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1 Introduction 

Despite the increasing sophistication of Finance in the past 30 years, quantitative tools for building 
portfolios remain entrenched in the paradigm proposed by Markowitz in 1952; these tools offer investors 
a trade-off between mean return and variance. However, Markowitz himself was not satisfied with 
variance, which penalizes gains and losses equally. Instead, he preferred semi-variance, which  penalizes 
only losses. 

The endurance of mean-variance optimization may be explained, at least in part, by the difficulty of 
developing a viable alternative.  There is a substantial literature devoted to extending or replacing mean-
variance optimization and it revolves around three interrelated themes. The first theme concerns the 
characterization of a useful measure of risk. Axiomatic approaches to this issue in Artzner et al. (1999), 
Föllmer and Schied (2002) and Föllmer and Schied (2004) indicate that convexity is an essential feature of 
a risk measure.  One reason is that portfolio construction based on a non-convex risk measure can lead to 
a solution that is locally optimal but not globally optimal. Variance, which measures the squared 
average dispersion of a portfolio return distribution, is convex. Increasingly, the dominant convex 
measure of downside risk is expected shortfall,1 which is the expected loss given that a value at risk 
threshold is breached.  An important feature of expected shortfall is its flexibility:  by varying the value 
at risk threshold, expected shortfall can be made sensitive to different parts of the return distribution. 
Further, even at relatively low confidence levels, expected shortfall probes the entire tail of loss 
distribution. 

The second theme concerns the development of practical algorithms that incorporate alternative risk 
measures. Portfolio optimization against variance is a tractable quadratic programming problem. An 
innovation by Rockafellar and Uryasev  (2000) makes portfolio optimization against expected shortfall 
technically practical by formulating it as a linear programming problem. 

The efficacy of any quantitative portfolio construction method depends on the accuracy of the estimated 
inputs, and the third theme in the portfolio construction literature is estimation accuracy.  Variance at 
horizons up to a month can be forecast with accuracy that is sufficient for the purpose of optimization. In 
contrast, estimates of expected shortfall are typically inappropriate for optimization; data scarcity leads 
to unreasonably wide error bars, even at a horizon of one day. However, this issue can be addressed for 
equities with Factor-Based Extreme Risk (FxR).which is an empirical, fundamental factor-based model 
that forecasts expected shortfall at horizons up to one month.  FxR expected shortfall forecasts reflect 
persistent characteristics of equities, such as the higher asymmetry and downside risk of Growth stocks 
compared to Value stocks. 

In this paper, we combine the innovations described above in an empirical study of expected shortfall 
optimization with Factor-Based Extreme Risk. We avoid the issue of forecasting mean return by 
comparing minimum expected shortfall to minimum variance portfolios.2 Our study is carried out for 
                                                        

1
 Conditional value ati risk (CVar) and Expected tail loss (ETL) are  synonyms for expected shortfall.  

2
 An empirical portfolio construction study that has substantial overlap with our study and incorporates forecasts of mean return is  in 

Bender et al. (2010). 



 

the US, UK, and Japanese equity markets and it uses Barra Style Factors (Value, Growth, Momentum, 
etc.). We show that minimizing expected shortfall generally improves performance over minimizing 
variance, especially during down-markets, over the period 1985-2010. The outperformance of expected 
shortfall is due to intuitive tilts towards protective factors like Value, and away from aggressive factors 
like Growth and Momentum. The outperformance is largest for the expected shortfall at relatively low 
confidence levels, which measures distributional asymmetry rather than the extreme losses. 

2 Background 

In this section we review the definition and motivation for expected shortfall, the formulation of 
variance and expected shortfall optimization problems, and the Factor-Based Extreme Risk model. 

2.1 Volatility and Expected Shortfall as Risk Measures 

Volatility, or the square root of variance, measures the average dispersion over the entire distribution of 
portfolio gains and losses. Volatility is the central concept in many standard statistics such as risk 
contribution, beta, and correlation (Goldberg, et al, 2010). Its usefulness stems from its empirical and 
mathematical properties. Empirically, volatility is persistent from one period to another; realized 
volatility in one period is highly correlated with realized volatility in the next. Mathematically, volatility 
is a convex risk measure, amenable to the tools of convex optimization and analysis (Goldberg and 
Hayes, 2010). A minimum of a convex risk measure is unique, so once a minimum is found it is 
guaranteed to be a global minimum. 

Although useful, volatility does not describe every aspect of risk. Even as he proposed variance as a risk 
measure, Markowitz (1952) pointed out that a better risk measure would penalize only losses, and he 
proposed semi-variance as a desirable alternative. An alternative risk measure that has gained attention 
in recent years is expected shortfall, which is the average (or expected) value of the largest losses. The 
expected shortfall confidence level specifies the magnitude of these largest losses. For example, the 95% 
expected shortfall is the average over the 5% largest losses. Given N possible portfolio outcomes, 
expected shortfall is formally defined as 

 ∑
N(1-p)

p (i)
i=1

1
s = r

N(1- p)
    (1) 

 

where r(i) are the ordered return scenarios and p is the confidence level.3  

2.2 Variance and Expected Shortfall Optimization 

Like variance, expected shortfall is a convex risk measure and can be efficiently minimized. For asset 
weights w, expected returns α, risk aversion λ, and covariance matrix Σ, the standard mean-variance 
problem is: 

 wmax  w'α - λw'Σw     (2) 

 

Similarly, the mean-expected shortfall problem is: 

 

                                                        

3
 Here we assume that N(1-p) is an integer. The general formula for continuous outcomes is conceptually similar; see Acerbi and Tasche 

(2001) for a detailed discussion. 



 

 w pmax  w'α - λs (w)     (3) 

 

where sp(w) is the empirical expected shortfall estimator at confidence level p. Rockafellar and Uryasev 
(2000, 2002), Krokhmal, et al (2002), and Bertsimas. et al (2004) show how to formulate shortfall 
optimization as a linear program (LP) amenable to standard optimization algorithms. In Appendix C we 
review the formulation of variance, expected shortfall, and combined variance-expected shortfall 
optimization in more detail. 

2.3 The Factor-Based Extreme Risk Model 

Although the promise of alternative risk measures has been recognized since variance was first 
introduced, the absence of reliable forecasts has been an obstacle to practical applications. Here, we 
review the two main categories of forecasting models. 

Parametric models are widely used to forecast alternative measures of portfolio risk.  Given a parametric 
family of candidate distributions for risk factors, statistical estimation techniques can be applied to 
determine the best in-sample fit to historical data, and simulations based on the winning distribution are 
used to generate portfolio risk forecasts. The most familiar parametric model is the Normal (Gaussian) 
distribution. However, the Normal model reduces to a variance model for portfolios that can be 
represented as a linear combination of the chosen risk factors. This is because any risk measure4 is a 
monotonic function of volatility when returns are normally distributed. Therefore, Normal models of 
risk do not add additional insight for linear instruments when looking at alternative risk measures. To 
make use of alternative risk measures, a non-normal risk model is needed, and there are endless 
possibilities.   However, financial data may not be adequate to distinguish between parametric families, 
and different choices can lead to materially different forecasts.5 

A non-parametric approach uses historical returns as forecast return scenarios (known in the context of 
Value at Risk as Historical VaR). While avoiding any specific distributional assumptions, Historical VaR 
and many other empirical models explicitly assume that historical returns are stationary. In other words, 
they assume that historical observations are drawn from a common distribution. However, it is widely 
accepted that this is not the case.  For example, volatility and correlations change over time, and this 
constitutes an argument against historical estimates.  Moreover, data constraints often necessitate the use 
of a relatively short return history (e.g., 1 year) for non-parametric estimation. Certain assets may not 
have sufficient history (e.g., newly issued equities), or their history may be irrelevant (companies that 
change from growth to value, small cap to large cap, or from one industry to another). 

Factor-Based Extreme Risk (FxR) is a non-parametric model that addresses the issues of volatility and 
correlation regimes and short or irrelevant data histories.  For a portfolio of international equities, FxR 
uses histories of daily equity risk factor returns to generate a substantial data set that can be used to 
forecast value at risk, expected shortfall, and other alternative risk measures.  Since equity factor return 
histories in developed markets span several decades, FxR data sets range in size between five thousand 
and ten thousand observations. An important element of the FxR methodology is covariance scaling:  
each factor return is updated to the current climate so that the histories used to estimate risk are 
covariance stationary.  Covariance-scaling regularizes the volatility and correlation regimes, so that 
outliers from different regimes can be evaluated on an equal footing. The FxR model is reviewed in 

                                                        

4
 More specifically, any risk measure that is a function of the single-period return distribution. 

5
 See, for example, Heyde and Kou (2004). 



 

Appendix A, and Dubikovsky, et al (2010) present broad out-of-sample tests that show how the FxR 
model is more consistent with market behavior than the Conditional Normal model. 

3 Uncertainty in Expected Shortfall Forecasts 

Before endeavoring to construct portfolios based on alternative measures, a basic question must be 
answered: can the risk measure be estimated with enough certainty to be useful? Two aspects of forecast 
uncertainty are precision, measured by estimation error, and predictability, measured by persistence 
(i.e., do historical returns predict future risk?). 

3.1 Estimation Error 

Optimized weights are subject to error, even for a perfect risk model, because risk is always estimated 
with a finite sample. Kondor, et al (2007) explain that estimation error increases with the ratio N/T, 
where N is the number of assets and T is number of observations. Naturally, estimation error plays a 
larger role in expected shortfall than in volatility, because a large amount of the input data is only used 
in aggregate to define the largest losses. 

We study the effect of estimation error using data simulated from a standard Normal distribution. 
Because the true distribution of the simulated variables is known, the true optimal portfolio is also 
known. We measure estimation error - the deviation between the optimized weights and the true 
weights - in two ways. First, we compute the average risk of the optimized portfolio divided by the true 
minimum risk (risk error). Second, we compute the average angle between the optimized weight vector 
and the true optimal weight vector (weight error). Both of these measure the proximity of the optimized 
portfolio to the true optimum. The risk error measures the average amount of extra risk that is taken in 
optimized portfolios due to random fluctuations. Because it is not obvious how much risk error is 
acceptable, we also compute the weight error, which has a concrete acceptable upper bound. This upper 
bound is defined by the average weight error of a randomly chosen set of positive weights. If the 
average weight error is greater than this upper bound, an investor is better off guessing at a random set 
of weights rather than trying to compute an optimal portfolio. This upper bound is around 35 degrees; 
we compute an analytical formula for the upper bound in Appendix B. The concept of weight error is 
illustrated for a two-asset portfolio in Figure 1.  

 
Figure 1: Illustration of weight-error angle for a two-asset portfolio (left) and its upper bound (right). 

 

We measure these effects using simulated standard normal random variables applied to 10 assets with 
sample lengths of 1000, 3000, 5000, and 7000. For each sample length, we simulate returns and minimize 



 

expected shortfall at several confidence levels using the full, equal-weighted sample.  We compute the 
ratio of Optimized expected shortfall to true Minimum expected shortfall, we repeat this process 100 
times and we average the performance statistics obtained from the 100 repetitions. The results are shown 
in Figure 2. 

We see that for our parameters, in this simplified setting, estimation error is well below the upper bound 
of 35 degrees that corresponds to random weights. While this does not rule out large estimation error for 
all possible distributions, our parameters satisfy the baseline normal criterion. We are thus able to 
control estimation error in this study by considering a low-dimensional risk space (fundamental factors) 
and a long history of factor returns from 1981. 

 

 

Figure 2: Measures of estimation error using simulated, standard normal random variables. 

3.2 Persistence 

The complementary question to estimation error is persistence. Even if we were able to exactly measure 
the risk in one period, there would be no use in risk forecasting or portfolio construction if risk did not 
persist from one period to the next. This is especially relevant for the FxR model, which uses up to 30 
years of daily return history to build its forecasts. We postulate that Barra fundamental factors (Size, 
Growth, Value, etc.) reflect characteristics that are “fundamental” to stock behavior, and are thus 
persistent across long periods of time. To test this hypothesis, we use the FxR  models to forecast 
expected shortfall from disjoint 15-year samples. Because FxR allows for volatility to evolve over time, 
we focus on a non-normality (NN) statistic that is independent of volatility.6 The NN statistic is a measure 
of percent deviation from normality, formally defined as the percent difference between FxR expected 
shortfall (xShortfall) and a Normal expected shortfall forecast: 

.1−=
allctedShortfNormalExpe

xShortfall
NN  

 

Positive NN means that the FxR expected shortfall forecast exceeds the normal estimate; negative NN 
means that the normal estimate exceeds the FxR forecast. Zero NN implies that the FxR and Normal 
estimates coincide. We compute the NN statistics of Barra USE3 style factors, on FxR estimates of the 

                                                        

6
 More specifically, NN is independent of volatility when Normal expected shortfall is estimated using the same half-life as that used to 

normalize the FxR returns. Mathematically, NN of a factor is the same as NN of a factor times a positive constant. 



 

gain7 and loss tails, and test the null hypothesis that the NN statistics persist from one period to the 
next.8 The results are shown in Figure 3, along with confidence intervals on the difference. If the 
confidence interval crosses the dashed diagonal, we cannot reject the null hypothesis that the NN 
statistics persist across periods. Out of 36 factors, we find only a handful of significant outliers: Size at 
three confidence levels, and Earnings Yield at the 60% confidence level. This result shows that Barra 
fundamental factors display persistent gain/loss tail features, even over long time periods,. This 
experiment fails to reject the proposition that suitably modified long histories of fundamental factors are 
a useful input to portfolio construction. Furthermore, the long history provides a large number of 
forecast scenarios, allowing us to control estimation error (under the assumption of stationarity) as 
described in the previous section. 

 

 

 

Figure 3: Persistence of non-normality (NN) of loss/gain tails of style factors in the Barra US factor model (USE3). 

 

4 Optimization Framework 

For our empirical study, we consider the active management problem in terms of fundamental factors. 
We examine the performance of an active strategy that is long minimum expected shortfall and short 
minimum variance. Alternatively, this performance measures the value added by minimizing expected 
shortfall instead of minimizing variance. 

To simplify the analysis, we do not include expected returns (alpha), and seek only to minimize risk. We 
further simplify the analysis by considering a small optimization universe consisting of a market index 
and a small number of Barra Style Factor portfolios (Size, Growth, Value, etc.; see Table 4).9 We carry out 
the study in three markets: US, UK, and Japan, during the period 1985-2010. 

Each minimum expected shortfall and minimum variance portfolio is constrained as follows: the weight 
of the index is set to 100% to reflect full investment in the market portfolio. Consequently, the index 
weight of the active strategy is zero. We constrain each individual style factor exposure to the range [-2, 

                                                        

7
 Expected gain  is analogous to expected shortfall.  It is the average of the largest gains:  those exceeding a specified confidence level. 

8
 Confidence intervals are computed by bootstrapping the FxR scaled returns in each period. 

9
 A factor portfolio return is equivalent to the Barra factor return; some Barra Style factor portfolios are also listed as MSCI indices. 



 

2]. The sum of style factor exposures is set to zero, so that the active bets are dollar-neutral. This enforces 
a reasonable level of Style exposure that can be achieved using a moderately sized investment universe. 

Inputs to the expected shortfall optimizer are daily returns prior to the analysis date. The return history 
begins in 1981 and the backtesting period starts in 1985, so the expected shortfall optimization is 
informed by a minimum history of 4 years. These time-series are adjusted using the FxR methodology as 
explained in Appendix A, representing forecast return scenarios in the expected shortfall objective 
function. Covariance forecasts are made using an exponentially weighted moving average (EWMA) of 
trailing factor returns. 

We tested a range of parameters, including: the expected shortfall confidence level (60% to 99%); the 
correlation and volatility half-lives used for FxR covariance rescaling and for the forecast covariance 
matrix (21, 90, 180 days); and the rebalancing frequency (daily, weekly, monthly, quarterly). With the 
exception of confidence level, we find little sensitivity to the optimization parameters. Here we focus on 
a 21-day half-life and a monthly rebalancing frequency. 

US UK Japan 

(MSCI USA) (MSCI UK) (MSCI Japan) 

Volatility Size Volatility 

Momentum Momentum Size 

Size Volatility Momentum 

Trading Activity Trading Activity Trading Activity 

Growth Leverage Value 

Earnings Yield Value Interest Rate Sensitivity 

Value Yield Growth 

Earnings Variability Foreign Sensitivity Leverage 

Leverage Growth Foreign Sensitivity 

Currency Sensitivity   

Yield   

Table 4: Equity style factors and “market factors” (MSCI USA, UK, Japan) used in optimization. 



 

 

 

 

 

Figure 5: Non-normality (NN) of style factors (left) and average monthly excess exposure of minimum expected shortfall over minimum 

variance (right). 

 

 



 

5 Optimization Results 

5.1 Optimal Exposures 

Style factor exposures of the active portfolio are shown in Figure 5. The active strategy tilts consistently 
towards Value in the UK and Japan, and the related Earnings Yield factor in the US. It tilts away from 
Leverage, Growth, and Earnings Variability in the US, Leverage and Growth in the UK, and Trading 
Activity, Leverage, and Growth in Japan. 

The excess exposures can be partly understood in terms of the NN statistics, also shown in Figures 5 and 
6. The factors favored by minimum expected shortfall have smaller (more negative) NN statistics, and 
those avoided have larger (more positive) NN statistics. The largest visible exception to this trend is 60% 
Growth in the UK, which is under-weighted in spite of its negative NN. This can be partly explained by 
the fact that Growth is the fourth riskiest factors in the UK market as measured by NN. Other exceptions 
include Currency Sensitivity in the US and the related Foreign Sensitivity in the UK and Japan, which 
can also be explained by their NN relative to the other available factors. 

The Volatility, Size, and Trading Activity factors are highly correlated with the market, and are an 
attractive hedge of market risk in both minimum variance and minimum expected shortfall. 
Consequently, their exposures consistently approach or coincide with the lower bound of -2. This means 
that their exposure in the active portfolio is close to zero. Two exceptions are Trading Activity in Japan 
and the UK. In Japan, Trading Activity is one of the riskiest factors (by NN) and therefore favored by the 
variance optimizer. In contrast, in the UK, Trading Activity is one of the least risky factors (by NN), so is 
favored by the expected shortfall optimizer. 

FxR captures not only the extremes, but also the overall asymmetry of the distribution. The NN statistics 
show that at high confidence levels, as is well-appreciated, most factors are riskier than Normal (fat-

tailed). However, at the 60% level, where expected shortfall examines nearly the entire loss side of the 
distribution, many factors are in fact less risky than Normal (positively skewed). For the Barra style factors, 
the strongest non-Normal risk signal comes from overall asymmetry rather than the extremes. This leads 
to larger active bets at lower confidence levels. 

 
Figure 6: Relationship of active factor exposure to non-normality (NN); (US – red, UK – green, Japan – blue). 

5.2 Optimal Portfolios 

Performance  

Figure 7 shows the cumulative returns of the active portfolios. The active strategy shows consistently 
strong performance over the entire back-testing period for all confidence levels in all three equity 



 

markets. In other words, minimum expected shortfall consistently outperforms minimum variance. We 
also see that the lower the expected shortfall confidence level, the larger the outperformance. It is worth 
noting that in the 1-2 years leading up to a financial crisis (e.g. 1986, 1998-99), minimum variance 
outperforms minimum expected shortfall. This is followed by a large improvement in the minimum 
expected shortfall portfolios during the subsequent turmoil. 

When comparing these returns to the market returns, we see that (especially in the US) they are almost mirror 
images of one another. When a crisis hits, xShortfall optimal excess portfolios remain unaffected and even 
show gains. This observation suggests that the active portfolios (long minimum expected shortfall, short 
minimum variance) can be used for downside protection: outperforming the market and limiting losses 
during turbulent times. 

 

 

 

 

Figure 7: Daily cumulative returns of xShortfall-optimal portfolios in excess of variance-optimal portfolio for the US (top left), UK (top 

right) and Japan (bottom). The corresponding cumulative returns of the market index are shown in grey, with their scale given by the axis on 

the right. 

The outperformance and downside protection that the minimum expected shortfall portfolios offer is 
also apparent when comparing their absolute cumulative returns to those of the market (see Appendix 
E). We see that in all three markets the 60% xShortfall optimal portfolio constantly floats above the 
market. On the other hand, the variance optimal portfolio either exceeds the market (UK) or 
underperforms, especially in down-markets (US and Japan).  



 

Return Attribution 

To understand the outperformance of minimum expected shortfall, we perform a return attribution on 
the excess returns of minimum expected shortfall over minimum variance. Figure 8 shows the 
cumulative returns for each style factor multiplied by their excess exposures at the 60% expected 
shortfall confidence level. Ignoring compounding effects, the sum of the cumulative returns of each of 
these factors equals the excess returns of minimum expected over minimum variance. 

Most of the outperformance of minimum expected shortfall is due to tilts towards Earnings Yield (US), 
Value (UK and Japan), and Trading Activity (UK), and away from Growth (US, UK, Japan), Trading 
Activity (Japan), Leverage (Japan), and Momentum (Japan). Most of these tilts correspond to 
conventional wisdom about stock characteristics: Value is protective, and Growth, Leverage, and 
Momentum are aggressive. A notable exception is Trading Activity, which plays little role in the US, but 
is favored in the UK and avoided in Japan. This may be partly due to the different definition of Trading 
Activity in the two models,10 but more likely reflects qualitative differences between the Japan and UK 
equity markets. The Japanese equity market has been bearish for most of the test period, while the UK 
has followed the global business cycle. 

In Figure 5 we showed that the excess exposures decrease for higher expected  confidence levels. This is 
because the strongest signal of non-normality comes from examining the entire loss side of the distribution, 
and not just the tail. Strikingly, the return attribution shows that considering the core of the return 
distribution will limit losses more effectively than looking deeper into the loss tail.  

Risk Analysis 

Having looked at the performance of minimum expected shortfall portfolios relative to their minimum 
variance counterparts, a remaining question is whether minimizing expected shortfall reduces extreme 
risk. To answer this, we compute the realized volatility, realized Sharpe ratio (realized risk/realized 
volatility), and realized 95% expected shortfall, (average over the largest losses) for down- and up-
markets (Table 9). As down-markets, we take the crisis periods of 1987-1988, 2000-2002, and 2007-2008, 
and up-markets, the remaining years in our back-testing period. When comparing the variance and 
expected shortfall optimal portfolios in absolute terms, we see that realized volatility is similar for all 
optimal portfolios, and consistently lower than that of the market. The Sharpe ratio is higher than that of 
the market, and highest for the 60% expected shortfall optimal portfolio. All optimized portfolios have 
lower realized expected shortfall than the market does. The active portfolios have negligible realized risk 
(volatility and expected shortfall) and higher Sharpe ratios, especially during down-markets. We finally 
see that in the framework of full-investment in the market together with an active hedge using our 
optimal excess portfolios, realized risk would only decrease by 1%, but realized expected shortfall would 
be reduced during down-markets. Analysis of the realized risk of the optimal portfolios in the UK and 
Japan markets shows similar results. 

                                                        

10
 Trading Activity in UKE7 is a weighted average of monthly, quarterly, and annual share turnover, while in JPE3 it also includes recent 

growth in trading volume; however, this descriptor is weighted by only 3%; the remainder of the factor is defined analogously to the UKE7 

factor. 



 

 

 

Figure 8: Return attribution for the monthly rebalanced 60% xShortfall optimal portfolio. For each style factor, its contribution to the 

overall return is obtained by multiplying its cumulative returns by the excess optimal exposures.   

 

 Realized Volatility Realized Sharpe Ratio Realized 95%  Expected 

Shortfall 

 Up-markets Down-markets Up-markets Down-markets Up-markets Down-markets 

MSCI USA 15% 27% 0.07 -0.02 2.16% 3.98% 

Variance-optimal 11% 19% 0.08 -0.01 1.56% 3.13% 

60% xShortfall optimal 11% 19% 0.10 0.01 1.57% 3.00% 

95% xShortfall optimal 11% 20% 0.08 0.00 1.59% 3.15% 

60% active portfolio 1% 2% 0.05 0.10 0.22% 0.26% 

95% active portfolio 1% 2% 0.01 0.02 0.22% 0.25% 

MSCI USA + 60% active 14% 26% 0.09 -0.02 1.94% 3.78% 

MSCI USA + 95% active 14% 26% 0.09 -0.02 1.96% 3.83% 

 



 

Table 9: Comparison of average realized volatility, realized Shape ratio (realized return/realized volatility) and realized 95% expected 

shortfall.  

The variance- and expected shortfall-optimal portfolio beta with respect to the market is shown in Figure 
10, using a two-year rolling window. All optimized portfolios display similar betas over time, which 
means that the beta of the active portfolio is nearly zero. Beta is on average significantly smaller than 
one, going as low as 0.2, indicating that the returns of our optimized portfolios do not generally follow 
market returns. 

 

 

Figure 10: Evolution of betas for optimal portfolios in the US market. Standard volatility beta with respect to the market is calculated using 

a two-year rolling window. 

6 Conclusion 

Our empirical study has shown that expected shortfall optimization, combined with Factor-Based 
Extreme Risk (FxR), can capture information beyond variance, and that this information can translate to 
downside protection and superior performance.  There are two important empirical observations.  The 
first is that the outperformance of minimum variance by minimum expected shortfall on portfolios of 
equity style factors is driven primarily by tilts toward Value and Earnings Yield, and tilts away from 
Growth.   Thus, the factor distributions incorporate some of the financial economic effects documented 
in Fama and French (1992).  The second observation is that the outperformance increases as the expected 
shortfall confidence level decreases.  This suggests that it is distributional asymmetry, rather than 
extreme events, that underlie the results. It also indicates that, in contrast with standard practice, it may 
be beneficial to place greater emphasis on downside risk measures at relatively low confidence levels. 

The novel element of our analysis FxR is a model, which provides a consistent and uniform view of 
history. Variance has so far been the main risk measure to optimize against due to its simple quadratic 
definition and its empirical persistence. With the advent of Factor-Based Extreme Risk, downside risk 
optimization has become a viable alternative to variance optimization. 
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Appendix A: Factor-Based Extreme Risk Methodology 

The non-parametric Factor-Based Extreme Risk (FxR) model forecasts value at risk, expected shortfall, 
and other alternative risk measures for international equity portfolios.  The essential input to the model 
is a history of daily returns to equity and currency risk factors.  For equities, the risk factors are the Barra 
industry, country and style factors.   For currencies, the risk factors are changes in log exchange rates 
against the US dollar. In developed markets, these return series have histories of up to four decades.   

To generate covariance-stationary series, the vector of factor returns on each date is “whitened” by pre-
multiplication with the contemporaneous covariance matrix raised to the minus-one-half power.  
Subsequently, each whitened return is updated to the current covariance regime by multiplication with 
the current covariance matrix raised to the one-half power. 

 

More precisely, if Σ is the covariance matrix of a vector  f of factor returns, then f can be expressed as  

 1/2f = Σ g      (4) 

 
where  the ``whitened “ vector of factor returns g  are uncorrelated and have unit variance. The 
fundamental assumption of FxR is that the whitened factor returns are  identically distributed over time. 
The uncorrelated factor returns can be recovered from the actual returns with the transformation 

 

 -1/2g = Σ f      (5) 

 
In practice, the covariance matrix Σ is not known  In FxR, we estimate Σ using an exponential weighted 
moving average (EWMA) of trailing factor returns.  The halflife is a model variable, and we use a halflife 
of 21 days in our study. 

 Forecast scenarios %Tf  on analysis date T are given by 

 

 % 1/2 -1/2
T T t tf =Σ Σ f      (6) 

 
where t is a historical date preceding T. These covariance-normalized factor returns are the inputs to expected 
shortfall optimization. Further details are given in Dubikovsky, et al (2010). 



 

 

Appendix B: Estimation Error and Derivation of the Weight-Error Angle 

We start by mathematically encapsulating the range of all feasible weight vectors w that satisfies the 
given optimization constraints. Consider the two-asset portfolio setting of Figure 1, where the set of all 
possible weights lies on the intersection of the dashed line with the first quadrant. We define the 
feasibility range in this two-dimensional setting to be the length of this line, which is √2. In three 
dimensions, feasible weights lie on the area of an equilateral triangle with edge length equal to √2; in 
four dimensions, feasibility is the volume of a tetrahedron with edge length equal to √2. In general, given 
n+1 assets and their weights, the feasibility range is the n-dimensional volume of the n-dimensional 
simplex with equal-sided edges equal to √2. This volume is equal to  

 

 feasible

n+1
V =

n!
    (7) 

 

Since the assumption is that optimal weights are given by equal weights, the optimal weight vector wop 
for n+1 assets has coordinates wop = [1/(n+1), …, 1/(n+1)], and its length is its norm |w|. 

Finding the boundary angle β around the optimal weight vector (beyond which one would be better off 
guessing a random set of weights rather than computing the optimal weights) reduces to finding the n-
dimensional object with sub-volume Vboundary that has half the volume of the total feasibility range (i.e., 
Vboundary = ½ Vfeasible). Since we seek an angle rotating around the optimal vector wop, the object with 
volume Vboundary must be an n-dimensional hypersphere centered at the coordinates of wop. Its radius is 
unknown, but can be backed out from its volume: 

 

For n even, 
 
 
  

1
n

n
2

n+1
r =

2(2π) (n!!!)
 and for n odd, 

 
 
  

1
n

n-1
2

n+1
r =

4(2π) (n!!)
, 

 

where n!!! (respectively n!!) is the product of all odd (respectively even) factors of n. With some higher-
dimensional imagination, one may now be able to see that the boundary angle β is adjacent to the 
optimal vector wop and has an opposite edge given by the radius r of the n-dimensional hypersphere 
(with the right angle being between the vector and the radius). Therefore, the boundary angle β is given 
by 

 

 opβ = atan(r | w |)     (8) 

 

and can be generated for any number of assets n+1 (dimension n) since it is dependent only on n. 



 

 

Appendix C: Variance and Expected Shortfall Optimization 

In this appendix we review the standard formulation of mean-variance optimization as a quadratic 
program (QP) and mean-expected shortfall optimization as a linear program (LP). Both QPs and LPs can 
be solved using standard optimization algorithms. 

 

Variance Optimization. Given a vector of weights w, covariance matrix Σ, vector of expected returns α, 
and risk aversion parameter λ, the mean-variance optimization problem is: 

 

 wmax  w'α - λw'Σw     (9) 

 

subject to any set of linear equality or inequality constraints (long-only, full investment, etc.). 

 

Expected Shortfall Optimization. Given vectors 1 Tr ,...,r  of forecast return scenarios, weight vector w, 

empirical expected shortfall estimator ∑
K

p (i)i=1

1
s (w) = - w'r

K
 for confidence level p,   K = T(1-p) , and 

risk aversion parameter Λ, we seek weights w minimizing ps (w) : 

 

 w pmax  w'α - Λs (w)     (10) 

 

The expected shortfall estimator ps (w)  is an average over order statistics, and it is not obvious how to 

solve the expected shortfall optimization. However, Rockafellar and Uryasev (2000) and others have 
shown how to formulate this as an equivalent linear program with T+1 additional variables and 2T 
additional constraints: 

 

 
 
 

≥

∑
T

w,z,t ii=1

i i

1
max w'α+Λ t - z

K

s.t.        z 0,     z > t - w'r

    (11) 

 

subject to any set of linear equality or inequality constraints (long-only, full investment, etc.). In the next 
section (Appendix D), we sketch how to convert the optimization problem (8) into its LP equivalent 
formulation.  

 



 

 

Variance / Expected Shortfall Optimization. Clearly the variance and expected shortfall terms can be 
combined into a single objective function to give another standard quadratic program: 

 
  

 
 

≥

∑
T

w,z,t ii=1

i i

1
max w'α+Λ t - z - λw'Σw

K

s.t.        z 0,     z > t - w'r

   (12) 

 

subject to any set of linear equality or inequality constraints (long-only, full investment, etc.). 

 



 

 

Appendix D: Linearization of Expected Shortfall Optimization 

In this appendix, we begin by considering this expected shortfall minimization problem: 

 w pmin    s (w)      (13) 

Let r1,…, rT be T vectors of forecast return scenarios for N assets, and w be the weight vector. The 
portfolio return at time t is given by pt = w’rt. If the sorted portfolio returns are written in increasing 
order as (w’r)(1) ≤ (w’r)(2) ≤ ∙∙∙ ≤ (w’r)(T), the empirical expected shortfall estimator is 

 

 ∑
K

p (i)
i=1

1
s = - w'r

K
    (14) 

 

where   K = T(1-p) . The linearization of this optimization problem is based on two crucial observations 

that convert the order statistic into a linear sum that is subject to linear constraints. 

 

Observation I. The sum of the t smallest portfolio returns is always smaller than or equal to the sum of 
any other combination of t returns. Formally, for any t < T, we have 

 
∈

≤∑ ∑
t

(i) i
i=1 i S

w'r w'r     (15) 

 

where we are indexing on the right hand side over all possible sets S that contain t portfolio returns (i.e., 
|S|=t, for t=1,…, T). The expected shortfall optimization problem (13) can therefore be rewritten as 

 

∈

≤

∑

∑ ∑

K

w,p (i)
i=1

t

(i) i
i=1 i S

1
max    - p

K

s.t.         p w'r

    (16) 

 

Observation II. The sum of the K smallest portfolio returns ∑
K

(i)i=1
p  as it appears in the objective 

function of (16) is in fact the value of the linear optimization problem (17) 

 

≤ ≤

∑

∑

T

x i i
i=1

T

i i
i=1

min   x p

s.t.     x =K,      0 x 1

    (17) 

 

This can be proven formally by induction on the number K. However, to help understand why this is 
true, notice that for K=1 we get the minimum value of combination of portfolio returns if we assign all 
the weight to the smallest return p(1), since any other fraction of weight assigned to a larger return will 
yield a larger total value. Similarly, for K=2 we get the minimum combination of portfolio returns if we 



 

assign all weights to the smallest returns. Since each xi cannot be larger than 1, we pick the two smallest 
returns. By strong duality, optimization problem (17) is equivalent to 

 

≤ ≤

∑
T

t,z i
i=1

i i i

max   Kt + z

s.t.       t + z p ,      z 0,    i =1,...,T

   (18) 

 

We use this observation to rewrite optimization (16) as 

 
−

≤ ≤

∑
T

w t,z i
i=1

i i i

1
min       max   Kt + z

K
s.t.         t + z w'r,      z 0,    i =1,...,T

   (19) 

 

Using the fact that max(f) = -min(-f), we finally convert optimization problem (18) into the following 
linear optimization, which is equivalent to (13): 

 

≤ ≤

∑
T

w,t,z i
i=1

i i i

1
min     - t - z

K
s.t.          t + z w'r ,      z 0,    i =1,...,T

   (20) 

 
 



 

 
Appendix E: Absolute Cumulative Returns 
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