spot market price evolution, and

determine how the firm can buy and sell in the spot market repeatedly in order to guard

against both supply cost uncertainty and demand price uncertainty.

In our work, we model the inventory level of the firm, Yt, at time t with a pair of controls

(ξ+
t , ξ−t ) so that Yt = Y0 + ξ+

t − ξ−t . Here ξ+
t and ξ−t are non-decreasing processes and

represent respectively the total accumulated inventory ordered and sold by time t starting

from time 0. We assume that the price of each unit of inventory is stochastic and is a

Brownian motion process as in [17] and [21]. We also assume that the time until the (single)

demand arrives, as well as the amount of that demand, is random. The revenue associated

with the demand is assumed to be a function of the amount of that demand and the spot

market price at the time when the demand arrives. In addition to the running holding cost,
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there are costs whenever an inventory level is increased or decreased by selling or buying

at the spot market: adjustment cost is a function of the spot price and the amount of the

adjustment, plus possibly a transaction cost. The cost could be negative when selling the

inventory representing a savage value for the inventory. Subject to the cost structure, the

goal is to maximize the expected discounted profit. To facilitate the analysis, we assume no

fixed cost and focus on explicitly characterizing the optimal policy.

In particular, we show that the optimal inventory policy depends both on the spot price

and inventory level, and that it is in principle a simple and continuous (F, G) policy. Given

a spot price p and inventory level z, if (p, z) falls between (F (z), G(z)), no action is taken; if

(p, z) falls above F (z) (below G(z)), the inventory level is reduced to F (z) (raised to G(z)).

Our technique is closely related to a stream of research ([3, 2, 10, 18, 19, 32, 31, 26])

focusing on continuous time inventory models via impulse controls (i.e. with a fixed cost)

or singular controls (i.e. without a fixed cost) formulation. Most of these papers (with the

exception of [2] where the demand process is Poisson) considered a one product inventory

model where the inventory level is a controlled Brownian motion. That is, the inventory level

without intervention is a Brownian motion, and the continuous adjustment of the inventory

level is additive to the Brownian motion and incurs a linear cost (plus a possible fixed cost).

Subject to an additional holding cost and shortage penalty, the objective in these papers

was either to minimize the expected discounted cost or the average cost ([3, 26]) over an

infinite time horizon. Except for [32, 26], most of the models assumed little constraints on

the inventory level besides restricting it to the positive real line. Assuming a fixed cost,

[10] proved the existence of an optimal (d,D, U, u) policy for this system: do nothing when

inventory is in the region of (d, u), and adjust the inventory level to D (or U) whenever the

inventory level falls to d (or rises to u). This optimal policy and the solution structure were

more explicitly characterized under various scenarios in [18, 19, 32, 31, 26].

The main contribution of our paper is best discussed in light of several crucial elements

underlying all previous control-theoretic inventory analysis. Firstly, the price of the inventory

was assumed to be constant so that the cost of the inventory control would be linear. Sec-

ondly, the inventory control was additive to a Brownian motion, and as a result the inventory

level was either unconstrained on the positive real line or an infinite penalty cost was needed

to ensure an upper bound on the inventory level ([32, 26]). These two characteristics ensured

that the control problem was one-dimensional and facilitated the analysis of the value func-

tion. The solution approach was to apply the Dynamic Programming principle and solve

some form of Hamilton-Jacobi-Bellman equations or Quasi-Variational-Inequalities, with a

priori assumptions on the regularity conditions. In contrast, in our model the adjustment

cost is no longer linear and depends on the spot price, the transaction cost, and the amount

of adjustment; the inventory control variable is modeled directly, and is no longer necessarily
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additive to the underlying Brownian motion process. Thus, constraints on the inventory level

are modeled directly by the minimum and maximum capacity of the inventory, and can be

easily extended to more detailed constrained inventory levels without further technical diffi-

culty. In essence, the introduction of price dynamics leads to a higher dimensional singular

control problem for which previous analysis cannot be directly generalized. The derivation in

this paper is thus based on a new solution approach, which allows us to bypass the (possible)

non-regularity of the value functions. The key idea is to break down the two-dimensional

control problem by “slicing” it into pieces of one-dimensional problems, each of which is an

explicitly solvable two-state switching problem, and to show that this re-parametrization is

valid by the notion of “consistency” established in [16].

In the next section, we formally introduce our model. In Section 3, we develop explicit

analytical expressions for the optimal policy for this model. In Section 4, we computationally

explore the implications of our results.

2 Model and Preliminary Analysis

2.1 The Model

We consider a firm that purchases supply from a spot market in which the price of the

supply component fluctuates over time. At a random time τ , the firm faces a random

customer demand D. The firm meets demand if possible and charges with an exogenous

price which is a function of the spot market price, and then salvages any excess inventory.

At any time t ∈ [0, τ), the firm can instantaneously increase inventory (up to some upper

bound on capacity b < ∞) or instantaneously decrease inventory down to some lower bound

on inventory a ≥ 0. However, the firm cannot buy inventory to satisfy demand at time τ ,

and the firm can only buy inventory a finite number of times in a finite interval. Net gain at

time τ is from selling inventory to arriving customers and liquidating excess inventory, if any,

as well as any additional penalty associated with not meeting demand, and thus is a function

of the selling price and the inventory level at time τ , and the demand distribution. Moreover,

at any time t ∈ [0, τ), inventory increase is associated with the purchase price of per unit

at the supply spot market price (Pt), plus possibly additional proportional transaction cost

(K+). Similarly, inventory reduction is associated with the spot market price Pt, minus

possibly additional proportional transaction cost (K−). Finally, there is a running holding

cost for each unit of inventory (Ch).

To capture these scenarios in mathematical terms, we start with probability space (Ω,F ,P),

and assume that the arrival time of the request, τ , is exponentially distribution with rate

λ (so that the average arrival time is 1/λ). D, the amount of commodity demanded at

time is described by a distribution function FD. Meanwhile, the spot market price (Pt)t≥0 is
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stochastic and its dynamics are governed by a geometric Brownian motion such that 1

dPt = Pt(µdt +
√

2σdWt), P0 = p. (1)

Here Wt is the standard Brownian motion on the probability space (Ω,F ,P), and µ and σ

represent respectively the expected spot market price appreciation and the potential price

risk. We express the net gain at request time τ by H(Yτ , D)Pτ , where H(Yτ , D) represents

the revenue multiplier associated with selling each unit of the inventory, as well as a possible

penalty associated with each unit of unmet demand. Specifically,

H(y, D) = α min(D, y) + αo(y −D)+ − αu(D − y)+, (2)

where α ≥ 1 is the earning price multiplier for each unit of met demand, αu ≥ 0 is the

penalty price multiplier for each unit the firm is short, and 0 ≤ αo ≤ 1 is the fraction of

price the firm is able to get by salvaging excess inventory.

To define admissible inventory policies, we specify the filtration F representing the in-

formation on which inventory decisions are based. Given λ and the distribution of D, it

is clear that F = (Ft)t≥0 is the filtration generated by Pt. Given F, we define a pair of

left-continuous with right limit, adapted, and non-decreasing processes ξ+
t and ξ−t to be the

cumulative increases and decreases in supply inventory (purchases and sales, respectively)

up to time t. Therefore, Yt, the inventory level at time t ∈ [0, τ), is given by

Yt = y + ξ+
t − ξ−t , (3)

where y is the initial inventory amount.

To be consistent with the restriction that the firm can only purchase supply inventory

on the spot market a finite number of times in a finite interval, Yt is finite variation pro-

cess. Meanwhile, for uniqueness of expression (3), (ξ+, ξ−) are supported on disjoint sets.

Furthermore, ξ+ and ξ− are adapted to F implying that the firm is not clairvoyant. Y is

left-continuous, capturing the restriction that the commodity cannot be purchased at time τ

to satisfy demand. Also, note that given the upper and lower bounds on capacity discussed

above, there exists 0 ≤ a < b < ∞ such that an admissible control policy must satisfy

Yt ∈ [a, b] for all t ≤ τ . Finally, we assume E
[∫∞

0
e−ρtdξ+

t +
∫∞

0
e−ρtdξ−t

]
< ∞.

To account for the time value between [0, τ ], we define r ≥ 0 to be a discount rate. Thus,

at time t ∈ [0, τ), increases in the inventory incur a cost −e−rt(Pt+K+)dξ+
t , and decreases in

the inventory generate revenue e−rt(Pt −K−)dξ−t . In addition, assuming a running holding

cost Ch for each unit of inventory, the holding cost between (t, t + dt) ⊂ [0, τ) is e−rtChYtdt.

1The extra term
√

2 is for notational convenience in the main text.
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Given the model outlined above and any admissible control policy (ξ+, ξ−), the expected

return to the firm is:

J(p, y; ξ+, ξ−) = payoff at transaction time τ − running holding cost between [0, τ ]

− cost of inventory control (via buying and selling) between [0, τ ]

= E
[
e−rτH(Yτ , D)Pτ −

∫ τ

0

e−rtChYtdt

−
∫ τ

0

e−rt(Pt + K+)dξ+
t +

∫ τ

0

e−rt(Pt −K−)dξ−t

]
.

The firm’s goal is to manage inventory in order to maximize the expected discounted

value of over all possible admissible control policy (ξ+, ξ−). Therefore, the optimization

problem for the firm is

W (p, y) = sup
(ξ+,ξ−)∈Ay

J(p, y; ξ+, ξ−). (4)

subject to

Yt := y + ξ+
t − ξ−t ∈ [a, b], y ∈ [a, b],

dPt := µPtdt +
√

2σPtdWt, P0 := p > 0,

Ch ∈ R, K+ + K− > 0; (5)

and the supremum is over the set of admissible strategies

Ay :=
{
(ξ+, ξ−) : ξ± are left continuous, non-decreasing processes,

y + ξ+
t − ξ−t ∈ [a, b], ξ±0 = 0;

E
[∫ ∞

0

e−ρtdξ+
t +

∫ ∞

0

e−ρtdξ−t

]
< ∞.} (6)

2.2 Preliminary Analysis

Assuming that τ is independent of F and D is independent of both τ and F, this one period

optimization problem is in fact equivalent to the following singular control problem over an

infinite time horizon. This equivalence is based on a simple conditioning argument.

That is,

Proposition 2.1.

W (p, y) = −(Ch + p)y + V (p, y).

Here,

V (p, y) = sup
(ξ+,ξ−)∈Ay

J̃(p, y; ξ+, ξ−). (7)
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with

J̃(p, y; ξ+, ξ−) = E
[∫ ∞

0

e−(r+λ)tH̃(Yt)Ptdt− (K+ + Ch)

∫ ∞

0

e−(r+λ)tdξ+
t

−(K− − Ch)

∫ ∞

0

e−(r+λ)tdξ−t ,

]
, (8)

subject to Eqn. (5) with

H̃(y) = λE[H(y, D)]− (r + λ− µ)y

= (α + αu − αo)

[
y(1− FD(y))−

∫ ∞

y

zfD(z)dz

]

+(α− αo)E[D] + (α + µ− r − λ)y. (9)

In order to keep the discounted value of pτ finite, we assume throughout the paper that

r + λ < µ, which ensures the finiteness of the value function.

Proposition 2.2. (Finiteness of Value Function) If r + λ > µ, V (p, y) ≤ ηMx + b − a,

where M = supy∈[a,b] |H(y)| < ∞.

Proof. Let x > 0 and y ∈ [a, b] be given. Since λ + r > µ we have

E
[∫ ∞

0

e−ρt[H(Yt)Pt]dt

]
≤ E

[∫ ∞

0

e−ρt[MPt]dt

]
≤ ηMx.

Note that for any given (ξ+, ξ−) ∈ Ay, a− y ≤ ξ+
t − ξ−t ≤ b− y. From integration by parts,

for any t > 0,

−
∫

[0,T )

e−ρtdξ+
t ≤ −

∫

[0,T )

e−ρtdξ−t + (y − a).

Which, together with K+ + K− > 0 and K+ > 0, implies

E
[
−(K+ + Ch)

∫ ∞

0

e−ρtdξ+
t − (K− − Ch)

∫ ∞

0

e−ρtdξ−t

]

≤ (y − a)− (K+ + K−)E
[∫ ∞

0

e−ρtdξ−t

]
≤ b− a.

Since these bounds are independent of the control, we have

V (p, y) ≤ ηMp + b− a < ∞.

Note that this optimization problem is a generalization of singular control problems

studied extensively in [18]. Here, we incorporate the dynamics of the price process, and
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thus the singular control is two-dimensional in that the state space is (p, y). Intuitively, the

function H̃(·) captures ultimate potential benefit of carrying inventory over time.

Moreover, to avoid an arbitrage opportunity in the market, we assume that K++K− > 0,

and in addition, we can assume without loss of generality that K+ > 0, and consider only

bounded inventory level. Thus, throughout the paper, we make the following assumptions:

Standing Assumption

• ρ := r + λ > µ.

• K+ + K− > 0, K+ > 0.

• [a, b] is bounded.

To simplify subsequent notation, we define the following:

• η = 1
ρ−µ

• m < 0 < n, and n,m =
−(b−σ2)±

√
(b−σ2)2+4σ2r

2σ2 .

3 Derivation and Main Results

Next, we explicitly derive V (p, y) and the corresponding optimal control policy.

Let us start with some intuition, and follow the traditional dynamic programming ap-

proach (see, e.g., [10] or [18]). The optimization problem has the state space {p, z}. Given

any price p and the inventory level z at time 0, there are three options: do nothing; increase

the inventory by purchasing on the spot market; or reduce the inventory by selling on the

spot market.

If a quantity is purchased on the spot market, the inventory level jumps from z to z + η,

thus the value function is at least as good as choosing over all possible jump size η. That is,

V (p, z) ≥ sup
η

(−(K+ + Ch)η + V (p, z + η)),

leading to Vy(p, y) ≤ K+ +Ch (where Vy(·, ·) indicates the derivative of the value function V

with respect to y). Similarly we see Vy(p, y) ≥ −K+ + Ch. Meanwhile, if no action is taken

between time 0 and an infinitesimal amount of time dt, then expressing the value function

at time 0 in terms of the value function at time dt though dynamic programming and Ito’s
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lemma (as in [10]) yields σ2p2Vpp(p, y) + µpVp(p, y) − rV (p, y) + H̃(p, y) ≤ 0. Combining

these observations, we get the following (quasi)-Variational Inequalities

max{σ2p2Vpp(p, y) + µpVp(p, y)− rV (p, y) + H̃(p, y),

Vy(p, y)−K+ − Ch,−Vy(p, y)−K− + Ch} = 0. (10)

That is, the optimal policy (if it exists) can be characterized by explicitly finding the action

and continuation regions where





S0 (Inventory increase) = {(p, y) : Vy(p, y) = −K− + Ch},
S1 (Inventory decresse) = {(p, y) : Vy(p, y) = K+ + Ch},
C (No action) = {(p, y) : Vy−(p, y) > −K− + Ch, Vy+(p, y) < K+ + Ch,

σ2p2Vpp(p, y) + µpVp(p, y)− rV (p, y) + H̃(p, y) = 0}.

Taking this intuition one step further, one would expect a state-dependent two-threshold

policy, where inventory is lowered if it is above the upper threshold, and increased if it

is below the lower threshold (see, e.g, [10]). The thresholds are state dependent due to

the dynamic model for Pt. That is, we would expect a downsizing region for inventory:

{(p, z) : p ≥ G(z)}, an ordering region: {(p, z) : p ≤ F (z)}, and a (continuation) no-action

region: {(p, z) : F (z) < p < G(z)}.
However, in order to formalize this intuition to a complete characterization of the optimal

policy and the value function, one in general would assume a priori smoothness for the value

function and the boundary to solve the QVI. Unfortunately, the regularity conditions for

this two-dimensional control problem do not hold in general. (See counter-examples in [16]).

Indeed, as we shall see in our analysis, the value function may not be C1 in p (although it is

C1 in y) and F, G may not be continuous.

Thus, instead of solving the QVI directly, we adopt a different approach by translating

the singular control problem into a switching control problem, following [16]. The key idea

is that by fixing each level z0, we effectively will be solving for the F (z0), G(z0) policy by

solving a one-dimensional switching control problem. The switching control problem is a

two-state switching problem, where switching from 0 to 1 corresponds to inventory increases

and switching from 1 to 0 represents inventory reduction. In order for this approach to work

for all z, meaning we can break down the two-dimensional control problem by slicing it into

pieces of one-dimensional problem, we need to make sure the resulting control policies at

different levels of z are “consistent”. Intuitively, this consistency requires that for a given

price p at level z0, if it is optimal to reduce the inventory level, then it is also optimal to

reduce the inventory level given the same p and a higher level z(> z0).
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3.1 Derivation of V (p, y)

First, we establish the following results by direct computation.

Lemma 3.1. H̃(y) is concave y for ANY distribution of FD with finite expectation. In

particular,

H̃(t, y2)− H̃(t, y1) =

∫ y2

y1

h̃(z)dz

with h̃(y) decreasing in y, and

h̃(y) := λ[(α + αu − αo)[1− FD(y)] + αo + µ− ρ. (11)

Furthermore, for any z ∈ [a, b],

E
[∫ ∞

0

|eρtH̃(Yt)Pt|dt < ∞
]

, E
[∫ ∞

0

|eρth̃(Yt)|dt < ∞
]

.

It is worth mentioning that h̃(y), the derivative of the modified revenue multiplier func-

tion, intuitively represents the impact on business of increasing or decreasing inventory levels.

We shall see that this h̃(·) is a key quantity for characterizing optimal policies.

This lemma enables us to proceed as established in [16].

Step 1. Consider a corresponding switching control problem between two regimes 0 and 1:

for a given inventory level z, switching from state 0 to 1 corresponds to inventory increase

and switching from state 1 to 0 corresponds to inventory decrease. The cost for inventory

change is given by K++Ch and −K−+Ch, and the benefit of being at state 1 is accumulated

at rate h̃(y). Then, when there exists an consistent collection of switching controls so that

the resulting singular controls are integrable, then we have

V (p, y) = ηH̃(a)p +

∫ b

y

v0(p, z)dz +

∫ y

a

v1(p, z)dz.

where v0 and v1 are the corresponding value functions for switching controls which can be

described analytically as follows:

Proposition 3.2. v0 and v1 are the unique C1 viscosity solutions with linear growth condition

to the following system of variational inequalities:

min
{−Lv0(p, z), v0(p, z)− v1(p, z) + K+ + Ch

}
= 0, (12)

min
{
−Lv1(p, z)− h̃(p, z), v1(p, z)− v0(p, z) + K− − Ch

}
= 0, (13)

with boundary conditions v0(0
+, z) = 0 and v1(0

+, z) = max{−K− + Ch, 0}. Here L is the

generator of the diffusion Xx, killed at rate ρ, given by Lu(x, z) = σ2uxx(x, z) + µux(x, z)−
ρu(x, z).
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Step 2: Derivation of v0, v1.

To solve for v0, v1, we see by modifying the argument in [22, Theorem 3.1] that for any

given z ∈ [a, b] and k ∈ {0, 1}, an optimal switching control exists and can be described in

terms of switching regions: there exist 0 < F (z) < G(z) < ∞ such that it is optimal to switch

from regime 0 to regime 1 (to increase the inventory at level z) when Pt ∈ [G(z),∞), and

to switch from regime 1 to regime 0 (decrease the inventory at level z) when Pt ∈ [0, F (z)].

Furthermore, based on [22, Theorem 4.2], we see that for each z ∈ [a, b], the switching regions

are described in terms of F (z) and G(z), which take values in (0,∞]. By the regularity of

the value functions, F (z) and G(z) can be explicitly derived as follows.

Case I: K− − Ch ≥ 0. First, for each z ∈ (a, b) such that h̃(z) = 0, it is never optimal

to do anything, so we take F (z) = ∞ = G(z), and v0(x, z) = 0 = v1(x, z).

Secondly, for z such that h̃(z) > 0, G(z) < ∞ and it is optimal to switch from regime 0

to regime 1 (to increase the inventory at level z) when Pt ∈ [G(z),∞). Since K− − Ch ≥ 0,

it is never optimal to switch from regime 1 to regime 0 (i.e. F (z) = ∞). Furthermore, we

have

v0(x, z) =

{
A(z)pn, x < G(z),

ηh(z)x− (K+ + Ch), x ≥ G(z),

v1(x, z) = ηh(z)x.

Since v0 is C1 at G(z), we get

{
A(z)G(z)n = ηh(z)G(z)− (K+ + Ch),

nA(z)G(z)n−1 = ηh(z).

That is,

{
G(z) = νh(z)−1,

A(z) = K++Ch

(n−1)
G(z)−n = K++Ch

(n−1)
ν−nh(z)n,

where ν = (K+ + Ch)σ
2n(1−m).

Finally, when h(z) < 0, it is optimal to switch from regime 1 to regime 0 (reduce inventory

at level z) when Pt ∈ [F (z),∞). Since K++Ch > 0, it is never optimal to switch from regime

0 to regime 1 (i.e. G(z) = ∞). The derivation of the value function proceeds analogously to

the derivation for the case of h(z) > 0.

Case II: K− − Ch < 0.

First of all, for each z ∈ (a, b) such that h̃(z) ≤ 0, it is always optimal to reduce the

inventory because (K− − Ch) < 0. That is, F (z) = ∞ = G(z). In this case, clearly

v0(x, z) = 0 and v1(x, z) = −K− + Ch.

12



Next, for each z ∈ (a, b) such that h̃(z) > 0, it is optimal to switch from regime 0 to

regime 1 (to increase in the inventory at level z) when Pt ∈ [G(z),∞), and to switch from

regime 1 to regime 0 when Pt ∈ (0, F (z)], where 0 < F (z) < G(z) < ∞.

Moreover, v0 and v1 are given by

v0(x, z) =

{
A(z)pn, x < G(z),

B(z)pm + ηxh̃(z)− (K+ + Ch), x ≥ G(z),

v1(x, z) =

{
A(z)pn − (K− − Ch), x ≤ F (z),

B(z)pm + ηxh̃(z), x > F (z).

Smoothness of v(x, z) at x = G(z) and x = F (z) leads to





A(z)G(z)n = B(z)G(z)m + ηG(z)h̃(z)− (K+ + Ch),

nA(z)G(z)n−1 = mB(z)G(z)m−1 + ηh̃(z),

A(z)F (z)n = B(z)F (z)m + ηF (z)h̃(z) + (K− − Ch),

nA(z)F (z)n−1 = mB(z)F (z)m−1 + ηh̃(z).

(14)

Eliminating A(z) and B(z) from (14) yields

{
(K+ + Ch)G(z)−m + (K− − Ch)F (z)−m = −m

(1−m)ρ
h̃(z)(G(z)1−m − F (z)1−m),

(K+ + Ch)G(z)−n + (K− − Ch)F (z)−n = n
(n−1)ρ

h̃(z)(G(z)1−n − F (z)1−n).
(15)

Since the viscosity solutions to the variational inequalities are unique and C1, for every z

there is a unique solution F (z) < G(z) to (15). Let κ(z) = F (z)h̃(z), ν(z) = G(z)h̃(z), then

the following system of equations for κ(z) and ν(z) is guaranteed to have a unique solution

for each z:
{

(K+ + Ch)ν(z)−m + (K− − Ch)κ(z)−m = −m
(1−m)ρ

(ν(z)1−m − κ(z)1−m),

(K+ + Ch)ν(z)−n + (K− − Ch)κ(z)−n = n
(n−1)ρ

(ν(z)1−n − κ(z)1−n).

Moreover, these equations depend on z only through ν(z) and κ(z), implying that there

exist unique constants κ, ν such that κ(z) ≡ κ and ν(z) ≡ ν for all z. Hence F (z) =

κh̃(z)−1, G(z) = νh̃(z)−1, with κ < ν being the unique solutions to

{
1

1−m
[ν1−m − κ1−m] = − ρ

m
[(K+ + Ch)ν

−m + (K− − Ch)κ
−m] ,

1
n−1

[ν1−n − κ1−n] = ρ
n

[(K+ + Ch)ν
−n + (K− − Ch)κ

−n] .

Given F (z) and G(z), A(z) and B(z) are solved from Eq. (14),





B(z) = −G(z)−m

n−m

(
G(z)h̃(z)
σ2(1−m)

− n(K+ + Ch)
)

= −F (z)−m

n−m

(
F (z)h̃(z)
σ2(1−m)

+ n(K− − Ch)
)

,

A(z) = G(z)−n

n−m

(
G(z)h̃(z)
σ2(n−1)

+ m(K+ + Ch)
)

= F (z)−n

n−m

(
F (z)h̃(z)
σ2(n−1)

−m(K− − Ch)
)

.

13



Step 3. F and G are increasing in z, and therefore by definition this collection of optimal

switching controls is consistent. This consistent collection of optimal switching control cor-

responds to an admissible singular control (ξ̂+, ξ̂−) ∈ Ay. Moreover, since I is bounded, it

is integrable following [16, Theorem 3.10] as

lim
t→∞

E
[
e−ρtG−1(Mt)

]
= 0.

(See also Lemma 1 and Eqn. (23) in [24]).

As a result,

v0(p, z) =

{
A(z)pn, p < G(z),

B(z)pm + ηh̃(z)p−K+ − Ch, p ≥ G(z),

v1(p, z) =

{
A(z)pn −K− + Ch, p ≤ F (z),

B(z)pm + ηh̃(z)p, p > F (z).

Step 4. Combining these results, we see that the ordering region is given by {(p, z) : p ≥
G(z)} and the downsizing region by {(p, z) : p ≤ F (z)}. It is optimal to take no action

when when (Xt, Yt) is in the continuation region, given by {(p, z) : F (z) < x < G(z)}. If

(p, y) is in the ordering (or downsizing) region, then a jump is exerted at time zero to make

Y0+ = G−1(p) (or Y0+ = F−1(p)).

Finally, by [16, Theorem 3.10], we have

V (p, y) = ηH̃(a)p +

∫ b

y

v0(p, z)dz +

∫ y

a

v1(p, z)dz.

3.2 Main Result

In summary, we see that the optimal value function is characterized below for two distinct

cases. In the first, K− − Ch ≥ 0, implying that the proportional loss incurred upon selling

inventory is greater than the gain from reduced future holding cost. In the second, K−−Ch <

0, implying that reducing holding cost dominates the transaction cost.

Theorem 3.3. [Optimal value function for K− − Ch ≥ 0]

V (p, y) = ηH̃(a)p +

∫ y

a

v1(p, z)dz +

∫ b

y

v0(p, z)dz, (16)

where v0 and v1 are given by

1. For each z ∈ (a, b) such that h̃(z) = 0 : v0(p, z) = v1(p, z) = 0.
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2. For each z ∈ (a, b) such that h̃(z) > 0:





v0(p, z) =

{
A(z)pn, p < G(z),

ηh̃(z)p−K+ − Ch, p ≥ G(z),

v1(p, z) = ηh̃(z)p,

where G(z) = νh̃(z)−1, and A(z) = K++Ch

(n−1)
G−n(z), with ν = (K+ + Ch)σ

2n(1−m).

3. For each z ∈ (a, b) such that h(z) < 0:





v0(p, z) = 0,

v1(p, z) =

{
B(z)pn + ηh̃(z)p, p < F (z),

−K− + Ch, p ≥ F (z),

where F (z) = − κ
h̃(z)

, and B(z) = K−−Ch

(n−1)
κ−nF−n(z), with κ = (K− − Ch)σ

2n(1−m).

0

z

p

F(z)

G(z)

b

h(z) < 0

h(z) = 0

h(z) > 0

Figure 1: Policy when K− − Ch ≥ 0, with F (z) = − κ
h̃(z)

and G(z) = νh̃(z)−1.

a b

z
G  (p) F  (p)

−1 −1

Optimal Policy

Figure 2: Illustration of the two-threshold order policy for fixed price p when K− −Ch ≥ 0.

Theorem 3.4. [Optimal value function for K− − Ch < 0]

V (p, y) = ηH̃(a)p +

∫ y

a

v1(p, z)dz +

∫ b

y

v0(p, z)dz, (17)

where v0 and v1 are given by
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G(z)

b

a

h(z) <=0

h(z) > 0

0 p

z

F(z)

Figure 3: Policy when K− − Ch < 0.

a b

zOptimal Policy

F  (p)
−1

Figure 4: Illustration of the one-threshold order policy for fixed (low) price p and when

K− − Ch < 0.

1. For each z ∈ (a, b) such that h̃(z) ≤ 0: v0(p, z) = 0, v1(p, z) = −K−.

2. For each z ∈ (a, b) such that h̃(z) > 0 :

v0(p, z) =

{
A(z)pn, p < G(z),

B(z)pm + ηh̃(z)p−K+ − Ch, p ≥ G(z),
(18)

v1(p, z) =

{
A(z)pn −K− + Ch, p ≤ F (z),

B(z)pm + ηh̃(z)p, p > F (z).
(19)

Here

A(z) =
h̃(z)n

(n−m)νn

(
ν

σ2(n− 1)
+ m(K+ + Ch)

)
(20)

B(z) =
−h̃(z)m

(n−m)νm

(
ν

σ2(1−m)
− n(K+ + Ch)

)
. (21)

The functions F and G are non-decreasing with

F (z) =
κ

h̃(z)
and G(z) =

ν

h̃(z)
, (22)

where κ < ν are the unique solutions to

1

1−m

[
ν1−m − κ1−m

]
= − ρ

m

[
(K+ + Ch)ν

−m + (K− − Ch)κ
−m

]
, (23)

1

n− 1

[
ν1−n − κ1−n

]
=

ρ

n

[
(K+ + Ch)ν

−n + (K− − Ch)κ
−n

]
. (24)
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Theorem 3.5. [Optimal control for K−−Ch ≥ 0] For each z ∈ (a, b), the optimal control

is described in terms of F (z) and G(z) from Theorem 3.3 such that

• For z such that h̃(z) > 0, it is optimal to increase inventory past level z when P p
t ∈

[G(z),∞), and never decreases.

• When h̃(z) < 0, it is optimal to decrease below inventory level z when P p
t ∈ [F (z),∞),

and it is never optimal to increase. When h̃(z) = 0, it is optimal to do nothing (i.e.

F (z) = ∞ = G(z)).

Theorem 3.6. [Optimal control for K−−Ch < 0] For each z ∈ (a, b), the optimal control

is described in terms of F (z) and G(z) from Theorem 3.4 such that

• For z such that h̃(z) > 0, it is optimal to increase inventory past level z when P p
t ∈

[G(z),∞), and to decrease invenotry below level z when P p
t ∈ (0, F (z)].

• For z such that h̃(z) ≤ 0, it is always optimal to decrease inventory level.

The optimal policy is illustrated in Figure 1 and Figure 2 for the K− ≥ Ch case, and

Figure 3 and Figure 4 for the K− < Ch case, with corresponding numerical examples with

specific parameter values in Figure 5 and Figure 6. In Figure 3 (and Figure 4), K− < Ch,

implying a relatively high holding cost. For low prices, inventory is decreased regardless of

the value of h̃(z), and for high prices, inventory is increased or decreased as necessary. For

intermediate prices, in general, no action is taken if inventory is low enough, but otherwise

it is decreased (where Figure 4 illustrates this last case). In contrast, when K− ≥ Ch as in

Figure 1 (and Figure 2), the relatively low holding cost introduces a different policy: above

a certain threshold price, except around the h̃(z) = 0 region, inventory is typically decreased

for negative h(z) values, and increased for positive h(z) values, as illustrated in Figure 2. In

general, depending on the holding cost Ch and the cost of selling K−, reducing holding cost

is a key driver, so conditions must be more favorable before inventory is increased, and it is

more likely that inventory will be decreased.

Remark 3.7. We emphasize that these results are quite general, and indeed hold for any

H̃(·) function that is concave. In particular, when H̃ is continuously differentiable, strictly

increasing, strictly concave, we will have the regularity condition for F and G and for the

value function, as postulated in the current literature.

4 Computational Experiments and Observations

The purpose of our computational experiments are to assess when it might be valuable for a

firm to actively utilize the spot market to guard against cost and price risks. To that end, we
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compared a variety of simulation runs in which the market met the conditions of our model,

and where two different inventory management strategies were employed. The first of these

was the optimal policy as described in this paper, and the second of these was a modified

version of the traditional newsvendor solution. We elected to use this modified newsvendor

approach as a reasonable proxy for how a manager who is not interested in repeatedly buying

and selling on the spot market might manage the system.

For our newsvendor solution, since D is independent from τ and the price process, pt, we

modified the standard news-vendor approach and raised the inventory level to the critical

fractile y∗ as follows:

y∗ = min

{
b, max

{
a, F−1

(
E[pτ ]− (p0 + K+ + Ch ∗ E[τ ])

E[pτ ]

)}}
,

where E[pτ ] is the expected selling price, and p0 + K+ + Ch ∗ E[τ ] is the expect inventory

stock-up cost. Moreover, in our case, E[τ ] = 1/λ, E[pτ ] = p0 ∗ λ/(λ− µ), therefore:

y∗ = min

{
b, max

{
a, F−1

(
1− (λ− µ) ∗ (p0 + K+ + Ch/λ)

(p0 ∗ λ)

)}}
.

4.1 K− ≥ Ch

For the K− ≥ Ch simulation runs, we used the following parameters: price multiplier α = 1.3,

no penalty cost or salvage value (α0 = αu = 0, a price process with µ = 0.1 and σ = 1,

Lognormal demand with mean 5 and standard deviation 0.5, time until demand arrives

exponentially distributed with rate λ = 1, additional proportional transaction cost for buying

K+ = 1, additional proportional transaction cost for selling K− = 2, minimum inventory

a = 50 and maximum inventory b = 200. For these parameter values, we considered all four

combinations of two starting inventory levels (y = 50, 150) and two holding costs (Ch = 0, 1),

and varied initial prices between 5 and 50.

For each parameter, we completed 25000 simulation runs, and in Tables 1 - 4, we report

average profit for the optimal strategy W , average profit for the newsvendor strategy W nv,

improvement of the optimal strategy over the newsvendor strategy, coefficient of variation

of the optimal strategy (CoV W , the ratio of standard deviation to average), and coefficient

of variation of the newsvendor strategy (CoV W nv). In Figure 5, we illustrate the optimal

policy for one set of parameters.

We see that in each case, the optimal strategy is significantly better than the newsvendor

strategy, particularly when the initial price is low. As the price increases, the advantage of

the optimal strategy decreases, but always remains significant ranging from a high of several

thousand percent better, to at low of 27 percent better. This advantage is particularly dra-

matic for runs with high starting inventory and high holding cost, or low starting inventory
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F(z) G(z)
p

0 10 20 30 40 50

z

50

100

150

200

Figure 5: Example policy when K− − Ch ≥ 0, with F (z) = − κ
h̃(z)

and G(z) = ν
h̃(z)

. Here

α = 1.3, α0 = 0, y = 50, Ch = 1, µ = 0.1, σ = 1/
√

2, [a, b] = [50, 250], K+ = 1, K− = 2, λ = 1,

D v Lognormal(5, 0.5).

p 5 10 15 20 25 30 35 40 45 50

W 35 205 398 597 797 999 1201 1403 1605 1808
Wnv 16 133 249 365 545 728 906 1081 1255 1429

W−W nv

W nv 114% 54% 60% 63% 46% 37% 33% 29.76% 28% 27%
CoV W 59.3 21.0 16.4 14.7 13.8 13.2 12.9 12.6 12.4 12.2

CoV Wnv 61.6 15.2 12.2 11.1 10.6 10.3 10.1 10.0 9.9 9.8

Table 1: K− ≥ Ch,Ch = 1, K− = 2, y = 50

and low holding cost, as these seem to be the cases where aggressive and active management

of inventory leads to the greatest benefits. In addition to being significantly more profitable,

when initial prices are low for some combinations of starting inventory and holding cost

(either low starting inventory and no holding cost, or high starting inventory and holding

cost), the coefficient of variation of the optimal strategy is less than that of the newsvendor

strategy, suggesting higher returns at lower risk.

4.2 K− < Ch

We also considered the case of K− < Ch, to explore whether or not the qualitatively different

shapes of the curves would lead to different results. We used the same parameters for our

simulation, except that we only considered a holding cost Ch = 1 and K− = .5. As before,
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p 5 10 15 20 25 30 35 40 45 50

W -111 84 285 488 691 894 1098 1302 1506 1710
Wnv -284 -168 -51 65 266 462 648 829 1007 1184

W−W nv

W nv NA NA NA 653% 160% 94% 69% 57% 50% 44%
CoV W 21.1 54.7 24.1 18.7 16.5 15.3 14.5 14.0 13.6 13.3

CoV Wnv NA NA NA 62.4 21.7 16.2 14.1 13.0 12.3 11.8

Table 2: K− ≥ Ch,Ch = 1, K− = 2, y = 150

p 5 10 15 20 25 30 35 40 45 50

W 133 302 478 655 833 1011 1189 1367 1545 1724
Wnv 104 209 369 526 681 835 989 1143 1297 1450

W−W nv

W nv 27% 45% 29% 25% 22% 21% 20% 20% 19% 19%
CoV W 13.5 14.0 12.0 11.3 10.9 10.7 10.6 10.5 10.4 10.3

CoV Wnv 6.5 6.5 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9

Table 3: K− ≥ Ch,Ch = 0, K− = 2, y = 50

we considered starting inventory levels (y = 50, 150) and varied initial prices between 5 and

50. We report these results in Tables 5 and 6. Observe that the same general observations

made for the K− ≥ Ch case apply here. In Figure 6, we illustrate the optimal policy for one

set of parameters.

4.3 Changes in λ

It can be observed from the formulation that both threshold F−1(p) and threshhold G−1(p)

are monotonic with respect to λ. However, when K− > Ch, F−1(p) and G−1(p) are decreasing

with respect to λ, as illustrated in Figure 7. This is not surprising, because as the rate of

demand arrival increases, there is less flexibility to stay “idle”, and it becomes important to

p 5 10 15 20 25 30 35 40 45 50

W 157 322 491 666 843 1021 1200 1380 1559 1739
Wnv -96 8 204 376 539 698 855 1012 1168 1323

W−W nv

W nv NA 3730% 140% 77% 57% 46% 40% 36% 34% 31%
CoV W 10.5 10.0 9.6 9.4 9.2 9.1 9.0 8.9 8.8 8.8

CoV Wnv NA 162.6 12.4 9.7 8.8 8.3 8.0 7.8 7.7 7.6

Table 4: K− ≥ Ch,Ch = 0, K− = 2, y = 150
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Figure 6: Example policy when K− − Ch < 0, with F (z) = κ
h̃(z)

and G(z) = ν
h̃(z)

. Here α =

1.3, α0 = 0, y = 50, Ch = 1, µ = 0.1, σ = 1/
√

2, [a, b] = [50, 250], K+ = 1, K− = 0.5, λ = 1,

D v Lognormal(5, 0.5).

lambda=0.5 lambda=1 lambda=10
p

0 5 10 15 20

z

50

100

150

200

Figure 7: Threshold changes with respect to change of λ (with other parameters identical to

those for Figure 5)
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p 5 10 15 20 25 30 35 40 45 50

W 13 160 327 500 675 851 1027 1204 1380 1557
Wnv 4 108 212 317 475 637 794 949 1103 1258

W−W nv

W nv 233% 48% 54% 58% 42% 34% 29% 27% 25% 24%
CoV W 102.0 17.8 13.4 11.8 11.0 10.5 10.2 10.0 9.8 9.7

CoV Wnv 171.9 12.6 9.6 8.6 8.2 7.9 7.8 7.7 7.6 7.5

Table 5: K− < Ch,Ch = 1, K− = 0.5, y = 50

p 5 10 15 20 25 30 35 40 45 50

W -88 88 266 445 625 804 984 1164 1345 1525
Wnv -146 -41 63 167 338 507 669 828 985 1142

W−W nv

W nv NA NA 323% 166% 85% 59% 47% 41% 36% 34%
CoV W NA 33.9 17.0 13.6 12.1 11.3 10.8 10.4 10.2 10.0

CoV Wnv NA NA 32.5 16.3 11.5 10.0 9.2 8.8 8.5 8.3

Table 6: K− < Ch,Ch = 1, K− = 0.5, y = 150

respond more quickly to price changes by either selling excess inventory or buying to adjust

inadequate inventory levels.

5 Future Research

We have completely characterized the optimal policy for a firm facing random demand after

a random period of time of being able to buy and sell on the spot market. In computational

tests, we observed that this policy performs significantly better than a version of the tradi-

tional newsboy policy (utilized as a proxy for a reasonable inventory management policy for

firms not interested in trading on the spot market), most notably when market prices are

relatively low.

Although the results presented in this paper provide insight into the value to a firm of

effectively utilizing the spot market, and contribute to the state of the art in continuous time

inventory control, there are significant extensions possible to this work from both technical

and modelling perspectives.

For example, the addition of a fixed inventory ordering cost changes the singular control

to a more difficult impulse control problem. It will be interesting to see if the analogous

state dependent version of (d,D, U, u) policy still holds for this two-dimensional problem,

and whether the regularity property holds as well. Additionally, the price process could be

modelled by stochastic processes other than a Brownian motion. For instance, it would be
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interesting to explore whether or not the two-threshold policy holds for the case of a mean-

reverting process. More sophisticated constraints on the inventory, such as a requirement

that the inventory either be 0 or above some minimum level, are in theory not more difficult

by our solution approach, but it would be interesting to complete this analysis. Finally,

multi-period models, with multiple demand opportunities and inventory carried between

periods will be significantly more difficult to analyze, but may yield interesting insights on

effective inventory management in the presence of a spot market.
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